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Abstract
Purpose To assess the dose performance in terms of image quality of filtered back projection (FBP) and two generations of
iterative reconstruction (IR) algorithms developed by the most common CT vendors.
Materials and methods We used four CT systems equipped with a hybrid/statistical IR (H/SIR) and a full/partial/advanced
model-based IR (MBIR) algorithms. Acquisitions were performed on an ACR phantom at five dose levels. Raw data were
reconstructed using a standard soft tissue kernel for FBP and one iterative level of the two IR algorithm generations. The noise
power spectrum (NPS) and the task-based transfer function (TTF) were computed. A detectability index (d′) was computed to
model the detection task of a large mass in the liver (large feature; 120 HU and 25-mm diameter) and a small calcification (small
feature; 500 HU and 1.5-mm diameter).
Results With H/SIR, the highest values of d′ for both features were found for Siemens, then for Canon and the lowest values for
Philips and GE. For the large feature, potential dose reductions with MBIR compared with H/SIR were − 35% for GE, − 62% for
Philips, and − 13% for Siemens; for the small feature, corresponding reductions were − 45%, − 78%, and − 14%, respectively.
With the Canon system, a potential dose reduction of − 32% was observed only for the small feature with MBIR compared with
the H/SIR algorithm. For the large feature, the dose increased by 100%.
Conclusion This multivendor comparison of several versions of IR algorithms allowed to compare the different evolution within
each vendor. The use of d′ is highly adapted and robust for an optimization process.
Key Points
• The performance of four CTsystems was evaluated by using imQuest software to assess noise characteristic, spatial resolution,
and lesion detection.

• Two task functions were defined to model the detection task of a large mass in the liver and a small calcification.
• The advantage of task-based image quality assessment for radiologists is that it does not include only complicated metrics, but
also clinically meaningful image quality.

Keywords Multidetector computed tomography . Image enhancement . Image reconstruction

Abbreviations
CTDI CT dose index
CTDIvol Volume CT dose index
ESF Edge-spread function
FBP Filtered back projection
H/SIR Hybrid or statistical iterative reconstruction

IR Iterative reconstruction
LSF Line-spread function
MBIR Full or advanced or partial model-based

iterative reconstruction
NPS Noise power spectrum
TTF Task-based transfer function

Introduction

Iterative reconstruction (IR) algorithms were introduced in
2008 to improve image quality and therefore the accuracy of
diagnosis. Compared with filtered back projection (FBP), IR
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algorithms decrease noise and also maintain image quality
with reduced doses [1–5].

The most common CT vendors have produced several gen-
erations of IR algorithms. The most recent are hybrid/
statistical IR (H/SIR) and full/partial/advanced model-based
iterative reconstruction (MBIR) algorithms [6, 7]. H/SIR com-
bines FBP and IR in different proportions to achieve recon-
struction. MBIR uses a probabilistic method, deriving a sta-
tistical cost function by incorporating X-ray physics and com-
puted tomography (CT) optics modeling to reduce noise and
artifacts [8, 9]. Reconstructionwith the fullMBIR algorithm is
time-consuming (e.g., Veo, GE), but a faster partial/advanced
version has been developed [7].

Using IR modifies the evaluation of image quality param-
eters such as image noise, contrast-to-noise ratio, and modu-
lation transfer function. Indeed, different studies have shown
that the contrast-to-noise ratio was improved using IR recon-
struction, although the image texture changes. Therefore,
complex image quality properties of IR images require the
use of adapted metrics. The noise power spectrum (NPS) is
computed to evaluate noise components, notably texture,
which differs between IR and FBP images. Using IR recon-
struction, the NPS peak was reduced and NPS spatial frequen-
cy was shifted toward a lower frequency. As defined by
Verdun et al, non-linear and non-stationary properties make
spatial resolution dependent on contrast and dose [10]. To
address this problem, a task-based transfer function (TTF)
adapted to each clinical task is used.

However, considerations about metrics are not an im-
portant concern for radiologists, who focus on identifying/
locating/characterizing abnormal images. Image quality is
usually evaluated subjectively. To investigate the relation-
ship between objective and subjective metrics without as-
sessment by a radiologist, complex metrics such as the
detectability index (d′) are required [11]. The d′ estimates
the radiologist’s ability to perform a clinical task. It cor-
responds to a figure of merit reflecting the resolution and
noise properties (TTF and NPS outcomes) of IR algo-
rithms as they relate to the ability of the system to per-
form a task of interest.

The goal of d′ is to find the lowest dose that produces
images of sufficient quality to provide good clinical perfor-
mance. Thus, d′ serves to measure the improvement in detect-
ability at a given dose and to determine the dose reduction that
ensures similar detection performance with FBP versus IR or
between two IR algorithms [11].

Few studies have been published using the d′ metric to
evaluate distinct IR algorithms. Samei and Richards compared
three reconstruction types: FBP, H/SIR (Asir algorithm), and
full MBIR (Veo algorithm) of the same manufacturer (GE
Healthcare) [11]. This task-based image quality assessment
performed for two detection tasks (detection of a relatively
small and a relatively large feature, 1.5 and 25 mm

respectively) was a robust and complete method to compare
the performance of IR algorithms.

The aim of our study was to assess the dose perfor-
mance in terms of image quality with two IR algorithm
generations developed by the four most common CT ven-
dors using the two clinical tasks previously defined by
Samei and Richards [11].

Materials and methods

CT systems

CT systems produced by the main four manufacturers were
selected: Revolution GSI (GE Healthcare), Ingenuity iCT
(Philips Medical Systems), Somatom Definition AS+
(Siemens Healthineers), and Aquilion One Genesis (Canon
Medical Systems). Table 1 presents the two generations of
IR algorithms of each CT system assessed. The type of IR
algorithms (hybrid or MBIR) was classified according to the
classification of Willemink and Noël [12].

Phantom

A 20-cm-diameter ACR QA phantom (Gammex 464) placed
inside a body ring (diameter of 33 cm and length of 24 cm)
was used to measure IR-appropriate physical metrics such as
NPS and TTF (Fig. 1). TTF was computed in module 1. This
module was composed of four inserts of 25-mm diameter each
that were placed into a water equivalent as background mate-
rial (HU between − 7 and 7). Bone (HU between 850 and 970)
and acrylic (HU between 110 and 135) inserts were used. NPS
was computed in module 3. This module consists of a uni-
form, water-equivalent material with two very small breads of
28 mm. The thickness of both modules was 40 mm.

Acquisition and reconstruction parameters

Tube voltage was set at 100 kV. Tube currents (mA) were
defined to obtain five dose levels: 0.5, 1.5, 3.0, 7.0, and
12.0 mGy. The first two levels were those used in our ultra-
low-dose protocols for thoracic and abdominal-pelvic CT. The
other levels were those currently employed at our institution
for thoracic, abdominal-pelvic, and lumbar spine acquisitions.
All acquisitions were performed with a rotation time of 0.5 s/
rot and disabling of tube current modulation.

Raw data were reconstructed using a standard soft tissue
reconstruction kernel combined with FBP and an intermediate
iterative level of the H/SIR andMBIR algorithms. Concerning
the Siemens machine, acquisitions were performed on the
same CT before and after the upgrade of hardware and soft-
ware components. The Ultra-Fast-Ceramic™ detector was
changed to a Stellar detector, and SAFIRE was upgraded to
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ADMIRE. In clinical practice, SAFIRE could be used with
UFC or Stellar detectors but ADMIRE only with Stellar de-
tectors. It is important to highlight that SAFIRE and ADMIRE
are not available simultaneously on the same CT. The other
systems have two IR algorithms currently used in clinical
practice.

Images were reconstructed with a field of view of 250 mm
and slice thickness close to 1 mm (1-mm increment). Table 1
reports the acquisition and reconstruction parameters used in
this study.

Dosimetry

Volume CT dose indexes (CTDIvol), determined for a 32-cm-
diameter (polymethyl methacrylate) reference phantom, were
retrieved from the review report available in the CT worksta-
tion at the end of the acquisitions. The deviation between the

CTDIvol measured during the annual mandatory control qual-
ity and displayed for all CT systems used was lower than 25%
according to IEC 60601-2-44 [13].

Image quality assessment

Image quality assessments were carried out using imQuest
software (12). imQuest is an image analysis tool designed to
facilitate task-based image quality assessment of CT images.
The tool allows one to measure resolution in terms of a TTF,
noise in terms of a NPS, and detectability index for several
variants of a non-prewhitening (NPW)matched filter observer
model. The methods used by the software have been used in
various other peer-reviewed papers [11, 14, 15] and are part of
a forthcoming American Association of Physicists in
Medicine task group report, TG-233 [14].

Table 1 Acquisition and reconstruction parameters used for each CT scan

Manufacturer GE Philips Siemens Canon

Model Revolution GSI iCT Definition AS+ Aquilion One Genesis

mAs values used
according to CTDIvol

0.50 mGy 0.51 mGy (20 mAs) 0.50 mGy (12 mAs) 0.51 mGy (13 mAs) 0.50 mGy (10 mAs)

1.50 mGy 1.54 mGy (60 mAs) 1.50 mGy (34 mAs) 1.50 mGy (38 mAs) 1.50 mGy (40 mAs)

3.00 mGy 2.95 mGy (115 mAs) 3.00 mGy (68 mAs) 2.99 mGy (76 mAs) 3.00 mGy (80 mAs)

7.00 mGy 6.94 mGy (270 mAs) 7.00 mGy (160 mAs) 7.01 mGy (178 mAs) 7.10 mGy (190 mAs)

12.00 mGy 11.89 mGy (465 mAs) 12.00 mGy (274 mAs) 12.00 mGy (305 mAs) 12.00 mGy (305 mAs)

Pitch 0.984 0.984 1.000 0.813

First-generation
studied

Algorithm name Asir iDose4 SAFIRE AIDR3D

Type of algorithm Hybrid Hybrid Hybrid Hybrid

Level 60% Level 4 Level 3 Standard

Reconstruction kernel Standard B I30f FC13

Detector Gemstone Elite IMR Ready Ultra Fast Ceramic PURE Vision

Second-generation
studied

Algorithm name Asir-V IMR ADMIRE First

Type of algorithm Partial model-based Full model-based Advanced model-based Advanced model-based

Level 60% Level 2 Level 3 Standard

Reconstruction kernel Standard Routine I30f Body Sharp

Detector Gemstone Elite IMR Ready Stellar PURE Vision

Thickness/overlapped 1.25 mm/1.25 mm 1 mm/1 mm 1 mm/1 mm 1 mm/1 mm

Collimation 64 × 0.625 mm 64 × 0.625 mm 64 × 0.6 mm 64 × 0.625 mm

Pixel size (pitch) of
detector in x and
z directions (mm)

1.000 × 1.000 1.408 × 1.140 1.273 × 1.095 Not available

Pixel size of axial
image (mm)

0.488 0.488 0.488 0.488

Size of focus (IEC 60336) 1.6 × 1.2 1.1 × 1.2 0.9 × 1.1 1.6 × 1.5

%CTDIvol displayed and
measured for large
collimation and 32-cm
reference phantom

8.7% 6.0% 9.2% 3.3%

ADMIRE advanced modeled iterative reconstruction; AIDR3D adaptive iterative dose reduction 3D; Asir adaptive statistical iterative reconstruction;
First forward projected model-based iterative reconstruction solution; iDose intelligent dose; IMR iterative model reconstruction; SAFIRE sinogram-
affirmed iterative reconstruction
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Noise power spectrum

NPS was computed by placing two square regions of interest
(ROIs) in the uniform section (module 3) of the ACR phantom
(Fig. 1b) as follows:

NPS2D f x; f y
� �

¼ ΔxΔy

LxLy

1

NROI
∑
i¼1

NROI

FT2D

n
ROIi

�
x; y

�
−ROIi

o���
���
2

where Δx and Δy are pixel size in the x- and y- directions
(0.488 mm), Lx and Ly the ROI lengths in the x- and y- direc-
tions,NROI the number of ROIs, FT the Fourier transform, and

ROIi the background or structured noise measured from
ROI(x, y) using a first-order (subtraction of a 3D linear fit)
detrending technique. To improve the measurement statistics
[11], the ensemble NPS was computed on a total of 40 ROIs
(NROI), 128 × 128 pixels (Lx and Ly) each, within 20 consecu-
tive axial slices.

Task transfer function

TTF was assessed using two cylindrical inserts available in
module 1 of the ACR phantom [11, 16]. A circular ROI
was placed around the insert, and a circular-edge technique
was applied to measure the edge-spread function (ESF).
The ESF was obtained by measuring the radius of each
pixel from the center of each pixel of the insert. To mini-
mize the effect of noise in the ESF, the ensemble ESF was
computed by averaging 10 ESF measured across 10 con-
secutive axial slices [16]. The line-spread function (LSF)
was also obtained by derivation of the ESF ensemble. TTF
was computed from the normalized Fourier transformation
of the LSF.

TTF measurements were performed using acrylic and
bone inserts. The value of TTF at 50% (TTF50%) was
computed.

Detectability index (d′)

Several studies performed a task-based image quality assess-
ment using a different model observer. These differences refer
to the level of the complexity and the facility of the imple-
mentation in routine. The most common model observers are
the NPW observer model [11] and the channelized Hotelling
observer [7]. The first one was used in this study.

The NPWobserver model uses a simple template-matching
strategy to determine if a given image contains the signal of
interest or not. The template it uses is just the expected signal.
The NPW model does not attempt to account for noise corre-
lations. The NPW observer model with an eye filter (NPWE)
has the same strategy but also incorporates a model of the
human visual system and its non-uniform response to different
spatial frequencies. For such a model, it is possible to predict
its detectability index if you know the noise (NPS) and reso-
lution (TTF) properties of the images and if you define the
properties of the signal to be detected (the task function,
W(u,v)).

This observer model (d′NPWE) was used to calculate d′ as
follows:

d
02
NPWE ¼

∬ W u; vð Þj j2:TTF u; vð Þ2:E u; vð Þ2dudv
h i2

∬ W u; vð Þj j2:TTF u; vð Þ2:NPS u; vð Þ2:E u; vð Þ4dudv
where u and v are spatial frequencies in the x and y directions,
respectively, E is the eye filter that models the human visual
system’s sensitivity to different spatial frequencies [14,
17–20], and W(u,v) is the task function defined as:

W ¼ F h1 x; yð Þ−h2 x; yð Þf gj j
where h1(x, y) and h2(x, y) correspond to the object present and
the object absent hypothesis.

The eye filter was modeled according to the visual response
function [19]. Two task functions were defined to represent

Fig. 1 a Phantom used in the study. b Regions of interest (ROIs) used for the noise power spectrum (NPS) assessment. cROIs used to compute the task-
based transfer function (TTF) with the bone and acrylic inserts
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large and small features, according to the task defined by
Samei and Richards [11]. The large feature was assumed to
represent a circular signal with a pre-imaged contrast of
120 HU and a diameter of 25 mm compared with 500 HU
and 1.5 mm for the small feature. TTF outcomes of the acrylic
insert were used for the large feature and those of the bone
insert for the small feature. The large feature was defined to
model the detection task of a large mass in the liver and the
small feature to model the detection of calcifications or the
identification of high-contrast tissue boundaries. The small
feature can be related to the 0.7 line pair per millimeter reso-
lution pattern available in module 4 of the ACR phantom and
the large feature to the acrylic insert of module 1.

Interpretation conditions used to obtain d′ were a zoom
factor of 1.5, a viewing distance of 400 mm, and a field of
view of 500 mm.

For each detection task, reconstruction kernel, and proto-
col, the TTF and NPS were combinedwith the task function to
estimate d′ as a function of the volume CT dose index
(CTDIvol).

Results

Image quality assessment

Noise power spectrum

Table 2 reports the NPS peak and spatial frequency data and
Fig. 2 shows the NPS curves with H/SIR and MBIR at three
dose levels. The NPS peak decreased as the dose increased.
The NPS peak was lower with MBIR than H/SIR with the GE
(− 40% ± 4%) and Philips (− 71% ± 11%) systems. With
Siemens, the NPS peak was higher with ADMIRE 3 versus
SAFIRE 3 in the 0.5- to 3-mGy dose range (0% ± 17%),
whereas the opposite was true at 7 and 12 mGy. With
Canon, the NPS peak was 89% ± 17% higher with First
Standard compared with AIDR 3D Standard.

NPS spatial frequency data refers to the frequency at which
the maximum of the NPS is reached. The NPS spatial frequen-
cy increased as the dose increased. For all systems but Siemens,
NPS spatial frequencies were lower with MBIR than with

Table 2 Values of NPS peak and NPS spatial frequency for hybrid/statistical IR and full/advanced/partial MBIR algorithms according to dose level

CTDIvol (mGy)

0.5 1.5 3 7 12

NPS
peak
(HU2 mm2)

FBP 35712 14519 7970 3304 1862

Asir 60% 30313 11431 5856 2392 1353

Asir-V 60% 19447 6188 3462 1428 844

FBP 62982 21389 8215 3303 1837

iDose4 4 22646 8911 4300 1913 1104

IMR 2 10803 2710 1089 440 221

FBP-UFC 15803 8424 4275 1834 1030

FBP-Stellar 14200 5246 3163 1742 1134

SAFIRE 3 10561 4523 2312 1022 583

ADMIRE 3 9804 3641 2078 1138 720

FBP 57098 12082 4336 1578 992

AIDR 3D Standard 6400 2917 1765 926 691

First Standard 13836 5432 3034 1736 1253

NPS
spatial frequency
(mm−1)

FBP 0.205 0.283 0.299 0.299 0.315

Asir 60% 0.173 0.189 0.189 0.205 0.205

Asir-V 60% 0.142 0.142 0.142 0.142 0.157

FBP 0.189 0.205 0.205 0.220 0.220

iDose4 4 0.094 0.173 0.173 0.189 0.189

IMR 2 0.063 0.063 0.063 0.079 0.079

FBP-UFC 0.157 0.189 0.189 0.205 0.220

FBP-Stellar 0.157 0.173 0.189 0.189 0.220

SAFIRE 3 0.126 0.142 0.142 0.157 0.157

ADMIRE 3 0.142 0.157 0.157 0.173 0.189

FBP 0.173 0.189 0.189 0.220 0.236

AIDR 3D Standard 0.081 0.126 0.126 0.173 0.189

First Standard 0.079 0.094 0.110 0.142 0.142
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H/SIR, with mean reductions of − 24%± 5% with GE, − 55%
± 13% with Philips, and − 16% ± 10% with Canon. With
Siemens, the NPS spatial frequency was 13% ± 4% higher with
ADMIRE 3 versus SAFIRE 3.

Task transfer function

Figure 3 depicts the TTF curves for MBIR and H/SIR at three
dose levels with the acrylic (Fig. 3a) and bone inserts (Fig.
3b). Table 3 reports the TTF50% values for both inserts. TTF
values tended to decline as dose decreased (Fig. 3). With GE
and the acrylic insert (Table 2), TTF50% was lower by − 17%
± 8% with Asir-V 60% versus Asir 60%. With GE and the
bone insert, TTF50% was higher with Asir-V 60% than with
Asir 60% at 0.5, 1.5, and 3 mGy, whereas the opposite oc-
curred with 7 and 12 mGy. With Philips, TTF50% was lower
with IMR 2 than iDose4 4 for the low-dose levels (0.5 to
3 mGy with the acrylic insert and 0.5 to 1.5 mGy with the
bone insert), but the opposite occurred at higher doses.
Findings were similar for the acrylic insert with the Siemens
and Canon systems. TTF50% was lower with H/SIR versus
MBIR at 0.5 and 1.5 mGy with Siemens and at 0.5 to

3 mGy with Canon. With the bone insert, TTF50% was higher
with MBIR than H/SIR at all dose levels, showing mean in-
creases of 7% ± 4% with Siemens and 76% ± 15% with
Canon.

Detectability index (d′)

Comparison of CT systems Figure 4 depicts d′ values obtain-
ed with FBP, H/SIR, and MBIR. With FBP, d′ values were
higher with Siemens than with the other three systems. The
use of Stellar detectors improved d′ values at dose levels
below 7 mGy compared with UFC detectors (14% ± 5% for
large feature and 5% ± 6% for small feature), whereas at 7
and 12 mGy, d′ was 1% and 8% higher using UFC than
Stellar detectors, respectively. The d′ values were on the
same order of magnitude for the GE and Canon systems.
Compared with both previous systems, d′ values were
higher with the Philips system (15% ± 16% for large fea-
ture and 26% ± 14% for small feature). For small feature
detection with H/SIR, Siemens provided the highest d′
values, followed by Canon and then GE and Philips. For
the large feature, Canon produced the highest d′ values at

Fig. 2 NPS curves obtained at
three dose levels (0.5, 3, and
12 mGy) with the H/SIR and
MBIR algorithms. a GE b Philips
c Siemens d Canon
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Fig. 3 TTF curves obtained at
three dose levels (0.5, 3, and
12 mGy) with the H/SIR and
MBIR algorithms with the acrylic
(a) and bone (b) inserts. top left,
GE; top right, Philips; bottom left,
Siemens; bottom right, Canon
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0.5 to 3 mGy and Siemens at 7 and 12 mGy. With GE, the d
′ values were lower than with Canon and Siemens but
higher than with Philips (9% ± 3%). With MBIR, d′ values
for both features were higher with Philips than with the
other systems (large feature, 54% ± 5% vs Asir-V; 14% ±
11% vs ADMIRE, 51% ± 26% vs First and 98% ± 16%,
30% ± 12% and 68% ± 45% for the small feature, respec-
tively). Siemens produced higher d′ values compared with
GE and Canon for both features. Finally, with Canon, d′
values were higher than with GE from 0.5 to 3 mGy but
lower at 12 mGy.

Comparison of IR algorithms with each CT system Figure 5
reports d′ for the small (Fig. 5a) and large (Fig. 5b) features.
With GE and Philips, d′ values were higher with MBIR com-
pared with H/SIR. The difference was greater for the small
feature for both systems and with the PhilipsMBIR algorithm.
With Siemens, d′ was higher with ADMIRE 3 than with
SAFIRE 3 at low-dose levels, whereas the opposite occurred

at higher dose levels. The inversion point was close to 5 mGy
for the large feature and 8 mGy for the small feature. With
Canon, d′ values for the large feature were lower with First
Standard compared with AIDR 3D Standard, whereas the op-
posite was noted for the small feature. These outcomes were
associated with the TTF and NPS results, chiefly the spatial
frequency values.

Potential increase in d′ and potential dose reduction To eval-
uate the potential increase in d′ with MBIR versus H/SIR, we
compared d′ values at a nominal CTDIvol level of 3 mGy.
Table 4 shows that MBIR improved the detectability of both
features with all systems except Canon for the large feature
(− 22%). The d′ increase was greater for the small feature and
with Philips (69% for the large feature and 165% for the small
feature) compared with the other three systems.

To evaluate potential dose reduction, we compared the
CTDIvol obtained when MBIR was used to achieve the same
d′ value as with H/SIR at 3 mGy. Using MBIR reduced the

Table 3 Values of TTF50% with the acrylic and bone inserts and with the hybrid/statistical IR and full/advanced/partial MBIR algorithms according to
dose level

CTDIvol (mGy)

0.5 1.5 3 7 12

TTF50%
acrylic

FBP 0.479 0.501 0.475 0.441 0.496

Asir 60% 0.271 0.278 0.281 0.320 0.330

Asir-V 60% 0.189 0.235 0.247 0.284 0.285

FBP 0.254 0.281 0.323 0.288 0.301

iDose4 4 0.192 0.194 0.266 0.252 0.259

IMR 2 0.135 0.146 0.209 0.262 0.300

FBP-UFC 0.305 0.359 0.428 0.430 0.432

FBP-Stellar 0.280 0.327 0.394 0.407 0.396

SAFIRE 3 0.250 0.264 0.288 0.344 0.335

ADMIRE 3 0.187 0.255 0.396 0.401 0.398

FBP 0.314 0.357 0.318 0.381 0.322

AIDR 3D Standard 0.130 0.236 0.245 0.278 0.282

First Standard 0.109 0.217 0.234 0.347 0.362

TTF50%
bone

FBP 0.378 0.421 0.412 0.433 0.410

Asir 60% 0.269 0.331 0.351 0.430 0.445

Asir-V 60% 0.306 0.368 0.371 0.381 0.376

FBP 0.296 0.298 0.299 0.302 0.307

iDose4 4 0.271 0.276 0.292 0.304 0.310

IMR 2 0.191 0.263 0.324 0.425 0.457

FBP-UFC 0.285 0.344 0.343 0.351 0.349

FBP-Stellar 0.262 0.300 0.317 0.327 0.319

SAFIRE 3 0.319 0.348 0.379 0.372 0.359

ADMIRE 3 0.326 0.379 0.397 0.403 0.399

FBP 0.368 0.327 0.341 0.328 0.296

AIDR 3D Standard 0.150 0.221 0.254 0.278 0.272

First Standard 0.223 0.399 0.473 0.501 0.495
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CTDIvol for both features with all systems except Canon for
the large feature (100%). This dose reduction was greater for
the small feature and with Philips (− 62% for the large feature
and − 78% for the small feature).

Subjective assessment of image quality

Figure 6 depicts the image quality obtained with the acrylic
insert at dose levels and with all H/SIR andMBIR algorithms.
For all systems, image noise increased with the dose reduc-
tion. Compared with Asir, Asir-V reduces the image noise,
which allowed improvement in spatial resolution (visual bor-
der detection) and contrast. The detectability of the insert was

difficult at 0.5 mGy for both IR algorithms. Using Asir-V,
images are more smoothed at 7 and 12 mGy.

Regarding the Philips system, IMR strongly reduced image
noise, but the images were very smoothed. For all dose levels,
image quality obtained with IMR was adapted to detect the
acrylic insert. The deterioration of contrast and spatial resolu-
tion at 0.5 and 1.5 mGy limited the insert detection with
iDose4.

Concerning the Siemens system, noise, contrast, and spa-
tial resolution were similar for both IR algorithms.

Regarding the Canon system, similar image quality was
found for AIDR 3D and First for dose levels higher than
3 mGy. In addition, images were very smoothed for
0.5 mGy for both IR algorithms and 1.5 mGy for First. In both

Fig. 4 Comparisons of detectability index (d′) values obtained for each reconstruction type at each dose level with the four CT systems
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Fig. 5 Detectability index (d′) as
a function of dose with the H/SIR
and MBIR algorithms for detec-
tion of the small feature (1.5 mm
in diameter, 500 HU contrast) (a)
and large feature (25-mm
diameter, 120 HU contrast) (b)
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cases, the spatial resolution and contrast limit the insert
detection.

Noise magnitude was greater in H/SIR than MBIR images.
This parameter was more obvious visually with Philips and
Canon than with GE and Siemens. Similar patterns were
found for noise texture.

Discussion

Clinical and experimental studies have established that IR is
effective in reducing CT radiation doses [1–5]. However,
when evaluating images obtained using IR algorithms, specif-
ic criteria must be taken into account (e.g., non-linear and non-
stationary properties of IRs). The software imQuest can be
used to compute d′ and quantify the detectability of a clinical
feature at a given dose [11, 14]. Several generations of IR
algorithms have been developed by the most common CT
vendors and are used in clinical practice [6, 7]. However,
few studies have assessed their influence on dose performance
in terms of image quality. We sought to fill this gap in knowl-
edge by studying two IR algorithm generations developed by
four CT manufacturers.

NPS reflected the differences in the design strategies used
for two generations of algorithms and by the four manufac-
turers. With the GE system, Asir-V moderately diminished
noise magnitude and also reduced spatial frequency compared
with Asir. Decreasing spatial frequency changes noise texture
by increasing image smoothing, thereby affecting the relative
d′ values provided by the IR algorithms at a given noise level
and for a given task [11]. The pattern was similar with Philips,
although decreases in both parameters weremoremarkedwith
IMR. Similar differences were also observed with H/SIR
faced to FBP. For Siemens and Canon, whose NPS peak
values were already low with H/SIR, a different strategy was
applied. For instance, noise magnitude with Siemens was not
reduced and was similar overall to that with ADMIRE and
SAFIRE. However, there was an increase in NPS spatial fre-
quency, which diminished the impact of ADMIRE on noise
texture and reduced image smoothing versus SAFIRE. With
Canon, noise magnitude was higher with First versus AIDR

3D, whereas spatial frequency was lower. Similar NPS out-
comes were found in the literature but were not always obtain-
ed under identical conditions (e.g., phantom type and size,
iterative level) [11, 21–25].

TTF outcomes in this study were consistent with earlier
data [11, 26]. A distinction with FBP is that spatial resolution
with IR algorithms lays on contrast and dose. This dependen-
cy was more evident for the acrylic insert with full/partial/
advanced MBIR algorithms than with H/SIR (but not for
GE). At doses below 3 mGy and low contrast (acrylic insert),
the noise level was high and the rendition of spatial details
consequently reduced. Under these conditions, TTF values
were lower with MBIR compared with H/SIR. The opposite
pattern occurred at the higher dose. With high contrast (bone
insert), TTF values were higher withMBIR compared with H/
SIR for Siemens or Canon systems or similar for the others
[11].

The d′ values were better with IR algorithms compared
with FBP. However, the outcomes of our study show that for
the GE system, d′ improves only by few percentage points
when using ASIR (5% ± 3% for the large feature and 3% ±
8% for the small feature). Differences in d′ values between
MBIR and H/SIR algorithms varied across manufacturers.
With GE and Philips, d′ values increased moderately with
Asir-V (10% ± 4% for the large feature and 27% ± 8% for
the small feature) and markedly with IMR (84% ± 9% for
the large feature and 154% ± 24% for the small feature).
These results were related to the NPS for these two manufac-
turers, especially the moderate and strong reduction of noise
magnitude and noise texture. Similar results have been report-
ed for Asir compared with FBP and for the MBIR algorithm
Veo [11]. With Siemens, the relatively small variations in NPS
and TTF resulted in smaller d′ differences between SAFIRE
and ADMIRE (2% ± 10% for the large feature and 2% ± 6%
for the small feature). However, d′ values were higher with
ADMIRE compared with SAFIRE at low-dose levels, and
vice versa at high-dose levels. It is important to note that for
Siemens, d′ values started at a better initial value in FBP com-
pared with other manufacturers. With Canon, d′ values were
higher with First versus AIDR 3D for the small feature,
whereas the opposite occurred for the large feature. These

Table 4 Image quality improvement and potential dose reduction with full/advanced/partial MBIR compared with hybrid/statistical IR (H/SIR). The
“increase in d′” data correspond to a nominal CTDIvol of 3 mGy and the “dose reduction” data to the d′ value obtained with hybrid/statistical IR at 3 mGy

Large feature Small feature

Increase in d′ (%) Dose reduction (%) Increase in d′ (%) Dose reduction (%)

Asir 60% to Asir-V 60% 25% − 35% 33% − 45%
iDose4 4 to IMR2 69% − 62% 165% − 78%
SAFIRE 3 to ADMIRE 3 7% − 13% 9% − 14%
AIDR 3D Standard to First Standard − 22% 100% 19% − 32%
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Fig. 6 A 4 × 4 cm2 region of interest centered on the acrylic insert with the H/SIR and MBIR algorithms and the four CT systems, as a function of dose
level

Eur Radiol (2020) 30:487–500498



differences were ascribable to differences in TTF results be-
tween the two IR algorithms. With the bone insert, spatial
resolution was considerably better with First compared with
AIDR 3D but spatial resolution was similar between both
algorithms with the acrylic insert.

Finally, the largest potential dose reduction, computed at a
nominal CTDIvol level of 3 mGy, while keeping d′ unchanged,
and the largest d′ increase while keeping the dose unchanged,
was seen with IMR compared with iDose4. With GE and
Siemens, the potential dose reduction was moderate or small
with MBIR versus H/SIR. With Canon, a potential dose re-
duction was achieved only with First versus AIDR 3D for the
small feature.

The values of d′ can be used to rank reconstruction tech-
niques. Siemens produced the highest d′ with FBP and H/SIR
for both (the large and the small features) and the second
highest d′ values with MBIR, after Philips system. In addition,
Canon and Siemens systems produced similar d′ values with H/
SIR and the large feature. Noticeable differences of d′ values
among manufacturers were found for MBIR algorithms espe-
cially for the higher dose. d′ values ranged from 1.3 to 2.2 for
small feature and from 4.4 to 6.6 for large feature at 0.5 mGy
and from 6.5 to 15.2 and from 19.0 to 35.8 at 12 mGy, respec-
tively. However, this comparison of d′ values between manu-
facturers is limited. As shown in Table 1, the CT scans used
have different intrinsic parameters (size of focus, pixel size of
detector) and the parameters of the protocols are slightly differ-
ent. These differences can influence the spatial resolution of the
system and the amount of image noise and thus the values of d′.

This recently introduced task-based image quality assess-
ment method helps medical physicists to determine the best
compromise between dose and image quality when seeking to
perform a specific clinical task (to detect a circular low- and
high-contrast pattern of different sizes in this study). However,
it must be combined with a radiologist evaluation of image
quality in patients, notably to assess variations in noise texture
and spatial resolution using lower dose levels and MBIR al-
gorithms. The acrylic insert images, which can be likened to
the large feature (Fig. 6), show that MBIR smoothed the im-
age despite the increase in d′. In particular for GE and Philips,
this modification in image texture may be disturbing for the
radiologist seeking to establish a diagnosis.

Recently, at least twomanufacturers have proposed artificial
intelligence algorithms for the reconstruction process [12, 27].
These algorithms are based on deep learning (DL) methods,
which may improve image quality as well as reduce radiation
dose. For instance, General Electric proposed a DL algorithm
named TrueFidelity that subtracts image noise from an image
database of patients reconstructed with FBP. Similarly, Canon
Medical system proposed the DL reconstruction method AiCE
(Advanced Intelligent Clear-IQ Engine), which used a similar
strategy although the image database of patients was recon-
structed with First. A first clinical study showed that AiCE

improved the quality of abdominal images of ultra-high-
resolution CT [27]. To date, no studies have compared the
impact of these DL methods on dose reduction and image
quality compared with IR algorithms. In addition, the task-
based image quality assessment evaluated in the present study
might also be a subject for further comparison.

This study has several limitations. Raw data were reconstruct-
ed using a single-kernel and a single-iterative level. Other com-
binations of parameters may have produced different outcomes.
We evaluated only two task functions, which were not represen-
tative of the range of tasks that must be performed in clinical
practice. Finally, we used an image quality phantom and the
results might have been different had we imaged patients.

Conclusion

The performance of each of the four imaging systems was
accurately evaluated by using imQuest software to deter-
mine NPS and TTF. The d′ value was used to quantify the
potential dose reduction with the H/SIR and MBIR algo-
rithms for two clinical tasks. The use of IR algorithms such
as MBIR and H/SIR in an optimization process is effective
compared with FBP. In addition, the impact of MBIR com-
pared with H/SIR depends on the manufacturers. Faced
with H/SIR, MBIR produced small, moderate, and marked
potential dose reductions with Siemens, GE, and Philips,
respectively. With Canon, a potential dose reduction was
possible only with the small feature using MBIR. This
task-based image quality assessment method helps medical
physicists to identify the lowest radiation dose that can be
used to perform a clinical task successfully. However, it
should be validated in patients by radiologists, notably to
assess image texture and spatial resolution after dose
optimization.
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