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Abstract
Purpose To investigate the role of computed tomography (CT) radiomics for the preoperative prediction of lymph node (LN)
metastasis in gastric cancer.
Materials and methods This retrospective study included 247 consecutive patients (training cohort, 197 patients; test cohort, 50
patients) with surgically proven gastric cancer. Dedicated radiomics prototype software was used to segment lesions on preop-
erative arterial phase (AP) CT images and extract features. A radiomics model was constructed to predict the LN metastasis by
using a random forest (RF) algorithm. Finally, a nomogram was built incorporating the radiomics scores and selected clinical
predictors. Receiver operating characteristic (ROC) curves were used to validate the capability of the radiomics model and
nomogram on both the training and test cohorts.
Results The radiomics model showed a favorable discriminatory ability in the training cohort with an area under the curve (AUC)
of 0.844 (95% CI, 0.759 to 0.909), which was confirmed in the test cohort with an AUC of 0.837 (95% CI, 0.705 to 0.926). The
nomogram consisted of radiomics scores and the CT-reported LN status showed excellent discrimination in the training and test
cohorts with AUCs of 0.886 (95% CI, 0.808 to 0.941) and 0.881 (95% CI, 0.759 to 0.956), respectively.
Conclusions The CT-based radiomics nomogram holds promise for use as a noninvasive tool in the individual prediction of LN
metastasis in gastric cancer.
Key Points
• CT radiomics showed a favorable performance for the prediction of LN metastasis in gastric cancer.
• Radiomics model outperformed the routine CT in predicting LN metastasis in gastric cancer.
• The radiomics nomogram holds potential in the individualized prediction of LN metastasis in gastric cancer.
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RF Random forest
ROC Receiver operating characteristics
VOI Volume of interest

Introduction

Although its incidence has been significantly reduced
over the past decades, gastric cancer is still the third
leading cause of cancer-related death worldwide [1].
Lymph node (LN) metastasis is one of the main prog-
nostic factors for gastric cancer, and it plays a pivotal
role in the selection of appropriate candidates for neoad-
juvant chemotherapy (NAC) therapy [2–5]. NAC is rec-
ommended for locally advanced cases only in the pres-
ence of bulky LN metastasis according to the newly
published Japanese Gastric Cancer Guidelines (Ver5)
[5, 6]. A prospective multi-institutional validity study
carried out by the Japan Clinical Oncology Group pro-
posed to add LN metastasis as a criterion for the selec-
tion of patients to receive NAC therapy [2]. Thus, an
accurate prediction of LN metastasis in gastric cancer
is crucial for clinical decision-making and the improve-
ment of prognosis. Traditional methods for determining
nodal status using imaging tools are mainly based on the
size of the LNs. However, reactive or inflammatory LNs
can be enlarged, normal-sized, or minimally enlarged
nodes accounting for a considerable proportion of malignance.
Hence, a proportion of patients are at high risk for inaccurate
clinical nodal staging [7–9]. Computed tomography (CT) is the
most commonly used imaging modality for the preoperative
assessment of LN status, but the reported accuracy
was unsatisfactory, only at approximately 60% [7, 10].

An alternative, noninvasive technique is needed to
supplement the routinely used imaging tools. As a previ-
ous study revealed, tumors with a poor differentiation
degree, vascular invasion, and epidermal growth factor
receptor overexpression were reported to be more prone
to LN metastasis [11–13]. In this case, another strategy
to evaluate the LN status can be relied on the compre-
hensive characteristics of the primary lesion. However,
most of those features can only be obtained from post-
operative pathological examination. Radiomics is an
emerging field that allows a noninvasive approach to
extract quantitative features from medical images
[14–16], which has exhibited great potential in oncolog-
ical practice, including differentiation diagnosis, predic-
tion of histological classification, LN metastasis, thera-
peutic response, and prognosis [17–26]. Currently, stud-
ies of radiomics in the prediction of LN metastasis in
gastric cancer are rare, and most of which are MRI-
based approaches [20, 21]. The purpose of this study
was to investigate the role of radiomics derived from

standard-of-care CT images in the prediction of LN me-
tastasis in gastric cancer.

Materials and methods

Patients

This retrospective study was approved by the institutional
review board with a waiver of written informed consent. A
total of 247 patients (167 males and 80 females; mean age,
60.7 ± 11.2 years) with pathologically proven gastric cancer
were consecutively enrolled at our institution between
June 2014 and November 2018. The inclusion criteria entailed
pathologically confirmed gastric cancer with definite LN
stage, without NAC before surgery, and preoperative en-
hanced abdominal CT examination within 2 weeks prior to
the operation. The exclusion criteria were as follows: received
NAC or radiotherapy before surgery, image quality was insuf-
ficient for diagnosis due to artifacts or poor distention, lack of
definite information on postoperative LN status, and small
les ions that were hardly vis ib le on CT images .
Demographical data, clinical information, and pathological
node stage were derived from medical records. Although dis-
tant LN metastasis should be classified as M1 [27], these
patients were also included and labeled as positive LN metas-
tasis as the study mainly focused on the prediction of the
presence of LN metastasis. We hypothesized that the
radiomics model can improve the accuracy for the prediction
of LN metastasis to be 82.3% [20], given that the reported
accuracy was 64% for routine CT [10]; the sample size esti-
mation formula revealed that 73 patients would ensure us to
have 95% confidence and 80% power to detect the expected
superiority of radiomics [28]. Considering the primary pur-
pose of the study was to construct a radiomics model for
prediction of LN metastasis based on the retrospectively col-
lected CT images, all eligible subjects were kept as inclusion
of large population which was recommended in radiomics
study to provide more power for the predictive classifier [29].

CT examination and CT-reported LN status

The CTexamination was performed using two 64-channel CT
(Discovery CT750, GE Medical Systems; IQon-Spectral,
Philips) and one dual-source CT (SOMOTOM Definition
Flash, Siemens) vendors. Patients were required to fast for
no less than 6 h. Before the CT scan, all patients drank ap-
proximately 1000 ml of water to distend the stomach. In ad-
dition, 20 mg of anisodamine was injected intravenously to
avoid gastric peristalsis. Patients were required to hold their
breath while the examination was performed. Following the
unenhanced scan, patients were infused with 1.5 ml/kg of
nonionic contrast material (Ultravist 370, Bayer Schering
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Pharma) at a rate of 3.0 ml/s into the antecubital vein using an
automatic pump injector. Arterial phase (AP), portal phase,
and delay phase contrast-enhanced images were acquired at
25–30-s, 65–70-s, and 110–120-s delay after the injection of
contrast material, respectively. The other acquisition parame-
ters included the following: tube voltage of 80 to 120 kVp;
tube current of 120 to 640 mA; detector collimation of 0.625
or 0.6 mm; image matrix of 512 × 512; and reconstruction
slice thickness of 0.625 mm or 1 mm. Two experienced ab-
dominal radiologists reviewed the CT images to evaluate the
presence of LN metastasis in consensus blinded to the patho-
logical information. Any disagreement was resolved by con-
sultation. LN metastasis was established if the short-axis di-
ameter was larger than 6 mm for perigastric LN and larger
than 8 mm for extraperigastric LN [7].

Tumor segmentation and feature extraction

Tumor segmentation was performed by using a dedicated
semi-processing prototype software “Radiomics” (syngo.via
Frontier, Version 1.0.0, Siemens). One radiologist with a
6-year experience in abdominal radiology segmented the lesions
of all subjects. A senior radiologist (15-year experience in
abdominal radiology) segmented 50 cases with 25 pathologi-
cally proven LN metastasis and 25 free of LN metastasis ran-
domly selected from all samples to evaluate the inter-operator
variability. When performing the segmentation, the radiolo-
gists were informed of the proven surgical locations of the
tumor but were blinded to other clinical information and path-
ologic results. It seems that the performance of texture features
extracted from AP images was slightly better than those from
portal phase images in prior studies [17, 19]. Therefore, the
current study retrieved AP enhanced images of Digital
Imaging and Communications in Medicine (DICOM) format
for radiomics feature extraction. The entire volume of the
lesion was segmented semi-automatically. The contours were
drawn carefully to avoid involving adjacent fluid or air. The
top and bottom slices were also excluded to reduce bias
caused by partial volume effects. A total of 844 radiomics
features were extracted from the volume of interest (VOI).
Four types of radiomics features were obtained: (1) 16 shape
and size features, features related to the three-dimensional size
and shape of the tumor; (2) 18 first-order statistics, features
about the distribution of voxel intensities within the selected
region; (3) 74 texture-based features, features describing pat-
terns or the spatial distribution of voxel intensities, which were
calculated from gray-level co-occurrence matrix (GLCM) and
gray-level run-length matrix (GLRLM). Voxel intensities
were resampled into equally spaced bins using a bin-width
of 25 HU, as the discretization of the voxel intensity values
within the VOI was necessary to determine texture matrix
representations. Discretization not only reduces image noise
but also normalizes intensities across all patients, allowing a

direct comparison of all calculated textural features between
patients; (4) 736 wavelet features, wavelet decompositions of
first-order statistics and texture features. Wavelet transform
effectively decouples textural information by decomposing
the original image in a manner similar to the Fourier analysis
in low and high frequencies. Figure 1 showed the workflow of
tumor segmentation and feature extraction.

Building up the radiomics model

Radiomics model was built with our in-house software pro-
grammed with the Python Scikit-learn package (Python version
3.7, Scikit-learn version 0.21, http://scikit-learn.org/). All
patients were first split into training cohort and test cohort
with a ratio of 8:2 by using the random series generated by
the computer [30, 31]: 197 patients (mean age, 61.0 ± 10.
9 years; positive LN metastasis, 146 cases; negative LN
metastasis, 51 cases) were allocated into the training cohort;
50 patients (mean age, 59.5 ± 12.6 years; positive LN
metastasis, 37 cases; negative LN metastasis, 13 cases) were
allocated into the test cohort. A popular data-preprocessing
method in machine learning—random under-sampling
algorithm—was applied to the training cohort to handle the
imbalance between LN statuses (positive vs negative, 146/51)
with the purpose of avoiding bias toward majority class cases
and achieving a high classification rate [32]. Random forest
(RF) method was used to construct the prediction model be-
cause of its high variance-bias trade-off capability. Features
with intraclass correlation coefficient (ICC) value higher than
0.8 were considered stable and selected for model construction
[33, 34]. Further feature selection was skipped for the sake of its
help in reducing computational time more than improving the
prediction accuracy when using RFmethod [35]. RF ensembles
are a series of decision trees that act as weak classifiers individ-
ually yet form a robust prediction in aggregate. This method
would randomly draw bootstrap samples and features for the
establishment of each classification and regression tree
(CART). Each time, 2/3 of all data sets and the square root of
total features were randomly selected with replacement for the
training process. Gini impurity was used for splitting the
branches. The final prediction was made by voting or averaging
using the bagging method. A fivefold cross-validation was uti-
lized to improve the model performance [30]. Hyperparameters
in the study including the number of trees in the forest and the
minimum sample limitation for leaf node were optimized
through the cross-validation process. Finally, the best model
was selected and validated on the test cohort. Predicted LN
status and radiomics score for each case were recorded.

Radiomics nomogram construction

All available clinical variables, including age, gender, lo-
cation of the tumor, tumor morphology, laboratory tests,
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CT-reported LN status, and radiomics scores, were evalu-
ated with a univariate logistic regression algorithm in the
training set. Variables with p < 0.2 from univariate analy-
sis were included for further application in a multivariate
logistic regression algorithm using forward stepwise se-
lection. Likelihood ratio test based on the maximum par-
tial likelihood estimates was applied to select the signifi-
cant predictors for LN metastasis. Finally, a radiomics
nomogram was constructed based on the multivariate lo-
gistic regression model incorporating the selected predic-
tors with the R software package (version 3.5.2: http://
www.Rproject.org).

Statistical analysis

Statistical analysis was performed with SPSS software
(version 19), SAS (version 9.2), R software package (ver-
sion 3.5.2: http://www.Rproject.org), and the Python
Scikit-learn package (version 3.7, Scikit-learn Version 0.
21, http://scikit-learn.org/). Qualitative variables were
presented as frequencies. Differences between qualitative
variables were compared with the chi-square test. The
continuous variables were tested for normality by using

the Kolmogorov-Smirnov test. Normally distributed vari-
ables were shown as the mean ± SD (standard deviation).
Differences between normally distributed variables were
compared with t test. Data were presented as the median
and interquartile range (IQR) when the variables were
nonnormally distributed, and differences between these
variables were analyzed with the Mann-Whitney U test.
Inter-operator variability of the radiomics features was
assessed with ICC. Violin plot—a hybrid of a box plot
and kernel density plot—was used to illustrate the distri-
bution of the radiomics scores and its probability density
in both cohorts [36]. The performance of the radiomics
model and nomogram in both cohorts were evaluated with
receiver operator characteristics (ROC) curves. The ROCs
of the radiomics model in the two cohorts were compared
with the DeLong test to evaluate whether overfitting oc-
curred. The calibration of the radiomics nomogram was
assessed with a calibration curve. The goodness-of-fit of
the nomogram in both cohorts was assessed with the
Osius test, McCullagh test, and Hosmer-Lemeshow test,
respectively. Decision curve analysis (DCA) was per-
formed to determine the clinical usefulness of the
radiomics model and nomogram by calculating the net

Fig. 1 Work flow of tumor segmentation and feature extraction. a Axial
AP enhanced CT images shows the tumor (white arrow). b, c Tumor
segmentation. The edge of the lesion is drawn carefully to avoid

involving adjacent fluid or air (b). The yellow area represents the
selected region on the slice (c). d–g Extraction of four categories of
radiomics features
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benefits at different threshold probabilities in the training
and test cohort. The net benefit is equivalent to the pro-
portion of net true positives in brief [37].

Results

Clinical characteristics

Among the 247 eligible patients, 183 patients had LN me-
tastasis (181 patients with regional LN metastasis and 2
patients with distant LN metastasis); the rest 64 patients
showed negative LN metastasis. Except for the level of
albumin in patients with LN metastasis being lower than
those with negative LN metastasis in the test cohort, no
significant differences were found between patients with
positive and negative LN metastasis in both cohorts in
terms of age, gender, tumor location, tumor morphology,
or the other laboratory tests. The accuracy of routine CT in
the diagnosis of LN metastasis was 62.4% in the training

cohort and 62% in the test cohort (p = 0.911). Details of the
demographical data and clinical characteristics of the train-
ing and test cohorts were summarized in Table 1.

Radiomics model building and evaluation

Altogether 150 radiomics features were shown to be sta-
ble, including 9 shape and size features, 11 first-order
features, 35 texture features, and 95 wavelet features. To
take the effects of scanning parameters and patient vari-
ance into consideration, the radiomics model was built
based on 5 general features (scanning kilo-voltage, tube
current, slice thickness, patient age, and gender) as well as
these 150 radiomics features. The radiomics scores in pa-
tients with LN metastasis were significantly higher than
those with negative LN both in the training cohort (0.67 ±
0.24 vs 0.32 ± 0.22, p < 0.001) and test cohort (0.53 ± 0.23
vs 0.24 ± 0.19, p < 0.001). The violin plot of the radiomics
scores in both cohorts was displayed in Fig. 2a. The
radiomics model showed a favorable discriminatory abil-
ity in the training cohort with an area under the curve
(AUC) of 0.844 (95% CI, 0.759 to 0.909), which was
confirmed in the test cohort with an AUC of 0.837
(95% CI, 0.705 to 0.926) (Fig. 2b). There was no signif-
icant difference in ROCs between the two cohorts
(DeLong test, p = 0.9002). The accuracy of the radiomics
model was 80% (sensitivity, 90%; specificity, 71%) in the
training cohort and 84% (sensitivity, 86%; specificity,
77%) in the tes t cohor t . The radiomics model
outperformed the conventional routine CT in the predic-
tion of LN metastasis (training cohort, 80% vs 62.4%; test
cohort, 84% vs 62%).

Construction and validation of radiomics nomogram

The results of the univariate and multivariate regression
analysis were summarized in Table 2. Multivariable anal-
ysis revealed that radiomics scores and CT-reported LN

Fig. 2 a Violin plot of the radiomics scores in the training cohort and test
cohort. pLN −, pathological negative LNmetastasis; pLN +, pathological
positive LN metastasis. The difference between radiomics scores was
compared with t test. Wider sections of the plot represent a higher

probability that patients of the group would take on the given value;
skinnier sections represent a lower probability. The red lines represent
the median value. The green lines represent the interquartile. b ROC
curves of the radiomics model in the training and test cohort

Table 2 Results of univariate and multivariate regression analysis

Characteristics pu pm

Age 0.343 –

Gender 0.146* 0.96

Location of tumor 0.418 –

Tumor morphology 0.780 –

Neutrophil (109/L) 0.306 –

Lymphocyte (109/L) 0.185* 0.451

NLR 0.171 * 0.818

Albumin (g/L) 0.358 –

CT-reported LN status 0.000* 0.002§

Radiomics scores 0.000* 0.000§

pu, p value of univariate analysis; pm, p value of multivariate analysis;
NLR, neutrophil to lymphocyte ratio. *pu < 0.2; § pm< 0.05
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status were significant independent factors of LN metasta-
sis. A quantitative nomogram incorporating these two var-
iables was built to predict the individual LN status (Fig.
3a). The nomogram showed good performance for discrim-
inating LN metastasis with AUCs of 0.886 (95% CI, 0.808
to 0.941) and 0.881 (95% CI, 0.759 to 0.956) in the train-
ing and test cohorts, respectively (Fig. 3b). The Osius test
(training cohort, p = 0.688; test cohort, p = 0.707),
McCullagh test (training cohort, p = 0.674; test cohort,
p = 0.652), and Hosmer-Lemeshow test (training cohort,
p = 0.210; test cohort, p = 0.822) yielded nonsignificant
p values in both cohorts indicating that the nomogram was
acceptable. Figure 4 displayed the calibration curves of the
nomogram in both cohorts. The nomogram yielded an ac-
curacy of 83% (sensitivity, 81%; specificity, 85%) in the
training cohort and 84% (sensitivity, 65%; specificity,
94%) in the test cohort. Examples of using the nomogram
to predict the risk of LN metastasis were presented in
Fig. 5.

Clinical usefulness of the radiomics model
and nomogram

DCA displayed that both the nomogram and radiomics model
would offer net benefits over the “treat-all” or “treat-none”

scheme within a certain range of threshold (radiomics model,
between 20 and 90%; nomogram, between 20 and 95%) in the
training cohort (Fig. 6a). Similar results could be found in the
test cohort (radiomics model, 30% and 90%; nomogram, 30%
and 95%) (Fig. 6b).

Discussion

In the present study, we developed and validated a CT-based
radiomics nomogram for the preoperative prediction of LN
metastasis in patients with gastric cancer. The radiomics no-
mogram holds the potential to facilitate a noninvasive individ-
ualized preoperative identification of a higher risk of LN me-
tastasis in gastric cancer.

Accurate prediction of LN status is significant for selec-
tion of optimal therapeutic plan in patients with gastric
cancer. Imaging plays a crucial role in assessing LN stage
in clinical practice [38]. Nevertheless, it is still challenging
in clinical practice by routinely used imaging modalities
such as endoscopy ultrasonography or CT. The document-
ed accuracy was 64% for endoscopy ultrasonography and
ranged from 61 to 64% for CT in the distinction of LN
metastasis [7, 10, 39]. In the current study, routine CT
displayed similar capability with the accuracy of about

Fig. 3 a CT-based radiomics nomogram for the prediction of LNmetastasis in patients with gastric cancer. bROC curves of the radiomics nomogram in
the training and test cohorts

Fig. 4 Calibration curves of the
nomogram in the training cohort
(a) and test cohort (b). The 45°
dotted line represents a perfect
prediction. The solid line
represents the predictive
performance of the nomogram.
The solid line has a close fit to the
dotted gray line, which indicates
good predictive capability of the
nomogram. The blue belt
represents the 95% CI of the
predictive performance of the
nomogram
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62%. Recently, newly emerged radiomics have made it
possible to predict LN status using the features of the pri-
mary tumor. The works conducted by Liu et al [20, 21]
revealed that whole-lesion-based apparent diffusion coef-
ficient histograms were valuable in the discrimination of
LN metastasis with the best accuracy reaching 82.3%.
While CT is more widely used and serves as the
standard-of-care imaging tool for the preoperative evalua-
tion of LN status, building radiomics models using features

extracted from routinely acquired contrast CT images
could be more convenient and efficient. Our study revealed
that the CT-based radiomics model showed good perfor-
mance in discriminating LN metastasis with AUCs of
0.844 and 0.837 in the training and test cohorts, respective-
ly. Besides, the model outperformed routine CT in the dis-
crimination of cases with LN metastasis, with the accuracy
increased to 80–84%. The work conducted by Feng et al
[40] described that the radiomics model based on support

Fig. 5 Examples of using the nomogram to predict the individual risk of
LN metastasis by manually placing straight lines across the diagram.
Three steps are required to obtain individual risk. First, draw vertical
lines for each of the variable of the patients (CT-reported LN status:
blue lines, radiomics score, green lines). Then, sum up the values
intersected by the lines on the “Points” scale to obtain total points.
Finally, draw a vertical line (the red lines on b, d, and f) the “Total
points” scale to read the “Risk” of LN metastasis. a, b A 62-year-old
female with gastric cancer (a, arrowhead). A small (diameter, 5 mm)
LN (a, white arrow) was identified; all the other LNs were smaller than
this one and not displayed on the figure. The radiomics score was 0.94.
Vertical lines of each variable were drawn. The values on the “Points”
scale intersected by the lines were added to obtain total points (0 + 94 =
94). The graph revealed that the risk of LN metastasis was about 86% by
drawing a vertical line on the “Total points” scale. Postoperative pathol-
ogy proved the positive LN metastasis. c, d A 70-year-old male with

gastric cancer (c, arrowhead). An enlarged (diameter, 13 mm) LN (c,
white arrow) was found. Routine CT reported positive LN metastasis.
The radiomics score was 0.0615. Total points (32 + 5 = 37) were obtained
by calculating the sum of values on the “Points” scale intersected by the
vertical lines of each variable. The risk of LN metastasis turned out to be
about 18% by drawing a vertical line on the “Total points” scale.
Postoperative pathology revealed that the patient has negative LN metas-
tasis. e, f A 70-year-old female with gastric cancer (e, arrowhead). An
enlarged (diameter, 12 mm) LN (e, white arrow) was detected.
Conventional CT reported positive LNmetastasis and the radiomics score
was 0.876. Total points (32 + 86 = 118) were calculated by combining the
values on the “Points” scale intersected by the lines of each variable. After
drawing a vertical line on the “Total points” scale, the nomogram
displayed that the risk of LN metastasis was over 95%. Pathological
examination validated the LN metastasis
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vector machine algorithm displayed an AUC of 0.824 and
0.764 in the training and test cohorts, respectively. And the
model exhibited an accuracy of 76.4% in the training co-
hort and 71.2% in the test cohort, which was also superior
to routine CT in the distinction of LN metastasis. Although
with different machine learning methods, the work by Feng
et al [40] and ours rendered similar results that the
radiomics approach holds the potential to enrich image
interpretations and supplements the routine CT in the eval-
uation of LN status in gastric cancer.

Furthermore, this study also constructed an easy-to-use,
graphical analog computation device—the nomogram,
which allows clinicians to obtain results quickly and

reliably by simply drawing several lines. The work carried
out by Li et al [41] developed a nomogram based on the
iodine concentration of the tumor and Borrmann classifi-
cation for the distinction of LN metastasis in patients with
gastric cancer, which yielded AUCs of 0.760 and 0.793
and accuracies of 0.700 and 0.757 in the training and test
cohorts, respectively. In contrast, the radiomics-based no-
mogram in the present study showed higher AUCs of 0.886
and 0.881 in the training and test cohort, as well as higher
accuracy of 84% in both cohorts. The superior perfor-
mance in this study was presumably attributable to the
inclusion of the radiomics scores, which incorporated nu-
merous quantitative features, especially parameters not
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Fig. 6 DCA for the nomogram
and radiomics model in training
cohort (a) and test cohort (b). The
net benefit versus the threshold
probability is plotted. Gray line
represents the assumption that all
patients have LN metastasis.
Black line represents the
assumption that all patients have
negative LN metastasis. Red
curve represents the radiomics
model. Blue curve represents the
nomogram. The x-axis shows the
threshold probability. The y-axis
shows the net benefit. A model is
only clinically useful if it has a
higher net benefit than the default
treat-all (all cases have LN me-
tastasis) and treat-none (none of
the cases have LN metastasis)
strategies. It is clear from the
graph that the radiomics model
and nomogram are superior to ei-
ther treat-all or none strategy
within certain ranges of risk
threshold
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easily visible by simple visual analysis or measured by
routine imaging tools. The nomogram carries great clinical
significance in assisting clinicians for the selection of ap-
propriate candidates for NAC treatment. Despite the prom-
ise in downgrading of the disease and improving the radi-
cal resection rate, evidence-based demonstration of a sur-
vival benefit of NAC compared with surgery alone is ab-
sent until now. A problem with intensive NAC is the pos-
sible inclusion of patients who may be curable by surgery
alone experiencing grave adverse events from unnecessary
chemotherapy [2]. Identification of the presence of LN
metastasis serves as a key point in the selection of appro-
priate candidates for NAC therapy [2, 5]. Both the
radiomics model and nomogram in the current study yield
excellent performance for the distinction of LN metastasis
and could offer net benefits over the “treat-all” or “treat-
none” strategy within certain threshold probability.

The study had several limitations. Firstly, due to the retro-
spective design of the study, carcinoembryonic antigen results
close to the CT scanning were performed outside our institu-
tion and not available for a subset of patients; thus, they were
not included. Secondly, the study focused only on the binary
classification of patients with negative or positive LN metas-
tasis. The role of radiomics in the prediction of the detailed
stage (N1-N3b) and anatomical location (16 stations) of LN
metastasis was not investigated which merits further studies.
Thirdly, the study only included a small number of subjects;
future researches with larger population and external valida-
tion would be warranted. Finally, the radiomics features were
extracted based on three-dimensional VOIs, which were la-
bor-intensive, and further studies using two-dimensional
region-of-interest-based features should be explored.

The study proved that radiomics nomogram might hold
promise in the preoperative individualized prediction of LN
metastasis in patients with gastric cancer.
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