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Abstract
Objective To differentiate supratentorial single brain metastasis (MET) from glioblastoma (GBM) by using radiomic features
derived from the peri-enhancing oedema region and multiple classifiers.
Methods One hundred and twenty single brainMETs and GBMswere retrospectively reviewed and then randomly divided into a
training data set (70%) and validation data set (30%). Quantitative radiomic features of each case were extracted from the peri-
enhancing oedema region of conventional MR images. After feature selection, five classifiers were built. Additionally, the
combined use of the classifiers was studied. Accuracy, sensitivity, and specificity were used to evaluate the classification
performance.
Results A total of 321 features were extracted, and 3 features were selected for each case. The 5 classifiers showed an accuracy of
0.70 to 0.76, sensitivity of 0.57 to 0.98, and specificity of 0.43 to 0.93 for the training data set, with an accuracy of 0.56 to 0.64,
sensitivity of 0.39 to 0.78, and specificity of 0.50 to 0.89 for the validation data set. When combining the classifiers, the
classification performance differed according to the combined mode and the agreement pattern of classifiers, and the greatest
benefit was obtained when all the classifiers reached agreement using the same weight and simple majority vote method.
Conclusions Three features derived from the peri-enhancing oedema region had moderate value in differentiating supratentorial
single brain MET from GBM with five single classifiers. Combined use of classifiers, like multi-disciplinary team (MDT)
consultation, could confer extra benefits, especially for those cases when all classifiers reach agreement.
Key Points
• Radiomics provides a way to differentiate single brain MET between GBM by using conventional MR images.
• The results of classifiers or algorithms themselves are also data, the transformation of the primary data.
• Like MDT consultation, the combined use of multiple classifiers may confer extra benefits.
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Abbreviations
DT Decision tree
GBM Glioblastoma
GLCM Grey-level co-occurrence matrix
GLDM Grey-level dependence matrix
GLRLM Grey-level run length matrix
GLSZM Grey-level size zone matrix
IBSI Imaging Biomarker Standardization Initiative
ICC Intraclass correlation coefficient
KNN K-nearest neighbours (KNN)
MDT Multi-disciplinary team
MET Metastasis
MRI Magnetic resonance imaging
NB Naive Bayes
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NGTDM Neighbouring grey tone difference matrix
NN Neural network
SD Standard deviation
SVM Support vector machines
T1C Contrast-enhanced T1-weighted

Introduction

Metastasis (MET) and glioblastoma (GBM) are common ma-
lignant brain tumours in adults [1]. GBM accounts for more
than half of all primary malignant central nervous system tu-
mours [2]. BrainMET is estimated to be at least 10 times more
common than primary brain malignancy [3]. The ability to
differentiate brain MET from GBM is important, because
medical staging, surgical planning, and therapeutic decisions
are different for the two tumours [4–6]. GBM cases usually do
not require a systemic examination, as spread outside of the
central nervous system is rather rare; however, for cases
suspected of brainMETwithout a previous history of systemic
cancer, finding the site of the primary carcinoma and evaluat-
ing the comprehensive systemic staging are important before
any surgical intervention or medical therapy [4]. Though bi-
opsy may be used to differentiate the two tumours, the nonin-
vasive method is preferable and sometimes mandatory when a
biopsy is impossible, such as when the tumour is close to or
involves eloquent area or when the patient is too weak to
undergo a surgery [7].

MR imaging is an important modality for evaluating brain
tumours. In patients with a history of systemic cancer and
multiple lesions, differentiation of brain MET from GBM
may be easily performed using conventional MRI. However,
single metastases were estimated to occur in more than 25% of
cases of brain MET [4, 8, 9]. Additionally, approximately 3%
of high-grade glioma cases display systemic malignancy [10],
and up to 20% of GBM cases were multifocal lesions in some
reports [11]. Furthermore, as both brain METs and GBM can
present with contrast enhancing and necrotic areas, they often
present a similar anatomic MR imaging appearance [4].

It has been shown that GBMs are infiltrative lesions that
invade the surrounding regions while METs are not infiltrative
[12]. This may lead to some differences, primarily including
cells, oedema type, angiogenesis, and so on, between the peri-
enhancing oedema regions of the two tumours [13]. To find
these differences, some advanced MR imaging techniques,
such as dynamic susceptibility contrast (DSC) and dynamic
contrast-enhanced (DCE), are required [12]. Conventional
MR imaging, however, is still difficult to distinguish these dif-
ferences and differentiate between the two tumours [12, 14].

Radiomics is an approach to extract high-throughput data
from images, and the data can then be mined for improved
decision support [15]. Previous study showed that radiomics
offers important advantages for assessment of underlying

tumour pathophysiology and improves the ability to distin-
guish between the tumours [15, 16]. Usually, workflow of four
steps is included in radiomic study, and building and evaluat-
ing a mathematical model or classifier is considered as the last
step in the process [17, 18]. However, sometimes the model or
classier is not satisfactory. Though multiple classifiers were
found in many previous radiomic studies [12, 19, 20], the
main purpose was to find the most optimal classifier.
Because each classifier may have its own advantages or dis-
advantages due to the different algorithms [21, 22], we
hypothesised that the combined use ofmultiple classifiers, like
consultation among specialists of a multi-disciplinary team
(MDT), might bring about extra benefits. Thus, the present
study sought to differentiate supratentorial single brain MET
from GBM by using radiomics features derived from the peri-
enhancing oedema region and multiple classifiers using con-
ventional MR images, especially to explore the value of the
combined use of the classifiers.

Methods

Patients

This retrospective study was approved by the Local Ethics
Committee of our hospital, and the requirement for patient
informed consent was waived. One hundred and twenty pa-
tients from four MRI scanners (15 GBMs and 15 METs for
each scanner) with single and supratentorial tumours (brain
MET, n = 60, June 2013 to May 2019; GBM, n = 60,
March 2013 to May 2019) were studied at our hospital. All
included patients underwent preoperative MRI scanning, in-
cluding T1-weighted, T2-weighted, and contrast-enhanced
T1-weighted (T1C) images, and there was no artefact in the
images. Each case contained sufficient peri-enhancing oede-
ma region size for measurement. Patient information was de-
identified, and medical history was concealed prior to analy-
sis. The entire data set was randomly assigned to either the
training (70%) or validation (30%) data set, with sampling
stratified according to the type of tumour (brain MET or
GBM) by R 3.3.1 (http://www.Rproject.org).

MRI protocol

MRI was performed with 1.5T Sonata, Aera scanner (Siemens
Medical Solutions), 3.0T Discovery MR750, Signa HDxt
scanner (GE Healthcare). Axial T1-weighted images, T2-
weighted images, and T1C images were acquired with a sec-
tion thickness of 6 mm (Table 1). Pre-contrast gadodiamide
(Omniscan, GE Healthcare) was injected through a peripheral
venous catheter at a dose that was standardised based on pa-
tient body weight (0.2 ml/kg body weight, up to a maximum
of 20 ml).
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Peri-enhancing oedema region was defined as an area in
immediate contact with the enhancing portion margin of the
tumour and showed no enhancement on T1C images, but
hyperintensity on T2W images [23]. Figure 1 shows a brain
MET and a GBM, both of which are cystic-solid lesions, with
the peri-enhancing oedema region.

Image preprocessing and segmentation

First, using T2-weighted images as main images, automat-
ic registration with rigid registration and the mutual infor-
mation similarity metric, reslicing of moving image into
the space of the main image for T1C images and T1-
weighted images were performed using ITK-SNAP soft-
wa r e (h t t p : / /www. i t k snap . o rg ) . Then , manua l
segmentation of peri-enhancing oedema regions for all
cases was performed by a radiologist (F.D., with 8 years
of experience) on T2-weighted, T1C, and T1-weighted
images. The segmentation was re-performed in twenty
cases (brain MET, n = 10; GBM, n = 10) which were ran-
domly selected among the included patients by another
radiologist (Q.L., with 5 years of experience). Regions
of interest (ROIs) were drawn approximately 3 mm away
from the outer margins of the enhancing margin of the
tumour to avoid a transverse partial volume effect [23].
Figure 2 shows the workflow of this study.

Feature extraction

Consistent with the Imaging Biomarker Standardization
Initiative (IBSI) [24, 25], 14 shape features, 18 first-order
features, 24 grey-level co-occurrence matrix (GLCM) fea-
tures, 14 grey-level dependence matrix (GLDM) features, 16
grey-level run length matrix (GLRLM) features, 16 grey-level
size zone matrix (GLSZM) features, and 5 neighbouring grey
tone difference matrix (NGTDM) features were extracted
from each of the axial T1-weighted, T2-weighted, and T1C
images by using pyradiomics (http://www.radiomics.io/
pyradiomics.html) [26–28](supplemental data 1 and 2). The
detailed description of these features can be found on the
above website and in previous literature [24, 26, 27]. A total
of 321 features were ultimately extracted in this study.

Feature selection

First, the stability of the extracted features was evaluated by
inter-observer reproducibility of the two image readers.
Intraclass correlation coefficient (ICC) values were calculated
for each feature of the twenty patients. Features with ICC
value ≥ 0.90 [29, 30] were selected in this study. Then, the
retained features in entire data set were processed with the
ComBat harmonisation method [31], which was found useful
to reduce the batch effect caused by different scanners [32,

Fig. 1 A MET case (a) and a
GBM case (b). Both cases show
cystic-solid lesions, along with
peri-enhancing oedema region

Table 1 The parameters for
imaging Scanner T1W images T2W images T1C images

TR (ms) TE (ms) TR (ms) TE (ms) TR (ms) TE (ms)

SO 350–460 7.7, 9.1 3700–4500 93, 95 350–460 7.7, 9.1

AE 1500–1870 6.9–7.5 3000–3860 81–107 1500–1910 6.9–8.2

DI 1750 24.5–25.2 3691.2–4689 87.3–111.1 1750 24.5–25.2

SH 1500–1740 20–20.4 4140–4640 103.7–109.4 1500–1862.4 20–20.4

TR, repetition time; TE, echo time; SO, Sonata; AE, Aera; DI, Discovery MR750; SH, Signa HDxt
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33]. The patients from the same scanner were considered as a
batch; therefore, there were a total of four batches, based on
which the harmonisation performs a transformation for each
feature [33]. Parametric empirical Bayesian adjustments were
used in the process. After that, the Boruta algorithm was im-
plemented to further select important features using the train-
ing data set. The Boruta algorithm is a wrapper built around
the random forest classification algorithm; it can select all
relevant features [34–36].

Classifier building and combination

With the selected features and the training data set, five base
classifiers were built. These included decision tree (DT), sup-
port vector machine (SVM), neural network (NN), naive
Bayes (NB), and k-nearest neighbour (KNN) classifiers [22].
All five classifiers belong to the supervised learning category,
but work with a different algorithm. Each of the classifiers has
its own advantages and limitations [21, 22]. Thus, the perfor-
mance may be different among classifiers even when they are
fed with the same data. Instead of finding a classifier with the
best performance, we were much more interested in exploring
the combined performance of these classifiers, whichmight be
similar to the specialist consultation of MDT.

Thus, after the 5 base classifiers were built, a same weight
and simple majority vote method [37] was first used to find the
combination performance of the base classifiers. During this
process, each classifier was regarded as a specialist and provid-
ed with the same weight for the diagnosis. The final diagnosis
was made according to simple majority rule [37, 38]. For ex-
ample, there were 5 classifiers in all, and if a case was diag-
nosed as GBM by 3 classifiers and was diagnosed asMET by 2
classifiers (3A pattern), then the final diagnosis was GBM. In
this study, three agreement patterns were noted: all 5 classifiers
reached agreement (5A pattern), 4 classifiers reached

agreement (4A pattern), and 3 classifiers reached agreement
(3A pattern).

To determine whether proper weights for the classifiers
could further improve the overall classification performance,
the logistic regression algorithm was implemented using the
results of the 5 classifiers as independent variables and the
ground truth as dependent variable.

Accuracy, sensitivity, and specificity were used to evaluate
the classification performance.

Statistical analysis

The age data were presented as the mean ± standard deviation
(SD) or median, according to whether or not a normal distribu-
tion was present. The demographic characteristics between
GBMs and METs in the entire data set were compared using
the Pearson chi-square test, student’s t test, or the Mann–
WhitneyU test, as appropriate. The statistical significance levels
were two-sided, with the statistical significance level set at 0.05.
The statistical analyses were performed using SPSS19.0.

The feature processing, selection, and classifier building
were mainly performed with the following R packages:
‘psych’, ‘sva’, ‘lattice’, ‘sampling’, ‘Boruta’, ‘ranger’,
‘ggplot2’, and ‘caret’. Tenfold cross-validation was performed
and repeated 3 times to find the best parameters, and accuracy
with the largest value was used to select the optimal model [39].

Results

One hundred and twenty patients (63 men and 57 women)
were included in the study. Ages ranged between 20 and
84 years. Brain METs originated from the lung (n = 39), di-
gestive tract (n = 8), breast (n = 4), uterus (n = 1), ovary (n =
2), liver (n = 1), skin (n = 1), and unknown origins (n = 4).
Eighty-four patients were assigned to the training data set

Fig. 2 Workflow of this study. a ROI delineation; b feature extraction; c feature selection; d classifier building; e combined use of the classifiers
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(GBM, n = 42; MET, n = 42), and 36 patients were assigned to
the validation data set (GBM, n = 18; MET, n = 18). The de-
mographic and clinical data were presented in Tables 2 and 3.

Feature selection

A total of 271 features showed ICC values ≥ 0.90, including
91 features from T1-weighted images, 89 features from T2-
weighted images, and 91 features from T1C images. After the
use of the Boruta algorithm, 3 features were finally
selected, i.e., one feature from T2-weighted images, the
original_glszm_SizeZoneNonUniformityNormalized,
and two features from T1C images, original_gldm_
DependenceNonUniformityNormalized and original_
glrlm_RunLengthNonUniformityNormalized.

Performance of classifiers

Five base classifiers were built using the 3 selected features.
The performances of the 5 classifiers were not all the same.
The classifiers showed an accuracy of 0.70 to 0.76, sensitivity
of 0.57 to 0.98, and specificity of 0.43 to 0.93 for the training
data set, with an accuracy of 0.56 to 0.64, sensitivity of 0.39 to
0.78, and specificity of 0.50 to 0.89 for the validation data set.
The DT classifier showed the highest specificity among the
base classifiers, but the lowest sensitivity. In contrast, the NN
classifier achieved the largest sensitivity but showed the low-
est specificity. The SVM classifier had some advantages in
high accuracy and sensitivity for the training data set; howev-
er, it did not work well for the validation data set. The KNN
classifier exhibited the highest accuracy for the training data
set, but other performance parameters were common. The NB
classifier showed an overall medium performance with respect
to accuracy, sensitivity, and specificity.

When the classifiers were combined by the same weight
and simple majority vote method, they showed an overall
accuracy, sensitivity, and specificity of 0.79, 0.83, and 0.74,
respectively, for the training data set, and 0.64, 0.50, and 0.78,
respectively, for the validation data set (Fig. 3). The overall
accuracy was higher than base classifiers in the training data
set and at an equivalent level with the best performance of
classifiers in the validation data set. The 5A pattern was found
in 40.5% (34/84) of cases in the training data set and 36.1%
(13/36) of cases in the validation data set. The 4A pattern was

found in 38.1% (32/84) of cases in the training data set and
33.3% (12/36) of cases in the validation data set. The 3A
pattern was found in 21.4% (18/84) of cases in the training
data set and 30.6% (11/36) of cases in the validation data set.
Further analysis showed that different agreement patterns had
different classification performances and brought diverse per-
formance advantages when compared with the separate use of
the classifiers (Fig. 3). The 5A pattern showed the largest
accuracy, sensitivity, and specificity (0.94, 1.00, and 0.89,
respectively) for cases in the training data set and the largest
accuracy and specificity (0.77 and 1.00, respectively) for cases
in the validation data set when compared with other
agreement patterns. Additionally, the 5A pattern achieved
the largest accuracy and sensitivity in the training data set,
as well as accuracy and specificity in the validation data set,
when compared with the base classifiers. Both accuracy and
specificity in the training data set and validation data set, as
well as sensitivity in the training data set, showed a downward
trend from the 5A pattern to the 3A pattern.

When exploring different weights for the combined use of
the base classifiers, the logistic regression algorithm showed
an intercept of − 2.8364 and weights of 2.4677, 0.7768,
1.1095, 2.9146, and − 0.4776 for the DT, KNN, SVM, NN,
and NB classifiers, respectively. The overall performance of
the logistic regression algorithm was characterised by accura-
cy, sensitivity, and specificity of 0.80, 0.81, and 0.79, respec-
tively, for the training data set and 0.64, 0.50, and 0.78, re-
spectively, for the validation data set. It showed a comparable
performance in the training data set and the same performance
in the validation data set when compared with the sameweight
voting method overall.

Discussion

It is important to differentiate between single brain MET and
GBM, and yet, it is still difficult at times to distinguish the two
tumours by using a traditional interpretation of conventional
MR images [12, 14]. In the present study, we built multiple
classifiers using radiomic features derived from the peri-
enhancing region to differentiate supratentorial single brain

Table 3 Results of the analysis of basic demographic and clinical data
for sub-dataset

Training data set Validation data set

Tumour METs 42 18

GBMs 42 18

Age (years) 61* 56 ± 11

Gender Male 46 17

Female 38 19

MET, metastasis; GBM, glioblastoma.*Median

Table 2 Results of the analysis of basic demographic and clinical data

Entire dataset METs GBMs p value

Age (years) 59 ± 9 57 ± 13 0.332

Gender Male 34 29 0.361
Female 26 31

MET, metastasis; GBM, glioblastoma
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MET from GBM. We found that, based on the selected fea-
tures, the 5 classifiers separately only showed moderate per-
formances in differentiating the two kinds of tumours.
Combined use of the classifiers could bring about extra bene-
fits to increase the classification performance of cases, espe-
cially for those with all classifiers reaching agreement.

In our study, all the ultimately selected features were tex-
ture features. Since radiomic features may capture the hetero-
geneity of lesions [16, 40], as well as the intra-tumoural het-
erogeneity that usually reflects the variations in blood flow,
oedema, and necrosis [36], we speculate that these features
had some relationship with the heterogeneity in the peri-
enhancing oedema regions for the two tumours.

It is still a challenge to interpret the relevance between
radiomic features and the effect variables [36]. From the se-
lected features, at least we know that there are some relevant
features in T1C images and T2-weighted images in the peri-
enhancing oedema region differentiating between brain MET
and GBM, and this may provide us with some enlightenment
to find visible and comprehensible features in the future. This
may indicate that the radiomic feature selection method may
be a useful way to narrow the scope of feature exploration for
human interpretation, especially for unfamiliar diseases.

In this study, the accuracy of the 5 base classifiers separate-
ly was inferior to the median performance (approximately
0.75) of the previous study, which built 20 classifiers (accura-
cy 0.57 to 0.87) [12]. One reason for this may be the wide ROI
we used for GBMs. Though the entire peri-enhancing oedema
regionwas known as pure vasogenic oedema for brainMET, it
showed a mixed pattern for GBM, within which tumour cell
infiltration was mainly found to be adjacent to the enhancing
region [12, 13]. However, it is difficult to define the range of
cell infiltration for GBM on T1-weighted images, T2-
weighted images, and T1C images.

In fact, the performance of a radiomic classifier or model
might not always be satisfactory. The primary data may be an
important reason affecting the classification performance. One
of our experiences showed that some image data which were
very difficult for human interpretation might also pose a chal-
lenge for a radiomic classifier or model, which we thought
may be related to the lack of effective features. Algorithms
may also affect the classification results. Even fed with the
same features, the previous study showed that the accuracy
performance of the Fine Gaussian SVM classifier was much
worse than that of the linear SVM in differentiating brain
MET from GBM [12]. For fixed data, building many classi-
fiers and choosing the best one is a way to create a better
classifier, which was widely used in previous studies [12,
19, 20]. In a previous radiomic study, even as much as 88
classifiers were built [20]. However, it would still be unsatis-
factory if all the built classifiers exhibited poor performance.

Clinically, MDT provides a collaboration among diverse
professionals, can produce a comprehensive decision, and is
very useful for making proper clinical decisions [41, 42].
Similarly, the combined use of multiple classifiers, which be-
longs to the stacking approach of ensemble learning [43, 44],
can also produce a comprehensive result and may be a way to
improve the performance of the base classifiers [37, 44, 45]. In
this study, the combined use of multiple classifiers indeed
brought about extra benefits. We consider the results of the
classifiers or algorithms themselves were also data, the trans-
formation of primary data. And further analysing these results
is a way for deeply mining the data. Thus, building classifiers
may not be the last step, but may be a new start for some
radiomic studies.

This study provided a method for differentiating single brain
MET from GBM with conventional MRI. Though only offer-
ing moderate performance and still unable to replace

Fig. 3 The performance of the 5 base classifiers and the combined use of
the classifiers: accuracy (a), sensitivity (b), and specificity (c). DT,
decision tree; SVM, support vector machines; NN, neural network; NB,
naive Bayes; KNN, k-nearest neighbour; 5A, five classifiers reach

agreement; 4A, four classifiers reach agreement; 3A, three classifiers
reach agreement; VOT, combined use of the classifiers by same weight
and simple majority vote method; LOG, combined use of the classifiers
by logistic algorithm with different weights
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pathological diagnosis by biopsy or operation, it provides evi-
dence that, by analysing the radiomic features derived from the
peri-enhancing region, conventional MR imaging can also be
used for differentiating single brain METs from GBMs. When
compared with the same evaluation metric using sensitivity and
specificity, our results are even comparable to those of ad-
vanced MR imaging methods [46–48]. However, conventional
MR imaging with our method was much more available than
those advanced MR imaging. Furthermore, this study provides
a method for further mining the data in radiomic studies, which
may bring about extra benefits. It also indicates that there may
be some potential value in combining the use of classifiers built
in different research centres or companies, or even in using
heterogeneity data from classifiers devised worldwide.

Some limitations should be considered in the current study.
First, the number of subjects included in this study was small,
and the ratio of brainMETandGBMwas not representative of
the general population. Second, only features in the peri-
enhancing oedema region were extracted, although features
in other regions may also be useful and can be studied in the
future. Third, only the agreement pattern for the same weight
and simple majority vote method was analysed, and more
complex analysis for different weights and other voting
methods can be further explored in the future.

Conclusions

With three features derived from the peri-enhancing oe-
dema region, all five classifiers separately showed mod-
erate value in differentiating supratentorial single brain
MET from GBM. However, combined use of the clas-
sifiers, like MDT consultation, could generate extra ben-
efits for increasing the classification performance of
cases, especially for those with all classifiers reaching
agreement. In addition, though building classifiers is
usually considered as the last step of the workflow for
radiomics, it is not the end of radiomics. Further mining
or using the results of the classifiers might lead to bet-
ter decision support.
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