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Abstract
Objectives To evaluate radiomics studies according to radiomics quality score (RQS) and Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosis (TRIPOD) to provide objective measurement of radiomics research.
Materials and methods PubMed and Embase were searched for studies published in high clinical imaging journals until December
2018 using the terms “radiomics” and “radiogenomics.” Studies were scored against the items in the RQS and TRIPOD guidelines.
Subgroup analyses were performed for journal type (clinical vs. imaging), intended use (diagnostic vs. prognostic), and imaging
modality (CT vs. MRI), and articles were compared using Fisher’s exact test and Mann-Whitney analysis.
Results Seventy-seven articles were included. The mean RQS score was 26.1% of the maximum (9.4 out of 36). The RQS was
low in demonstration of clinical utility (19.5%), test-retest analysis (6.5%), prospective study (3.9%), and open science (3.9%).
None of the studies conducted a phantom or cost-effectiveness analysis. The adherence rate for TRIPOD was 57.8% (mean) and
was particularly low in reporting title (2.6%), stating study objective in abstract and introduction (7.8% and 16.9%), blind
assessment of outcome (14.3%), sample size (6.5%), and missing data (11.7%) categories. Studies in clinical journals scored
higher and more frequently adopted external validation than imaging journals.
Conclusions The overall scientific quality and reporting of radiomics studies is insufficient. Scientific improvements need to be
made to feature reproducibility, analysis of clinical utility, and open science categories. Reporting of study objectives, blind
assessment, sample size, and missing data is deemed to be necessary.
Key Points
• The overall scientific quality and reporting of radiomics studies is insufficient.
• The RQS was low in demonstration of clinical utility, test-retest analysis, prospective study, and open science.
• Room for improvement was shown in TRIPOD in stating study objective in abstract and introduction, blind assessment of
outcome, sample size, and missing data categories.
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Abbreviations
RQS Radiomics quality score,
TRIPOD Transparent Reporting of a multivariable predic-

tion model for Individual Prognosis Or Diagnosis

Introduction

Radiomics research has been rapidly expanding ever since
Gilles et al declared “images are data” [1]. Sophisticated
bioinformatics tools are applied to reduce data dimension-
ality and select features from high-dimensional data, and
models with potential diagnostic or prognostic utility are
typically developed [1–3]. Although radiomics research
shows great potential, its current use is confined to the
academic literature, without real-world clinical applica-
tions. High quality in science and reporting may present
strategies for radiomics to become an effective imaging
biomarker able to cross the “translational gap” [4, 5] for
use in guiding clinical decisions.

The quality of scientific research articles consists of two
elements: the quality of the science and the quality of the
report [6], and deficiencies in either may hamper transla-
tion of biomarkers to patient care [7]. With regard to the
quality of the science, a system of metrics in the form of
the radiomics quality score (RQS) was developed by the
expert opinions of Lambin et al [2], to determine the va-
lidity and completeness of radiomics studies. The RQS
consists of 16 components that consider radiomics-
specific high-dimensional data and modeling and accounts
for image protocol and feature reproducibility, biologic/
clinical validation and utility, performance index, high lev-
el of evidence, and open science. With regard to the quality
of reporting, radiomics research is a model-based approach
and reporting according to the Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) initiative [8] is desirable.

To our knowledge, the quality of the science and
reporting in radiomics research studies is largely unknown.
A RQS study from the score developer [3] reported an
average score of less than 50% over 41 radiomics studies,
but the RQS score is underutilized because many investi-
gators and peer reviewers are unfamiliar with it. Prediction
model studies in the clinical domain showed suboptimal
quality of reporting according to TRIPOD [9], but whether
the radiomics domain is good or bad at reporting has not
been studied. In this study, we evaluated radiomics studies
using RQS and TRIPOD items to evaluate their scientific
quality and assessed whether the score and degree of ad-
herence depend on the study design or journal type. The
purpose of the study was therefore to evaluate the quality
of the science and reporting of radiomics studies according
to RQS and TRIPOD.

Materials and methods

Article search strategy and study selection

A search was conducted for all potentially relevant original
research papers using radiomics analysis published up until
December 3, 2018. The search terms used to find radiomics
studies were “radiomic” OR “radiogenomic” in the
MEDLINE (National Center for Biotechnology Information,
NCBI) and EMBASE databases. The eligible articles were
high-impact factor medical journals ranked higher than 7.0
according to the 2018 edition of the Journal Citation reports,
as well as those published in radiology journal of Radiology
and European Radiology. The impact factor of 7.0 was chosen
as it was considered that articles published in journals above
7.0 would be representative of the reporting of high-quality
clinical studies on radiomics analysis. Imaging journals were
chosen because they are the highest-ranked US and non-US
general radiology, given the impact and status of the two
journals. The inclusion process is shown in Fig. 1. Study se-
lection and data extraction are shown in Supplementary
Materials 1.

Analysis of method quality based on RQS

The RQS score with 16 components is defined in
Supplementary Table 1 [2]. The reviewers extracted the data
using a predetermined RQS evaluation according to six do-
mains. Domain 1 covers the protocol quality and reproducibil-
ity in image and segmentation: well-documented image pro-
tocols (1 point) and/or usage of public image protocols
(1 point), multiple segmentations (1 point), phantom study
(1 point), and test-retest analysis with imaging at multiple time
points (1 point). Domain 2 covers the reporting of feature
reduction and validation: feature reduction or adjustment for
multiple testing (3 or − 3 points) and validation (− 5 to 5
points). Domain 3 covers the reporting of the performance
index: reporting of discrimination statistics (1 point) with re-
sampling (1 point), calibration statistics (1 point) with resam-
pling (1 point), and application of cut-off analyses (1 point).
Domain 4 covers the reporting of biological/clinical validation
and utility: multivariate analysis with non-radiomics features
(1 point), biological correlates (1 point), comparison with the
gold standard (2 points), and potential clinical utility (2
points). Domain 5 covers the demonstration of a higher level
of evidence: by conducting a prospective study (7 points) or
cost-effectiveness analysis (2 points). The final domain (do-
main 6) covers open science, with open availability of source
code and data (4 points).

The six domains and topics which were subject to further
discussions until a consensus was reached were in
Supplementary Materials 1.
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Analysis of reporting completeness based on TRIPOD
statement

The TRIPOD checklist was applied to each article to determine
the completeness of reporting. The details of the checklist are
described elsewhere [8], but it consists of 22 main criteria with
37 items. First, the type of prediction model was decided,
whether the radiomics model was development only (type
1a), development and validation using resampling (type 1b),
random split-sample validation (type 2a), nonrandom split-
sample validation (type 2b), validation using separate data
(type 3), or validation only (type 4). The details for TRIPOD
checklist and data extraction are shown in Supplementary
Materials 1.

Analysis of the role of radiologists

To demonstrate the role of radiologists in the radiomics stud-
ies, the analysis was undertaken to calculate the position and
number of radiologist among the author lists. The radiologists
include general radiologists and nuclear medicine radiologists.
First, the main authors, either first or corresponding author,
were checked.When the radiologists are not main authors, the
position and number of radiologists among the author’s lists
were checked. The position is checked for the first appearance
(i.e., 3rd and 5th author are radiologists among 8 authors, the
position was checked as 3/8, 0.37).

Statistical analysis

For the six domains in the RQS (protocol quality and segmen-
tation, feature selection and validation, biologic/clinical vali-
dation and utility, model performance index, high level of
evidence, and open science and data), basic adherence was
assigned when a score of at least 1 point was obtained without
minus points. The basic adherence to RQS (for 0–16 criteria)

and each item scored in TRIPOD were counted (range, 0–35
items) and calculated in a descriptive manner using propor-
tions (%). The TRIPOD item 5c (“if done” item) and the
validation items 10c, 10e, 12, 13c, 17, and 19a were excluded
from both the numerator and denominator when the overall
adherence rate was calculated. For all included articles, the
total RQS score was calculated (score range, − 8 to 36) and
expressed as mean ± standard deviation. A graphical display
for the proportion of studies was adopted from the suggested
graphical display for Quality Assessment of Diagnostic
Accuracy Studies-2 results [10].

Subgroup analyses were performed to determine whether
the reporting quality differed according to intended use (diag-
nostic or prognostic), journal type (clinical or imaging jour-
nal), and imaging modality (CT or MRI). Additionally, we
compared RQS between radiogenomics studies and non-
radiogenomics studies. Before subgroup analysis, the RQS
was plotted for each journal to observe whether there was a
systematic difference between journals (Supplementary
Figure 2). As no systematic difference was observed between
journals, the journal was not adjusted for in the analysis. The
nonparametric Mann-Whitney U test was used to compare the
RQS score in each group. Fisher’s exact test was used to
compare proportions in RQS and TRIPOD for small sample
sizes in each group. All statistical analyses were performed
using SPSS (SPSS version 22; SPSS) and R (R version 3.3.3;
R Foundation for Statistical Computing), and a p value < .05
was considered statistically significant.

Results

Characteristics of the included studies

Seventy-seven articles [11–87] were finally analyzed. The
journal, impact factor, study topic, intended use, imaging

Fig. 1 Flow diagram of the study
selection process. Note: Non-
relevant to radiomics indicate the
analytic methods are volumetric
measurement and locations and
not categorized into radiomics
analysis
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modality, number of patients, and model type are summarized
in Supplementary Table 2. The number and characteristics of
the included radiomics studies are provided in Table 1 and Fig.
2. The mean patient number was 232 (standard deviation,
248.7; range, 38–2029). The studies were published in 2014
(1 article), 2016 (8 articles), 2017 (16 articles), and 2018 (52
articles). There were 25 articles published in high IF clinical
journals and 52 articles in imaging journals (14 in Radiology
and 38 in European Radiology). Most articles were oncologic
studies (90.9%). Radiomics analysis was most frequently
studied as a diagnostic biomarker (80.5%), then as a prognos-
tic (19.5%) biomarker. MRI was the most studied modality
(66.0%), followed by CT (26.0%), and PET or US (each
4.0%). Analysis of the validation methods revealed that exter-
nal validation was missing in 63 out of 77 studies (81.8%). In
the oncologic studies, the study purposes most frequently in-
cluded histopathologic grade and differential diagnosis

(51.9%), followed by molecular or genomic classification
(21.4%), survival prediction (12.8%), and assessment of treat-
ment response (11.4%).

RQS according to the six key domains

Table 2 summarizes the results. The averaged RQS of the 77
studies expressed as a percentage of the ideal score according
to the six key domains is shown in Fig. 3. The mean RQS
score of the 36 studies was 9.40 (standard deviation, 5.60),
which was 26.1% of the ideal score of 36. The lowest score
was − 5, and the highest score was 21 (58.3% of the ideal
quality score).

In domain 1, all studies except one reported well-
documented image acquisition protocols or the use of publicly
available image databases. Multiple segmentations by two
readers were performed in 35 of the 77 studies (45.4%),

Table 1 Characteristics of the 77
included radiomics studies with
diagnostic or prognostic utility

Article characteristics Number
of articles

Patient number 232 (standard deviation 248.7; range, 38–2029)

Journal type

Clinical journal 25 (32.5)

Imaging journal 52 (67.5)

Study topic

Oncology 70 (90.9)

Not oncology 7 (9.1)

Intended use

Diagnostic 62 (80.5)

Prognostic 15 (19.5)

Imaging type

CT 20 (26.0)

MRI 51 (66.0)

PET 3 (4.0)

US 3 (4.0)

Validation type

No validation (type 1a) 8 (10.3)

Validation using resampling (type 1b) 15 (19.5)

Random split-sample validation (type 2a) 15 (19.5)

Nonrandom split-sample validation (type 2b) 20 (26)

External validation (type 3) 14 (18.2)

Validation only (type 4) 0

Uncertain whether random or nonrandom split sample (2a or 2b) 5 (6.5)

Topic in oncology

(n = 70)

Histopathologic grade/differential diagnosis 40† (51.9)

Molecular/genomic classification 15 (21.4)

Survival prediction 9†(12.8)

Response to treatment 8 (11.4)

Note: numbers in parentheses are percentages. †Two studies overlap in both histopathological grade and survival
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including six studies with automatic segmentation. Notably,
only five studies [11, 12, 20, 26, 47] conducted imaging at
multiple time points and tested feature robustness. No articles
conducted a phantom study.

In domain 2, most studies adopted appropriate feature
reduction or adjustment for multiple testing (74/77,

96.1%). The studies used either false discovery rate with
univariate logistic regression or two-sample t tests (for
binary outcomes), and a variety of statistical and machine
learning methods such as lasso, elastic net, random for-
est, recursive feature elimination, and support vector ma-
chine. Validation was performed without retraining from

Table 2 Radiomics quality score according to the six key domains

Basic adherence rate Mean score Percentage of the
ideal score (%)

Total (ideal score 36) 38.7% 9.40 ± 5.60 26.1

Domain 1: Protocol quality and stability in image and segmentation (0 to 5 points) 0.40 ± 0.54 8

Protocol quality (2) 76 (98.7%) 1.09 ± 0.33 54.5

Test-retest (1) 5 (6.5%) 0.05 ± 0.25 5

Phantom study (1) 0 (0%) 0 0

Multiple segmentation (1) 35 (45.4%) 0.45 ± 0.50 45

Domain 2: Feature selection and validation (− 8 to 8 points) 1.61 ± 2.91 20.1

Feature reduction or adjustment of multiple testing (− 3 or 3) 74 (96.1%) 2.76 ± 1.16 92

Validation (− 5, 2, 3, 4, or 5) 54 (70.1%) 0.46 ± 3.61 9.2

Domain 3: Model performance index (0 to 5 points) 0.70 ± 0.78 14

Discrimination statistics (2) 76 (98.7%) 1.54 ± 0.53 77

Calibration statistics (2) 23 (29.9%) 0.34 ± 0.55 17

Cut-off analysis (1) 16 (20.8%) 0.21 ± 0.41 21

Domain 4: Biologic/clinical validation and utility (0 to 6 points) 0.53 ± 0.76 8.8

Non-radiomics features (1) 39 (50.6%) 0.50 ± 0.50 50

Biologic correlates (1) 22 (28.6%) 0.28 ± 0.45 28

Comparison to “gold standard” (2) 36 (46.7%) 0.93 ± 1.00 46.5

Potential clinical utility (2) 15 (19.5%) 0.39 ± 0.79 19.5

Domain 5: High level of evidence (0 to 8 points) 0.14 ± 0.97 1.7

Prospective study (7) 3 (3.9%) 0.27 ± 1.36 3.8

Cost-effective analysis (1) 0 (0%) 0 0

Domain 6: Open science and data (0 to 4 points) 3 (3.9%) 0.08 ± 0.35 2

Fig. 2 Summary charts of the 77
included radiomics studies are
displayed according to disease,
biomarker design, imaging type,
and topic in oncological studies
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the same or a different institute in 70.1% of studies (54
out of 77).

In domain 3, all studies used discriminative statistics, but
one study [23] provided hazard ratios and p values from a log-
rank test for survival analysis instead of the C-index.

In domain 4, half of the studies evaluated relationships
between the radiomics features and non-radiomics features
(50.6%), but only 28.6% of studies found biological correlates
of radiomics to provide a more holistic model and imply bio-
logical relevance. Less than half of the studies (46.7%) com-
pared results with an existing gold standard. By contrast, in
terms of clinical utility, only 15 studies (19.5%) analyzed a net
improvement in health outcomes using decision curve analy-
sis or other statistical tools.

Surprisingly, studies were deficient in demonstrating a
high level of evidence such as a prospective design or cost-
effectiveness analysis. Only three studies [21, 48, 55]
(3.9%) included prospective validation, and no studies
conducted cost-effective analysis. For domain 6, only three
studies [33, 34, 46] (3.9%) made their code and/or data
publicly available.

Both feature reduction and validation were missing from
the study [25] with the lowest score.Meanwhile, seven studies
with the highest scores [12, 14, 21, 26, 48, 54, 55] (three
articles with a RQS score of 16, 1 article with 18, 1 article
with 19, and 1 article with 21) earned additional points by
using publicly available images [12], multiple segmentation
[12, 14, 26], test-retest analysis [12, 26], and validation using
three or more datasets [12, 21, 26, 55], demonstrating poten-
tial clinical utility using decision curve analysis [14, 54] and
conducting prospective validation [21, 48, 55], with all studies
fulfilling requirements for image protocol quality, feature re-
duction, and use of a discrimination index.

Completeness in reporting a radiomics-based
multivariable prediction model using TRIPOD

The mean number of TRIPOD items reported was 18.51 ±
3.96 (standard deviation; range, 11–26) when all 35 items
were considered. The adherence rate for TRIPOD was
57.8% ± 10.9% (standard deviation; range, 33–78%) when
“if relevant” and “if done” items were excluded from both
the numerator and denominator. The completeness of
reporting individual TRIPOD items is shown in Table 3. The
detailed results are shown in Supplementary Materials 2.

Subgroup analysis

The results of the subgroup analysis are shown in Table 4.
Prognostic studies showed a trend for a higher RQS score than
diagnostic studies (11.83 ± 5.03 vs. 8.93 ± 5.52), but this was
not statistically significant. Prognostic studies received a
higher score than diagnostic studies in comparison with a
“gold standard” (p < .001) and using cut-off analysis
(p < .001). This was reflected in the TRIPOD items, with the
prognostic studies showing higher adherence rates in “de-
scribing risk group” (p = .007) and “report unadjusted associ-
ation between predictors and outcome” (if done, p = .017).

Studies in clinical journals also showed significantly higher
RQS scores than those in imaging journals (12.2 ± 5.23 vs.
8.03 ± 5.17, p = .001). They achieved a higher score in proto-
col quality (p = .018), test-retest analysis (p < .001), validation
(p = .012), multivariable analysis with non-radiomics features
(p = .036), finding biologic correlates (p = .009), and conduct-
ed prospective study (p = .011). In the reporting quality, stud-
ies in clinical journals well reported the study design or source
of data (p = .047) and reported unadjusted association.

Fig. 3 Radiomics quality scores
(RQSs) of the 77 included studies
expressed as percentage of the
ideal score according to the six
key domains
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Table 3 Adherence to individual TRIPOD items in radiomics studies

All articles (n = 77)

Total (35 items) 18.5 (57.8%)

Title and abstract

1. Title: identify developing/validating a model, target population, and the outcome 2 (2.6)

2. Abstract: provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome,
statistical analysis, results, and conclusions

6 (7.8)

Introduction

3a. Explain the medical context and rationale for developing/validating the model 72 (93.5)

3b. Specify the objectives, including whether the study describes the development/validation of the model or both 13 (16.9)

Methods

4a. Source of data: describe the study design or source of data (randomized trial, cohort, or registry data) 45 (58.4)

4b. Source of data: specify the key dates 64 (83.1)

5a. Participants: specify key elements of the study setting including number and location of centers 49 (63.6)

5b. Participants: describe eligibility criteria for participants (inclusion and exclusion criteria) 67 (87.0)

5c. Participants: give details of treatment received, if relevant (n = 12) 8 out of 12

6a. Outcome: clearly define the outcome, including how and when assessed 70 (90.9)

6b. Outcome: report any actions to blind assessment of the outcome 11 (14.3)

7a. Predictors: clearly define all predictors, including how and when assessed 77 (100)

7b. Predictors: report any actions to blind assessment of predictors for the outcome and other predictors 24 (32.1)

8. Sample size: explain how the study size was arrived at 5 (6.5)

9. Missing data: describe how missing data were handled with details of any imputation method 9 (11.7)

10a. Statistical analysis methods: describe how predictors were handled 77 (100)

10b. Statistical analysis methods: specify type of model, all model-building procedures (any predictor selection), and
method for internal validation

65 (84.4)

10d. Statistical analysis methods: specify all measures used to assess model performance and if relevant, to compare
multiple models (discrimination and calibration)

21 (27.3)

11. Risk groups: provide details on how risk groups were created, if done (yes or no, n = 77) 16 (20.8)

Results

13a. Participants: describe the flow of participants, including the number of participants with and without the outcome.
A diagram may be helpful

71 (92.2)

13b. Participants: describe the characteristics of the participants, including the number of participants with missing data
for predictors and outcome

68 (88.3)

14a. Model development: specify the number of participants and outcome events in each analysis 69 (89.6)

14b. Model development: report the unadjusted association between each candidate predictor and outcome, if done
(yes or no, n = 77)

12 (15.6)

15a. Model specification: present the full prediction model to allow predictions for individuals (regression coefficients,
intercept)

29 (37.7)

15b. Model specification: explain how to the use the prediction model (nomogram, calculator, etc) 24 (31.2)

16. Model performance: report performance measures (with confidence intervals) for the prediction model 52 (67.5)

Discussion

18. Limitations: Discuss any limitations of the study 76 (98.7)

19b. Interpretation: Give an overall interpretation of the results 77 (100)

20. Implications: Discuss the potential clinical use of the model and implications for future research 76 (98.7)

For validation (types 2a, 2b, 3, and 4) n = 54

10c. Methods-Statistical analysis methods: describe how the predictions were calculated 33 (66.1)

10e. Methods-Statistical analysis methods: describe any model updating (recalibration), if done 0

12. Methods-Identify any differences from the development data in setting, eligibility criteria, outcome, and predictors 49 (90.7)

13c. Results-show a comparison with the development data of the distribution of important variables 41 (75.9)

17. Results-Model updating: report the results from any model updating, if done 0

19a. Discussion-Interpretation: discuss the results with reference to performance in the development data and any other
validation data

46 (85.2)
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Meanwhile, studies in imaging journal more frequently report-
ed blind assessment of predictors (p = .038), the flow of par-
ticipants (p = .012), and number of predictors and outcomes
(p = .001).

Studies utilizing CT tended to have higher RQS than those
using MRI (11.8 ± 3.71 vs. 9 ± 5.2), but this trend was not
statistically significant. Studies using CT received a higher
score in test-retest analysis (p = .028), discrimination statistics
with resampling or cross-validation (p = .011), and cut-off
analysis (p = .039) than those using MRI. In the TRIPOD
items, studies using CT clearly stated study objective and set-
ting in the abstract (p = .006) and described both discrimina-
tion and calibration (p = .017) and more provided the full pre-
diction model (p = .014) than those using MRI.

There were 15 articles studied radiogenomics (19.6%
among total, 21.4% among oncologic studies). There was
no significant difference in radiomics quality score
(Mann-Whitney U test, p = .862) between that of
radiomics studies (median 10.5, interquartile range 5.0–
13.0) and radiogenomics studies (median 10.0, interquar-
tile range 4.25–14.7) and according to each domain.

Role of radiologists in radiomics studies

The results are shown in the Supplementary Table 3.
There were 18 articles (23.4%) that radiologists were not
the main authors. Three articles (3.9%) did not have radi-
ologists in the author list. When radiologists were not the
main authors, the relative position of radiologist in the
author list was 0.5, which indicates middle position in
the entire author lists.

Discussion

In this study, radiomics studies were evaluated in respect to the
quality of both the science and the reporting, using RQS and
TRIPOD guidelines. Radiomics studies were insufficient in
regard to both the quality of the science and the reporting,
with an average score of 26.1% of the ideal RQS and 57.8%
of the maximum adherence rate to the TRIPOD reporting
guidelines. No study conducted a phantom study or cost-
effective analysis and a high level of evidence for radiomics
studies, with further limitations being demonstrated in the
openness to data and code. Half of the items that the
TRIPOD statement deems necessary to report in multivariable
prediction model publications were not completely recorded
in the radiomics studies. Our results imply that radiomics
studies require significant improvement in both scientific
and reporting quality.

The six key RQS domains used in this study were designed
to support the integration of the RQS in radiomics approaches.
Adopted from the consensus statement of the FDA-NIH

Biomarker Working Group [4], the three aspects of technical
validation, biological/clinical validation, and assessment of
cost-effectiveness for imaging biomarker standardization
were included in domains 1 (image protocol and feature re-
producibility), 4 (biologic/clinical validation), and 5 (high lev-
el of evidence), respectively. With regard to technical valida-
tion, radiomics approaches are yet to become a reliable mea-
sure for the testing of hypotheses in clinical cancer research,
with insufficient data supporting their precision or technical
bias. Precision analysis using repeatability and reproducibility
testing was conducted in one study [47], but reproducibility
needs to be tested using different geographical sites and dif-
ferent equipment. Furthermore, none of the evaluated studies
reported analysis of technical bias using a phantom study,
which describes the systemic difference between the measure-
ments of a parameter and its real values [88]. For clinical
validation, prospective testing of an imaging biomarker in
clinical populations is required [89], and only three reports
covered a prospective study in the field of neuro-oncology.
After biological/clinical validation, the cost-effectiveness of
radiomics needs to be studied to ensure that it provides good
value for money compared with the other currently available
biomarkers. From the current standpoint, the time when
radiomics will achieve this end seems far away, and technical
and clinical validation is still required.

Validation in TRIPOD pursues external validation, which
was performed in only 18.2% of the reports covered in the
present study, while independent validation including internal
validation is acceptable in RQS, which accounts for 70.1% of
the studies. In the reporting of radiomics studies, the highly
problematic TRIPOD items existed. In the title, only two
radiomics studies explicitly wrote the term “development” or
“validation” with the target population and outcome. There
are several elements that should be present in the abstract,
and one of these was missing in 92.2% of studies, as they
did not explicitly describe “development” or “validation” in
the study objective, or did not describe whether the study
design was a randomized controlled trial, a cohort study, or a
case-control design. Furthermore, reporting of the sample size
calculation and the handling of missing data were often poorly
conducted. These results are similar to the findings of a pre-
vious systematic review of TRIPOD adherence that examined
publications using clinical multivariable prediction models
[9]. Differing from the findings on the clinical multivariable
prediction models, the radiomics studies were excellent
(100%) in the criterion involving the definition of all predic-
tors and how quantitative features are handled. However, the
reporting of blindness to the outcome was insufficient
(32.1%). The results for blindness were similar to the adher-
ence to the Standards for Reporting of Diagnostic Accuracy
Studies (STARD) [90, 91], which stated that blinding of both
predictors and outcome is still insufficient in both clinical and
imaging studies.
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Subgroup analysis may provide more specific guid-
ance in radiomics research. Studies in clinical journals
showed significantly higher RQS scores, especially in
test-retest analysis, multivariable analysis with non-
radiomics features, finding biologic correlates, and pur-
suit of prospective study design. In the TRIPOD items,
they more clearly defined the data source and study de-
sign, i.e., a consecutive retrospective design or case-
control design, and the study setting, i.e., tertiary hospital
or general population. In terms of validation, all three
prospective studies were in the clinical journal, and both
external and independent validation was performed more
frequently in the clinical journal group. These findings
imply that high-impact clinical journals pursue precision
in research, clarification of epidemiological background,
and independent validation, which demonstrates the room
for improvement in radiomics studies.

Of note, radiologists played the main role as either first or
corresponding authors in the radiomics studies. There were
23.4% articles that radiologists were not the main authors,
but most studies work collaboratively among radiologists,
other clinicians, and physicists.

This study has some potential limitations. The first is the
relatively small sample size, especially with an impact factor
below 7. This was placed to permit in-depth analysis of the
radiomics applications. Second, radiomics is still a developing
imaging biomarker, and the suggested RQS may be too “ide-
al.” The criteria of phantom study and multiple imaging ac-
quisitions may be unrealistic for clinical situations. Third, the
adoption of TRIPOD items to radiomics studies can be rather
strict. For example, most studies are case-control and
retrospective study designs, and a clear description of “case-
control” is not commonly given in imaging journals.
Nonetheless, clear stating of the participants and study
setting is important for study transportability, and studies in
imaging journals need to pursue this. Fourth, we considered
internal validation with a random sample or split sample as
independent validation, while the TRIPOD statement only
considers external validation for validation of a pre-existing
model. When the rates of open science and open data increase
in the field of radiomics, the true validation of a model should
become easier to perform.

In conclusion, the overall scientific quality and reporting
of radiomics studies is insufficient, with the scientific qual-
ity showing the greatest deficiencies. Scientific improve-
ments need to be made to feature reproducibility, analysis
of clinical utility, and open science. Reporting of study ob-
jectives, blind assessment, sample size, and missing data is
deemed to be necessary. Our intention is to promote the
quality of radiomics research studies as diagnostic and prog-
nostic prediction models, and the above criteria and items
need to be pursued for radiomics to become a viable tool for
medical decision-making.
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