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Abstract
Objective The aim of this study was to investigate whether intraplacental texture features from routine placental MRI can
objectively and accurately predict invasive placentation.
Material and methods This retrospective study includes 99 pregnant women with pathologically confirmed placental invasion
and 56 pregnant women with simple placenta previa. All participants underwent magnetic resonance imaging after 24 gestational
weeks. The placenta was segmented in sagittal images from both turbo spin echo (TSE) and balanced turbo field echo (bTFE)
sequences. Textural features were extracted from the both original and Laplacian of Gaussian (LoG)-filtered MRI images. An
automated machine learning algorithm was applied to the extracted feature sets to obtain the optimal preprocessing steps,
classification algorithm, and corresponding hyper-parameters.
Results A gradient boosting classifier using all textual features from original and LoG-filtered TSE images and bTFE images
identified by the automated machine learning algorithm achieved the optimal performance with sensitivity, specificity, accuracy,
and area under ROC curve (AUC) of 100%, 88.5%, 95.2%, and 0.98 in the prediction of placental invasion. In addition, textural
features that contributed to the prediction of placental invasion differ from the features significantly affected by normal placenta
maturation.
Conclusions Quantifying intraplacental heterogeneity using LoG filtration and texture analysis highlights the different hetero-
geneous appearance caused by abnormal placentation relative to normal maturation. The predictive model derived from auto-
mated machine learning yielded good performance, indicating the proposed radiomic analysis pipeline can accurately predict
placental invasion and facilitate clinical decision-making for pregnant women with suspicious placental invasion.
Key Points
• The intraplacental texture features have high efficiency in prediction of invasive placentation after 24 gestational weeks.
• The features with dominated predictive power did not overlap with the features significantly affected by gestational age.
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Abbreviations
AUC Area under the ROC curve
bTFE Balanced turbo field echo
LoG Laplacian of Gaussian
PI Placental invasion
SPP Simple placenta previa
TSE Turbo spin echo

Introduction

Placental invasion represents a spectrum of placental adhesive
disorders that occur mostly in patients with placenta previa or
prior cesarean section, with common complications including
catastrophic perinatal hemorrhage and bladder, bowel, and
urethral injuries [1]. Early diagnosis of placental invasion be-
fore delivery is critical for appropriate treatment planning [2].
Although ultrasound is the mainstay in the imaging of placen-
tal invasion [3], MRI is especially recommended for cases of
posterior placenta and cases whose ultrasound results are
equivocal and/or clinical suspicion is high [4, 5].

According to a recent meta-analysis of prenatal diagnosis
of invasive placentation, the sensitivity of MRI for diagnosing
placental invasion ranged from 81.3 to 95.1% (mean 90.2%)
with a specificity ranging from 76.7 to 94.4% (mean 88.2%)
[6]. It worth note that one significant factor that affects diag-
nostic performance is observer experience. A recent study
showed that more experienced radiologists performed signif-
icantly better than junior radiologists (sensitivity 90.9% and
specificity 75% for senior attending physicians, 81.8% and
61.8% for junior attending physicians) [7]. Some scoring sys-
tems for the diagnostic placental invasion were proposed but
have not been widely tested [8].

Marked placental heterogeneity and irregular thick
intraplacental T2 dark bands are well-establishedMR imaging
makers of placental invasion [9]. However, visual characteri-
zation of placental heterogeneity and identification of abnor-
mal T2 dark bands can be difficult and highly subjective.
Thus, the use of quantitative image analysis has been an at-
tractive field to overcome the subjectivity of visual interpreta-
tion and improve diagnostic accuracy.

The fast evolution of medical imaging has fostered a com-
prehensive analysis method for medical images called
radiomics [10]. Radiomics generally refers to the extraction
and analysis of large amounts of quantitative features from
medical images. In comparison with the traditional visual in-
spection, radiomics aims to transformmedical images into min-
able data [11]. Using sophisticated machine learning tools, re-
searchers have developed radiomic models that can potentially
improve diagnostic, prognostic, and predictive accuracy [12].

Texture features in radiomics represent the spatial distribution
and arrangement of the pixels in a region of interest. It offers a
means of capturing localized image variations arising from tissue

characteristics not readily quantified by the human eye [13]. For
this reason, we hypothesized that texture features may have the
potential to improve the diagnostic performance over conven-
tional visual based diagnosis by providing detailed information
about intraplacental heterogeneity and T2 hypointense striped
pattern. Thus, the purpose of this study was to leverage machine
learning algorithms to develop a MR texture-based radiomic
model to differentiate between normal and invasive placentation
for decision support and treatment planning.

Material and methods

Participant

Our institutional review board approved this retrospective
study and waived the requirement to obtain informed consent.
The privacy of the patients was protected by de-identifying
images prior analysis. To accrue our cohort, we performed a
database search onMRIs performed on pregnant women from
July 2015 to March 2017. Two hundred forty-eight consecu-
tive pregnant women with suspected abnormal placentation
due to the presence of placenta previa on routine second tri-
mester ultrasound examination were initially selected. In all,
93 patients were excluded for various reasons including mul-
tiple pregnancy (n = 5), those who underwent MRI scan be-
fore 24 gestational weeks (n = 27) [14], presence of significant
fetal/maternal anomalies (n = 18), severe motion or other type
of artifact on either imaging sequence (n = 12), and deliveries
performed outside of our institution (resulting in lack of final
diagnosis) (n = 31). The final cohort included 155 patients
scanned because of suspicion of placental invasion.

MR imaging parameters

All MRI examinations were performed on a 1.5-T clinical
scanner (Achieva; PhilipsMedical Systems) with a body array
coil. T2-weighted images through the uterus and placenta
were obtained with a TSE sequence (TR 465 ms, effective
TE 80 ms, 432 × 432 matrix over a field of view of 405 ×
405 mm, 5 mm slice thickness, SENSE factor 2) for full pla-
centa coverage in the sagittal plane and T2-/T1-weighted im-
ages were also obtained with bTFE sequence (TR 3 ms, TE
1.5 ms, 384 × 384 matrix over a field of view of 375 ×
375 mm, 5 mm slice thickness, no parallel imaging) with the
same slice position as the TSE sequence.

Placenta delineation

The placenta was segmented using an online learning-based
semi-automated algorithm implemented in Slic-Seg [15] by
providing scribbles to define the object and background. The
masks of segmented placenta were reviewed and manually
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adjusted by a radiologist experienced in obstetric imaging
using the ITK-SNAP software [16]. A detailed illustration of
steps on semi-automatic placenta segmentation is provided in
supplementary Table S1.

Radiomic feature extraction

Radiomic feature calculations were performed by using the
Pyradiomics package (version 2.0.0) [17]. For a consistent
calculation of 3D textural features, intensities of all images
were normalized as described in Appendix A. Image intensi-
ties were then further discretized before calculation of texture
features [18]. Discretization is a preprocessing step, which
reduce overall gray level of original image by setting the
voxels within bin width to the same value, to make calculation
of texture features tractable. Discretization was performed by
using a fixed bin width = 5. Textural features from the follow-
ing matrixes were extracted from pre-delineated masks:

& Gray-level co-occurrence matrix (GLCM) (22 features)
& Gray-level size zone matrix (GLSZM) (16 features)
& Gray-level run length matrix (GLRLM) (16 features)
& Neighboring gray tone difference matrix (NGTDM) (5

features)
& Gray-level dependence matrix (GLDM) (14 features)

The above features were also calculated on the normalized
images after LoG filtering with kernel size (σ) of 1 mm (fine-
scale filtration), 3 mm (medium-scale filtration), and 5 mm
(coarse-scale filtration) (Fig. 1).

In total, 624 radiomic features (78 textural features × 2
imaging sequences × (1 original image + 3 filtered images))

were generated for each subject. A detailed list of extracted
features is provided in supplementary Table S2.

Correction for gestational age effects

After 24 weeks gestation, the placenta can become slightly lob-
ulated, which may lead to increased signal heterogeneity with
increasing gestational age in MRI appearance [19]. To remove
gestational age induced textural changes while retaining disease-
associated textural variation, a linear de-trending strategy was
used [20]. Multiple univariate linear regression models were
fitted between each MRI-derived textural feature and corre-
sponding gestational age in the simple placenta previa group
only. This procedure models gestational age-related textural
changes as a linear drift. Then, the regression coefficients with
statistical significance were used to remove the gestational age-
related changes for all individuals to obtain corrected values.

Automated machine learning

A genetic algorithm-based automated machine learning algo-
rithm implemented in the Tree-based Pipeline Optimization
Tool (TPOT) [21] was used to construct the optimal classifi-
cation model.

To investigate the diagnostic value of two imaging se-
quences and the scale at which the disease-associated features
exhibited, extracted features were categorized into 14 feature
sets and fed into TPOT as follows:

1. Textural features from original TSE image (73 features)
2. Textural features from LoG-filtered (σ = 1 mm) TSE im-

age (73 features)

Fig. 1 A representative sagittal slice acquired using TSE and bTFE sequences from a case with complete placenta previa with histologically confirmed
placenta increta and the same image filtered by LoG with σ = 1, 3, and 5 mm
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3. Textural features from LoG-filtered (σ = 3 mm) TSE im-
age (73 features)

4. Textural features from LoG-filtered (σ = 5 mm) TSE im-
age (73 features)

5. Textural features from LoG-filtered (σ = 1, 3, and 5 mm)
TSE image (219 features)

6. Textural features from original + LoG-filtered (σ = 1, 3,
and 5 mm) TSE image (292 features)

7. Textural features from original bTFE image (73 features)
8. Textural features from LoG-filtered (σ = 1 mm) bTFE

image (73 features)
9. Textural features from LoG-filtered (σ = 3 mm) bTFE

image (73 features)
10. Textural features from LoG-filtered (σ = 5 mm) bTFE

image (73 features)
11. Textural features from LoG-filtered (σ = 1, 3, and 5 mm)

bTFE image (219 features)
12. Textural features from original + LoG-filtered (σ = 1, 3,

and 5 mm) bTFE image (292 features)
13. Textural features from original TSE and bTFE image

(146 features)
14. Textural features from original + LoG-filtered (σ = 1, 3,

and 5 mm) TSE and bTFE image (584 features)

A hold-out scheme was used to evaluate each gener-
ated model. Sixty percent of all involved subjects were
randomly selected according to their diagnosis to form
the training cohort; the rest were treated as a testing
cohort. Metrics including sensitivity, specificity, accura-
cy, kappa score [22], and AUC were used to score each
model. The full workflow is depicted in Fig. 2.

To compare the diagnostic performance of the
radiomic model with visual assessment, MR images in
the testing cohort were reviewed by the same radiologist
that completed image segmentation. A definitive diagno-
sis was made for each case to indicate the presence of

placental invasion or not. The sensitivity, specificity,
and overall accuracy from human reader were calculated
and compared with the best-performed radiomic model.

Results

Patient characteristics

One hundred fifty-five pregnant women who meet inclu-
sion criteria were enrolled in the current study. Of which
99 had histologically confirmed placental invasion (PI)
(65 accreta, 31 increta, and 3 percreta) and 56 had simple
placenta previa (SPP). The mean age for the PI group
(30.86 ± 3.49 years, range from 21 to 38) was significant-
ly higher than the SPP group (28.84 ± 3.34 years, range
from 19 to 35) (p < 0.001, univariate two-sample t test).
The mean gestational age for the PI group was 32.90 ±
2.61 weeks (range from 24.71 to 36.0), while for the SPP
group it was 31.82 ± 3.35 weeks (range from 24.14 to
35.71). No significant difference was observed in gesta-
tional age (p = 0.22, univariate two-sample t test) between
the two groups.

Effect of gestational age on placental textural
features

Twenty features were found to be significantly affected (with
Bonferroni-adjusted p < 0.05) by gestational age in the SPP
group (Table 1). Most identified features showed intensity
non-uniformity in different imaging sequences, feature ma-
trixes, and filter sizes. These 20 features were linear de-
trended using the fitted coefficients in both SPP and PI groups
before classification analysis.

Fig. 2 The flowchart of the current study depicting the proposed analysis pipeline. The machine learning part was automated by TPOT
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Classification model derived from automated
machine learning

Sixty-three pregnant women with PI and 30 pregnant women
with SPP were randomly selected from the study cohort to
form the training set, with the remaining 36 PI (28 accreta, 6
increta, and 2 percreta) and 26 SPP cases treated as a testing
set. No significant difference was observed in either age or
gestational age between training and testing set for either PI or
SPP group.

The TPOT identified the optimal machine learning models
for each feature set in the training set. The performance of
each identified model was evaluated using the independent
testing set. The identified models and performances are listed
in Table 2. ROC curves were plotted to illustrate diagnostic
performance of each model (Fig. 3).

The best overall performance was achieved by the gradient
boosting classifier [23] with all 584 features (highest scores in
all evaluated metrics). Of the 26 cases of simple placenta
previa in the testing set, 3 cases were misclassified as having
invasion by this model and the remaining 23 cases were cor-
rectly classified as no invasion. In addition, 28 cases of
accreta, 6 cases of increta, and 2 cases of percreta in the testing
set were all correctly classified as having invasion by this
model. Moreover, the models built on all TSE features (model
6) and all LoG-filtered TSE features (model 5) also obtained
the highest specificity. Diagnostic performance from the

senior radiologist achieved the sensitivity of 88.9% (32 of
36), specificity of 88.5% (23 of 26), and the overall accuracy
of 88.7% (55 of 62).

Significant features contributing to classification

According to the optimal model (gradient boosting classifier
with all 584 features), the importance of each input feature can
be measured during model training. Figure 4a lists the top 10
features with the most predictive power. The distributions of
top 10 features in both groups were box plotted in Fig. 4c. The
separability of the two groups was visualized by t-distributed
stochastic neighbor embedding (t-SNE) with the top 10 fea-
tures presented in Fig. 4b. Representative images from sub-
types of placental invasion with corresponding top discrimi-
native textural features are shown in Fig. 5.

Discussion

In this study, we developed a radiomic analysis pipeline with
integration of textural features and automated machine learn-
ing for pre-delivery prediction of invasive placentation after
24 gestational weeks. In general, the gradient boosting classi-
fier constructed on textural features from original and LoG-
filtered TSE and bTFE images, which achieved the predictive
performance with sensitivity, specificity, accuracy, and AUC

Table 1 Twenty identified features significantly affected by gestational age in simple placenta previa group

No. Sequence Image type Matrix Feature p value
(after Bonferroni adjustment)

1 TSE Original GLRLM Run length non-uniformity 0.006

2 TSE Original GLDM Dependence non-uniformity 0.006

3 TSE LoG (σ = 1 mm) GLRLM Run length non-uniformity 0.006

4 TSE LoG (σ = 1 mm) GLSZM Gray-level non-uniformity 0.047

5 TSE LoG (σ = 1 mm) GLDM Dependence non-uniformity 0.006

6 TSE LoG (σ = 1 mm) NGTDM Coarseness 0.014

7 TSE LoG (σ = 3 mm) GLRLM Gray-level non-uniformity 0.044

8 TSE LoG (σ = 3 mm) GLRLM Run length non-uniformity 0.011

9 TSE LoG (σ = 3 mm) GLRLM Gray-level non-uniformity 0.022

10 TSE LoG (σ = 3 mm) GLDM Dependence non-uniformity 0.029

11 TSE LoG (σ = 3 mm) NGTDM Coarseness 0.040

12 TSE LoG (σ = 5 mm) GLRLM Gray-level non-uniformity 0.008

13 TSE LoG (σ = 5 mm) GLDM Gray-level non-uniformity 0.011

14 TSE LoG (σ = 5 mm) NGTDM Coarseness 0.004

15 bTFE Original GLRLM Run length non-uniformity 0.032

16 bTFE Original GLDM Dependence non-uniformity 0.034

17 bTFE LoG (σ = 1 mm) GLRLM Run length non-uniformity 0.037

18 bTFE LoG (σ = 1 mm) GLDM Dependence non-uniformity 0.041

19 bTFE LoG (σ = 3 mm) GLRLM Run length non-uniformity 0.046

20 bTFE LoG (σ = 5 mm) GLRLM Gray-level non-uniformity 0.020
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of 100%, 88.5%, 95.2%, and 0.98 respectively in the external
evaluation, was automatically identified as the optimal predic-
tion model. This radiomic model showed comparable speci-
ficity and slightly better sensitivity and over-accuracy than an
experienced radiologist, which indicate quantitative textural
analysis is more sensitive than the perception of even an ex-
perienced radiologist on the threshold of multiple MRI signa-
tures. Moreover, the gradient boosting classifiers built on
LoG-filtered TSE images and built on original and LoG-
filtered TSE images also achieved the highest specificity of
88.5%, which indicate it is possible to obtain comparable pre-
diction performance using only TSE images. Our findings
show a relatively high accuracy of invasive placentation pre-
diction and then suggest the proposed radiomic approach is
feasible and promising forMRI-based pre-delivery prediction.

Machine learning in radiology aims at training mathematical
models to recognize patterns in image features and to assist
diagnosis by linking these patterns to prediction targets such
as diagnosis and outcome [24]. Most existing radiomic studies
selected amachine learning pipeline according to the preference
or the popularity of the algorithm. It has been proven that the
choice ofmodeling technique can affect prediction performance
in radiomics [25]. However, identification of an optimal ma-
chine learning pipeline for a given problem often requires ex-
pert knowledge of the algorithm as well as the target problem,
because there are dozens of possible choices to make in the
steps of data preprocessing, model selection, and
hyperparameter tuning [24]. As the complexity of these tasks
is often beyond non-ML-experts, automated machine learning

(autoML) was recently proposed to automatically determine a
well-performing machine learning pipeline under certain opti-
mization strategy to solve the ever-growing challenge of apply-
ing machine learning in radiomics and other fields.

Target segmentation is also a crucial step in radiomic stud-
ies, which can significantly affect subsequent feature extrac-
tion [26]. For target tissue with irregular shape or fuzzy
boundary, manual segmentation is demanded. However, man-
ual segmentation is labor intensive and time consuming, mak-
ing it impractical in clinical practice. In the current study, we
exploited an interactive, learning-based method for the seg-
mentation of the placenta, which only requires a few user-
provided scribbles to roughly indicate target tissue and back-
ground in a few slices. This semi-automatic interactive seg-
mentation adds to the practicality of the proposed workflow,
allowing it to be integrated into routine clinical diagnostics.

Of note, the predictive power of textural features is related to
the imaging sequence and whether or not filtering is used.
Features from the unfiltered bTFE images (model 7) were
found to be more predictive than features from unfiltered TSE
images (model 1). However, when LoG filtering was used,
diagnostic performance of models built on TSE images (model
6) outperformed models built on bTFE images (model 12),
especially in specificity. The bTFE sequence belongs to gradi-
ent echo technique and thus sensitive to magnetic field inho-
mogeneity and off resonance effects [27]. The noise arising
from local field inhomogeneity may interfere with prediction
and thus cause poorer specificity. In addition, the current result
also proved that features from LoG-filtered images are more

Fig. 3 ROC plot of 14 model
construction pipelines generated
by TPOT in testing set
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predictive than features from unfiltered images. The LoG filter
serves as a generic differential operator that responds to local
image variations [28]. The response is strongest when the ker-
nel size σmatches the spatial extent of local textural patterns in
the image. A small σ emphasizes on fine textures (change over
a short distance), whereas a large σ emphasizes coarse textures
(gray-level change over a large distance). The filtered volumes
encode properties of tissue heterogeneity and local structure
that may be connected to the invasive placentation.

There is already considerable evidence in the literature of
the ability of intraplacental heterogeneity to predict invasive
placentation. Disorganized hypertrophied abnormalities of
intraplacental vascularity and fibrin deposition can cause
intraplacental heterogeneity [29]. However, intensity hetero-
geneity is subjective and difficult to quantify for human
readers and normally progresses with advancing gestational
age after the second trimester. These factors complicate the
visual assessment of placental invasion. The current results

demonstrate that the features predict placental invasion did
not overlap with the features change along with gestational
age, suggesting the intensity inhomogeneity caused by matu-
ration or disease have different pattern and scale in the view of
computerized textural analysis. The features that change along
with gestational age mostly belong to run length and depen-
dence matrix family in coarse scale. The run length matrix
provides a way of charactering voxels having the same gray-
level value occurring in a line across certain direction [30].
The run length non-uniformity of GLRLM measures the dis-
tribution of lines of voxels with same intensity. This metric is
low when lines are equally distributed in length and increases
when a few outliers of line length dominate the histogram. The
dependence matrix measures the number of connected voxels
within a certain distance that are dependent on the central
voxel. Similarly, gray-level non-uniformity of GLDM in-
creases when gray-level outliers dominate the histogram.
These features are indicators of a stripe-like pattern in the
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Fig. 4 Top 10 features with the most predictive power derived from the best model (a). t-SNE plot of normal and abnormal placentation with top 10
features (b). The distributions of top 10 features in both groups (c)
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region, which may reflect the formation of cytoledon and sep-
tum during normal placenta maturation [31].

The top-ranked features contributing to prediction were in-
ferred from the best predictive model (model 14). Most of them
were derived from the GLCM and GLSZM in both fine and
coarse scale. The feature with dominative predictive power was
the correlation metric based on GLCM from TSE images with
fine filtration. The co-occurrence matrix describes the pair-wise
arrangement of voxels with the same discretized gray level at a
given offset [32]. The metric of correlations measures the joint
probability occurrence of the specified voxel pairs. The higher
correlation in fine-filtered TSE images of patients with placenta
invasion indicates certain fine structures related to abnormal

placentation, which may be a sign of subtle fibrin deposition
or abnormal microvessel patterns. The GLSZM counts the
number of zones of voxels with identical discretized gray level.
Within GLSZM, the zone percentage measures the fraction of
the number of realized zones and the maximum number of
potential zones, with higher values indicating the targeted re-
gion consists of small zones, while the zone entropy measures
the uncertainty/randomness in the distribution of zone sizes and
gray levels. A higher value indicates more heterogeneity in the
texture patterns. The differences in these features between the
two groups in the present study indicate a unique heterogeneous
textural pattern, which is not related to gestational age, which
appeared in the placenta with invasion.

Fig. 5 MR images from a case without placental invasion and cases with three subtypes of placental invasion and their corresponding values of
discriminative textural features
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We need to point out certain limitations of the current study.
Due to retrospective nature of this study, some bias may inev-
itably exist or may have affected the analysis. The sample size
(n = 155) was relatively small, but with the advantage that all
data were collected at a single site using a single scanner. To
some extent, the use of the same MRI equipment and acqui-
sition protocol in our data not only strengthens the study but
also limits generalization of the results. The results obtained in
this study require further external validation in data from dif-
ferent vendors and with different acquisition parameters.

In spite of these limitations, the results reported here are
encouraging as they provide pilot evidence of the potential of
image filtration and measures of quantitative intraplacental
texture for facilitating clinical decision-making for pregnant
women with suspected placental invasion. The results also
provide support for the initiation of a new prospective study
to systematically evaluate the diagnostic capability of the
combination of imaging features and clinical parameters for
improving diagnosis and patient care.
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