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Abstract

Objectives The conceptus dose during diagnostic imaging procedures for pregnant patients raises health concerns owing to the high

radiosensitivity of the developing embryo/fetus. The aim of this work is to develop a methodology for automated construction of

patient-specific computational phantoms based on actual patient CT images to enable accurate estimation of conceptus dose.

Methods We developed a 3D deep convolutional network algorithm for automated segmentation of CT images to build realistic

computational phantoms. The neural network architecture consists of analysis and synthesis paths with four resolution levels

each, trained on manually labeled CT scans of six identified anatomical structures. Thirty-two CT exams were augmented to 128

datasets and randomly split into 80%/20% for training/testing. The absorbed doses for six segmented organs/tissues from

abdominal CT scans were estimated using Monte Carlo calculations. The resulting radiation doses were then compared between

the computational models generated using automated segmentation and manual segmentation, serving as reference.

Results The Dice similarity coefficient for identified internal organs between manual segmentation and automated segmentation

results varies from 0.92 to 0.98 while the mean Hausdorff distance for the uterus is 16.1 mm. The mean absorbed dose for the

uterus is 2.9 mGy whereas the mean organ dose differences between manual and automated segmentation techniques are 0.07%,

—0.45%, —1.55%, — 0.48%, — 0.12%, and 0.28% for the kidney, liver, lung, skeleton, uterus, and total body, respectively.

Conclusion The proposed methodology allows automated construction of realistic computational models that can be exploited to

estimate patient-specific organ radiation doses from radiological imaging procedures.

Key Points

* The conceptus dose during diagnostic radiology and nuclear medicine imaging procedures for pregnant patients raises health
concerns owing to the high radiosensitivity of the developing embryo/fetus.

* The proposed methodology allows automated construction of realistic computational models that can be exploited to estimate
patient-specific organ radiation doses from radiological imaging procedures.

* The dosimetric results can be used for the risk-benefit analysis of radiation hazards to conceptus from diagnostic imaging
procedures, thus guiding the decision-making process.

Keywords Multidetector-row computed tomography - Radiologic phantoms - Patient-specific computational modeling -
Radiation dosimetry
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PPV Positive predictive value
ReLu Rectified linear unit
Introduction

One of the most frequently asked questions associated with
the increasing clinical use of radiologic imaging is the
management of radiation dose for patients presenting with
high radiosensitivity, including pregnant female and pedi-
atric patients [1-3]. Radiologic imaging should be avoided
on pregnant females; however, in some very specific situ-
ations, computed tomography (CT) or even positron emis-
sion tomography (PET)/CT becomes unavoidable [4].
Under these circumstances, the radiation risks to the fetus
are a significant concern. At fetal doses greater than
50 mGy, the potential hazard effects include embryonic
death, intra-uterine growth limitation, average intelligence
quotient (IQ) loss, mental retardation, organ malformation,
and small head size [5—7]. Stochastic effects might also
occur at fetal doses below 50 mGy [8—10]. According to
ICRP publications [6, 11], the termination of pregnancy at
fetal doses below 100 mGy cannot be justified based on
radiation risks to the fetus while for fetal doses between
100 and 500 mGy, the decision of pregnancy termination
should be considered based on individual circumstances.
In this context, the accurate estimation of conceptus dose
plays a key role in managing safety and quality in CT
imaging procedures for pregnant patients, keeping in mind
the current international recommendations in terms of good
practice and diagnostic reference levels [12].

Different techniques have been adopted for estimating the
conceptus dose in pregnant patients, including Monte Carlo
calculations using dedicated computational anthropomorphic
models [2, 13-24] and experimental measurements using
physical phantoms [25-28]. However, these techniques natu-
rally bear many limitations, including the difficulty of accurate
modeling of individual patient’s anatomy considering the lo-
cation, shape and size of internal organs, and the uterus/fetus
within the target region of the pregnant patient’s body [29].
The inherent assumptions in the modeling and simulation
setups might result in substantial overestimation or underesti-
mation of the conceptus dose. Monte Carlo calculations are
commonly integrated with computational phantoms to simu-
late radiation transport and account for all aspects of particle
interactions within the human body. The technique is deemed
to be the most accurate method for radiation absorbed dose
calculation [30]. The relevance and reliability of Monte
Carlo—based calculations are closely related to the adopted
computational model, which reflects the physical characteris-
tics and anatomical features of the human body. In this regard,
the accurate delineation of the anatomical structures of the
human body is required to estimate organ doses and radiation
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risks [31]. This task is referred to as “image segmentation”
and is commonly part of the process of constructing compu-
tational phantoms. However, the manual delineation of con-
tours and internal organs is usually time-consuming and suf-
fers from intra- and inter-observer variability.

Deep learning algorithms have recently been applied in the
field of image analysis and radiation therapy [32]. These tech-
niques proved superior compared with previous state-of-the-
art segmentation methods. Instead of describing the tissue
patterns manually, deep learning methods discover multiple
levels of representation and abstraction and use hierarchical
layers of learned abstraction to understand image characteris-
tics. Different categories of deep learning algorithms were
used, like recurrent neural networks [33], gated recurrent units
[34], deep belief networks [35], Hopfield neural networks
[36], generative adversarial networks [37], Boltzmann ma-
chines [38], or convolutional neural networks (CNNs) [39].
The latter have many interesting features, such as simple struc-
ture, less training parameters, and adaptability. Their network
structure resembles biological neural networks, which ren-
dered them suitable for pattern recognition and medical image
analysis. Zhou et al [40] trained a CNN for mapping each
voxel automatically on 3D CT images to an anatomical label
whereas Liu et al [41] adopted super-pixel and CNNs for
automatic segmentation of the liver and lung from CT images.
Likewise, Weston et al [42] performed segmentation of ab-
dominal CT images for body composition analysis using
CNNs based on the U-Net architecture.

Image segmentation of organ/tissues from medical images
is the first step for the construction of computational models,
commonly manual and time-consuming. In this work, we re-
port on an automated methodology for the construction of
computational models using CNN-based image segmentation
for estimating the conceptus doses of pregnant patients from
CT examinations.

Materials and methods
Data acquisition

This study included thirty-two pregnant patients referred to
the emergency unit of Geneva University Hospital (HUG)
for abdominal and pelvic CT scans. The institutional ethics
committee approved this retrospective study and written in-
formed consent was waived. The patients were scanned using
a volumetric CT data acquisition protocol on the Discovery
CT 750 HD CT scanner (GE Healthcare) (120-kVp tube volt-
age, 22.9 effective mAs tube current without current modula-
tion, a pitch of 1.375, slice thickness from 0.625 to 3 mm, and
table speed of 55 mm/rotation). CT images were reconstructed
using a matrix size of 512 x 512. All pregnant patients receiv-
ing low-dose CT scans between March 2011 and September
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2018 were included. The 32 pregnant patients (age range 19—
45 years) had gestational ages ranging from 8 to 35 weeks.
The body contour, skeleton, liver, kidney, lung, and uterus
were manually contoured by an experienced medical physicist
under the supervision of qualified radiologists. Thirty-two
voxelized computational models resulting from the manual
segmentation of pregnant patients’ CT images were created
to derive reference dosimetric estimates. The right and left
kidneys and lungs were both segmented together as one organ.
The maternal perimeter determined by the maximum outer
perimeter of the patient on the image containing the uterus
was measured automatically from the manually constructed
model of each patient. Likewise, the average distance from
the skin to the closest surface of the uterus was used as an
indicator of the conceptus depth. These two measurements
were used to estimate the size of the maternal body and the
location of the uterus within the mother’s abdomen,
respectively.

The segmented volumetric images and original CT data of
32 patients were resampled to a unified matrix size of
128 x 128 x 64 with a slice thickness of 2 mm. Data augmen-
tation was performed to increase the size of samples to 128
datasets by randomly cropping the edges of the original volu-
metric CT images. The original CT and corresponding seg-
mented images were similarly cropped for consistency. Eighty
percent (102) of the 128 datasets were randomly selected for
training whereas the remaining (26) datasets were used for
testing. The training dataset was used to adjust the parameters
of the proposed CNNs, whereas the test set was used to assess
their performance. The manual segmentation served as refer-
ence for evaluation.

Convolutional neural network-based segmentation

CNNs have become the most popular deep learning algo-
rithms for medical image analysis. The U-Net architecture of
CNNss integrates spatial and contextual information in a net-
work architecture comprising an analysis path and a synthesis
path for pixel-wise prediction of the label probability of clas-
sified tissues and organs. In this work, we adopted a modified
3D U-Net [43, 44] model to segment the internal organs from
CT images for Monte Carlo—based radiation dose calculations.
Figure 1 shows the geometry of the proposed CNNs, which
consists of an encoder module and a decoder module, each
with three resolution steps of 32, 64, and 128 feature maps. In
the encoder module, each layer contains two 3D convolutions
followed by a rectified linear unit (ReLu), and then a 3D max
pooling with stride size of 2 x 2 x 2. In the decoder module,
each layer consists of 3D upsampling with 2 x 2 x 2 strides
followed by two 3D convolutions and a ReLu. For each
convolutional layer, the size of all convolutional kernels is
3x3x3.

Shortcut connections between layers of equal resolution
transfer the high-resolution features from the analysis path to
the synthesis path. The numbers of channels were doubled
before max pooling (sample-based discretization process) to
avoid bottlenecks. Batch normalization was introduced before
each ReLu to normalize the batches with mean and standard
deviation, thus updating the global statistics during training.
The input to the network is a 128 x 128 x 64 voxel matrix of
the image with 7 channels. Our output in the final layer is
120 x 120 x 128 voxels in x, y, and z directions, respectively.
The architecture has 3,192,871 parameters in total and com-
prises a dilated convolutional layer, 16 convolutional layers,
and a series of pooling options.

The input images and their corresponding segmentation
maps were used to train the network with the adaptive moment
estimation (Adam) implementation of Keras [45], which com-
putes adaptive learning rates for each parameter and keeps an
exponentially decaying average of past gradients:

my = aymg- + (lfal)gt (1)
V=V + (lfaz)g,2 (2)

where m; and v, are estimates of the mean and the uncentered
variance of the gradients, respectively. g; is the gradient at
subsequent time step ¢ and a; and a, are exponential decay
rates with a;, a, € [0, 1).

The categorical cross-entropy loss function was used in the
network training to evaluate the price paid for inaccuracy of
predictions in classification. It is defined as:

— ep’
Zf:l e’

Lee = =Y tilog(f (p);) (4)

where L refers to the cross-entropy loss evaluation, f(p); is
the softmax function, p; are the scores inferred by the net for
each class in C, ¢; indicates the ground truth label for voxel i.

The CNN model was implemented using the open-source
Keras package [45] and ran on NVIDIA Quadro K5000 GPU
with 32 GB of memory and ubuntu operating system. To
minimize the overhead and make maximum use of the GPU
memory, the network was trained with a mini-batch size of 2
and for 100 epochs. The learning rate was initialized as 10>,
and the network weight was initialized as normal distribution
with zero mean and a standard deviation of 0.01.

f@); (3)

Computational phantoms

Overall, the manual segmentation of the original CT images
for 32 patients took approximately 1 month while the auto-
mated segmentation of one CT dataset, following training that
took 22 days, takes 20 s. A total of 6 organs/tissues were
automatically or manually segmented from 3200 transaxial
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Fig. 1 Proposed convolutional neural network model used for automated segmentation of pregnant patients’ CT images. BN refers to batch

normalization whereas ReLu refers to rectified linear unit activation function

slices followed by assignment of a label to each one. Organ
masses were calculated by multiplying the number of seg-
mented voxels by the voxel size and the corresponding tissue
density reported in the ICRP publication 89 [46]. Figure 2
shows the representative transverse, sagittal, and coronal
slices of the original CT images and those generated by man-
ual and automated segmentation techniques. Figure 3 shows
the 3D coronal and sagittal views of the computational models
generated using manual and automated segmentation tech-
niques where the body is made transparent for enhanced view-
ing of internal organs and the skeleton. A selected set of met-
rics were used to measure the agreement between manual and
automated segmentations, including the Jaccard similarity co-
efficient, Dice similarity coefficient (DSC), sensitivity, posi-
tive predictive value (PPV), volume difference, and Hausdorff
distance (HD). The Jaccard coefficient measures the similarity
between two images and is defined as the volume of the inter-
section divided by the volume of the union of manual and
automatic segmentations. DSC is similar to Jaccard and is
calculated as DSC = 2 x Jaccard/1 + Jaccard). The sensitivity
describes the ability of the CNN to correctly classify an indi-
vidual voxel as belonging to the right target organ and equals
the true positive divided by the sum of true positive and false
negative rates. The PPV is the percentage of the correct iden-
tification in the automated segmentation results and can be
defined as follows: PPV =true positive/(true positive + false
positive). The measurement of HD reflects the translations and
shape discrepancies between the computational phantoms
produced using manual and automated segmentation tech-
niques. The voxel-to-voxel distance can be calculated as:

HD = max{maximin;||ai=b;||, maximin;||bi~a;|| } (5)

where ||a; — bj|| is the Euclidean distance of point @ in the
manually segmented phantom to point b in the automatically
segmented phantom.

@ Springer

Monte Carlo simulations and radiation dose
calculations

Monte Carlo modeling was performed using a previously val-
idated GE 750HD CT source where the CT gantry geometry
model includes a Performix Pro VCT 100 x-ray tube with 7°
target angle and 56° fan-beam angle, allowing for a beam
collimation of 40 mm [47]. At 120 kVp, the half-value layer
was measured as 7.8 mm Al, whereas the quality equivalent
filtration of the x-ray tube is 4.3 mm of Al. The source-to-
isocenter and the source-to-detector distances for this CT scan-
ner are 54 cm and 95 cm, respectively. The computational
phantoms and CT source and gantry models were integrated
in the MCNPX Monte Carlo code [48] for simulation of low-
dose CT examinations with a helical source path and total
collimation width of 64 x 0.625 mm. The energies deposited
in the computational phantoms produced through manual and
automated segmentation techniques were recorded and used
to calculate organ absorbed doses. The estimated organ-level
absorbed doses (in mGy) were used to compare the dosimetric
characteristics of the computational models generated using
manual and automated segmentation techniques.

Results

The results of automated segmentation are compared with
those of manual segmentation of all patients with respect
to the total body, skeleton, liver, lung, kidney, and uterus
using different metrics (Table 1). The Jaccard similarity
coefficient for the different segmented organs varies be-
tween 0.85 and 0.96 with an average of 0.90 + 0.04; while
the DSC varies between 0.92 and 0.98 with an average of
0.94 +£0.02. Conversely, the sensitivity varies between 0.9
and 0.97 with an average of 0.95+0.03, while the PPV
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Original CT images

Manual segmentation

Automatic segmentation

Fig. 2 Illustration of the CNN-based image segmentation on a representative patient study showing transaxial, sagittal, and coronal slices of the original
CT images (left column), manual segmentation (middle column), and automatic segmentation (right column)

varies between 0.92 and 0.98 with an average of 0.94 +
0.02. The size and location accuracy of the segmented
organs between the phantoms constructed by the two
methods were evaluated by calculating the volume differ-
ence and HD. The former ranges from —4.9 to 2.96%
with an average of 0.26% +2.67%, while the latter varies
between 10.71 and 50.07 mm with an average of
23.62 mm=+ 12.86 mm among organs. It should be em-
phasized that the uterus dose served as surrogate for the
conceptus dose in this work. For segmented uterus among
patients, the Jaccard similarity coefficient, DSC, sensitiv-
ity, PPV, volume differences, and HD are 0.88 £0.06,
0.94+0.04, 0.94+0.05, 0.93+0.03, 1.49% +4.19%, and
16.1 mm + 8.16 mm, respectively.

Table 2 summarizes the calculated conceptus dose of
pregnant patients according to gestation age, which varies
between 8 and 35 weeks. The conceptus doses for the
thirty-two pregnant patients estimated using computational
models developed based on manual segmentation and au-
tomated segmentation are also given. The measured mater-
nal perimeter varies from 65.2 to 127.7 cm with a mean
value of 93.5 cm. The mean conceptus dose is 2.91 +
0.7 mGy. Figure 4 compares the absorbed doses to the
kidney, liver, lung, uterus, skeleton, and total body be-
tween the manual and automated segmentation models.
Figure 5 shows the relative differences of absorbed doses
in target organs between the two segmentation methods.
The relative absorbed dose differences for the total body

@ Springer
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Manual segmentation

Automatic segmentation

Fig. 3 3D views through representative slices of the generated pregnant woman computational models using manual segmentation (left column) and

automated segmentation (right column)

among the thirty-two patients range from —0.21 to 1.48%
with an average of 0.28% =+ 0.39% whereas the dose differ-
ences for the skeleton vary between —2.26 and 1.33% with
an average of —0.48% = 0.91%. The dose difference for the
uterus ranges from —5.98 to 6.31% with an average of —
0.12% £2.62%. The absorbed dose in target regions with

low density and small volume is more easily affected by
organ’s shape and position. Therefore, the dose difference
between manual and automated segmentations observed
for the lungs is higher than that for the liver and kidneys
while the skeleton and total body have the least dose dif-
ferences. Figure 6 compares the relative differences of

Table 1 Summary of image

segmentation metrics, including Organs Jaccard Dice Sensitivity ~ Positive Volume Hausdorft

the Jaccard similarity coefficient, similarity similarity predictive difference (%) distance

Dice similarity coefficient, coefficient coefficient value (mm)

sensitivity, positive predictive

value, volume difference and Body 0.96 + 0.01 098 +0.01 097+0.01 098+0.01 —-129%+1.17 2524+18.03

Hausdorff distance, used for the Skeleton  0.87 + 0.02 093+0.01 094+0.02 0.92+0.03 296% +4.14  50.07+18.75

comparative assessment of the Lung 093+003  096+001 097+002 096+002  092%+241 1549+11.21

automated image segmentation .

algorithm for six identified organs Liver 0.90 + 0.01 095+0.01 096+0.01 094+0.02 236% +2.82 24.08+14.88
Kidney 0.85 £ 0.03 0.92+0.02 090+003 094+0.02 —490%+4.72 10.71+242
Uterus 0.88 = 0.06 0.94+0.04 094+0.05 093+0.03 1.49% +4.19  16.10+8.16
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Table 2 Summary of gestation

age and waist perimeters of the Gestational age Waist perimeter Conceptus dose (mGy)

thirty-two pregnant patients as (weeks) (cm)

well as the reported uterine doses Angel et al Manual Automated

in abdominal CT scans when [13] segmentation segmentation

using manual vs. automated seg-

mentation techniques 8 83.4 3.0 3.8 39
8 81.8 3.0 35 35
8 84.4 2.9 34 3.6
8 93.2 2.7 4.0 4.0
8 81 3.0 39 39
8 95.6 2.6 3.1 3.1
8 80.8 3.0 2.7 2.7
10 86.8 29 44 44
10 88.6 2.8 34 34
10 110.6 22 2.7 2.7
12 110.2 22 4.7 44
15 91.6 2.7 33 32
16 99 2.5 2.8 2.9
17 84.6 29 3.0 3.0
18 78 3.1 32 3.1
20 109.4 22 2.6 2.6
21 84 29 32 32
21 75.2 32 3.0 29
22 65.2 35 2.8 29
22 95.4 2.6 2.8 29
25 100.8 2.5 2.0 2.0
25 93 2.7 2.8 2.7
25 89.6 2.8 2.6 2.6
26 103 24 22 22
26 102.8 24 22 2.1
28 92.6 2.7 2.5 24
29 127.7 1.7 1.8 1.8
29 86.4 2.9 2.5 24
30 92.2 2.7 24 24
32 103.8 24 1.8 1.8
33 123 1.9 1.9 1.9
35 99.2 2.5 2.1 22

organ and conceptus absorbed doses between manual and ~ Discussion

automated segmentation techniques at different gestational
periods, respectively. The mean conceptus dose differences
between the two methods are 0.93% +2.5%, —1.19% =+
2.97%, 0.053% +2.51%, and —0.38% +1.28% at early
pregnancy, the first trimester, the second trimester, and
the third trimester, respectively. The error bars in Figs. 5
and 6 represent the minimum and maximum dose differ-
ences between manual and automatic segmentations
among patients. The sources of uncertainty reflect the an-
atomic divergences of the segmented target regions. The
dependence of the conceptus dose upon the maternal pe-
rimeter estimated using the technique described by Angel
et al [13] is also compared in Table 2 and Fig. 6b.

A deep learning—based automated algorithm was optimized for
successful automated segmentation of CT images of pregnant
patients who presented with a range of anatomical variability.
Produced patient-specific computational models were suitable
for incorporation in dedicated Monte Carlo codes for radiation
dose calculations. The evaluation of the proposed CNN algo-
rithms using thirty-two clinical studies demonstrated a good
agreement between automated and manual segmentation results
(mean values of DSC, PPV, volume difference, and HD are equal
t0 0.95, 0.95, 0.26%, and 23.62 mm, respectively).

Accurate delineation of organs at risk for radiation dose
estimation in radiation protection or treatment planning is

@ Springer
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Fig. 4 Comparison between
absorbed doses from abdominal

[ 1Manual segmentation
I Automatic segmentation

CT scans to the kidney, liver, 6
lung, uterus, skeleton, and total

body estimated using the pregnant 3
computational models produced
by manual vs. automated
segmentation. The error bars
represent + STD (standard
deviations) of organ doses among
the patients

Organ dose (mGy)
w

Kidney

critical, yet efforts to automate the process of constructing
patient-specific computational models remain elusive. Our
CNN-based approach provides a fully automated solution
for radiation dosimetry in CT imaging. The approach does
not require user interaction and enables efficient and automat-
ed segmentations for fast computational model construction
and accurate radiation dose calculation, thus facilitating even-
tual use in the clinic. The goal of our framework is to perform
automated delineation of the contours of internal organs at risk
from abdominal CT scans with the aim to build patient-
specific computational models for radiation dosimetry.

Liver Lung Uterus Skeleton Total Body

Taking advantage of convolutional neural network architec-
ture, automated feature extraction is conducted on patient CT
images, demonstrating capability in identifying target organs.

The absorbed dose for the uterus is commonly used as a
surrogate for the absorbed dose to the embryo/fetus in
medical radiation dosimetry [5] while different methods
consider the larger uterine volume compared with the
non-pregnant female [5, 49]. The dose calculation process
reported in this work has the advantage of taking the indi-
vidual characteristics of the patient’s anatomy into the dose
calculation algorithm. The radiation dose in diagnostic

Fig. 5 Relative differences
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imaging procedures is normally lower than the dose from
radiation therapy but still carries a risk that cannot be elim-
inated entirely.

The conceptus dose for pregnant patients from CT ex-
aminations varies within the range 1.8—4.7 mGy with a
mean value of 2.9 mGy. The differences of mean conceptus
absorbed doses between the two segmentation techniques

are 1.66%, 2.55%, 1.84%, and 1.18% at early pregnancy,
first trimester, second trimester, and third trimester, respec-
tively. It is not clear why the highest difference was ob-
served at the first trimester. The differences of mean con-
ceptus absorbed doses between manual segmentation and
the technique proposed by Angel et al [13] are 19.33%,
19.39%, 10.97%, and 16.37% at early pregnancy, the first
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trimester, the second trimester, and the third trimester, re-
spectively. Overall, the automated segmentation algorithm
generated computational phantoms that resulted in almost
similar estimates of individual conceptus doses as manual
segmentation.

This study demonstrates the feasibility of an automated
construction of patient-specific computational models for
organ-level dose estimation, using deep learning ap-
proaches. The quality of typical low-dose CT images made
it difficult to segment all organs, and as such, we had to
limit the number of segmented organs. Another limitation
of this study is that the uterus dose is used as a surrogate
for radiation dose estimation to the fetus in the computa-
tional model while the fetal position may vary among pa-
tients and at different gestation periods. This assumption
adds uncertainties to the dose estimation process. Another
limitation is that only a limited number of organs have
been segmented from CT images, which prevented the es-
timation of all organ doses for pregnant patients. Overall,
the computational time required for construction of patient-
specific models using automatic segmentation for one
dataset is approximately 20 s. With advances in computer
technology, particularly grid and cloud computing, and ad-
vanced variance reduction techniques, the proposed ap-
proach could be clinically implemented for real-time cal-
culation of individual radiation doses to patients.

Conclusion

Since the individual anatomic characteristics have a notice-
able impact on conceptus dose estimates, this study shows
that patient-specific computational models can be created
using an automated deep learning—based segmentation al-
gorithm. Therefore, radiologists could perform accurate
patient-specific dose estimation for a variety of radiation
exposure situations and specifically for the evaluation of
conceptus dose. In most situations encountered in emer-
gency units, the benefit of performing CT outweighs the
radiation risk. However, the proposed approach for auto-
mated computational modeling and dose calculation can be
useful for retrospective evaluation of radiation dose, for
instance if the pregnancy was unknown when emergency
CT was performed, for the decision-making process for
high-dose procedures in clinical setting and also in re-
search studies involving retrospective data analysis.
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