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CT texture analysis in the differentiation of major renal cell carcinoma
subtypes and correlation with Fuhrman grade
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Abstract
Objective CT texture analysis (CTTA) using filtration-histogram–based parameters has been associated with tumor biologic
correlates such as glucose metabolism, hypoxia, and tumor angiogenesis. We investigated the utility of these parameters for
differentiation of clear cell from papillary renal cancers and prediction of Fuhrman grade.
Methods A retrospective study was performed by applying CTTA to pretreatment contrast-enhanced CT scans in 290 patients
with 298 histopathologically confirmed renal cell cancers of clear cell and papillary types. The largest cross section of the tumor
on portal venous phase axial CTwas chosen to draw a region of interest. CTTA comprised of an initial filtration step to extract
features of different sizes (fine, medium, coarse spatial scales) followed by texture quantification using histogram analysis.
Results A significant increase in entropy with fine and medium spatial filters was demonstrated in clear cell RCC (p = 0.047 and
0.033, respectively). Area under the ROC curve of entropy at fine and medium spatial filters was 0.804 and 0.841, respectively.
An increased entropy value at coarse filter correlated with high Fuhrman grade tumors (p = 0.01). The other texture parameters
were not found to be useful.
Conclusion Entropy, which is a quantitative measure of heterogeneity, is increased in clear cell renal cancers. High entropy is also
associated with high-grade renal cancers. This parameter may be considered as a supplementary marker when determining
aggressiveness of therapy.
Key points
• CT texture analysis is easy to perform on contrast-enhanced CT.
• CT texture analysis may help to separate different types of renal cancers.
• CT texture analysis may enhance individualized treatment of renal cancers.
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Abbreviations
ccRCC Clear cell renal cell carcinoma
CTTA Computerized tomography (CT) texture

analysis

pRCC Papillary renal cell carcinoma
RCC Renal cell carcinoma
ROC curve Receiver operating characteristic curve
SSF Spatial scaling factor associated with CTTA
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Introduction

Renal cell carcinoma (RCC) is among the ten most com-
mon cancers with an annual incidence of 295,000 and mor-
tality of 134,000 worldwide [1, 2]. RCC encompasses a
heterogeneous group of malignant entities with distinct pa-
thology, biology, and treatment considerations [3]. The
three most common subtypes are clear cell RCC (ccRCC,
approximately 75%), papillary RCC (pRCC, 15%), and
chromophobe RCC (5%) [4]. The Fuhrman system is wide-
ly used for grading RCC and has prognostic value, inde-
pendent from tumor subtype. RCC is categorized as
Fuhrman grade 1–4 based on nuclear characteristics (i.e.,
size, shape, and contents) [5]. An increasing interest has
been drawn to the accurate imaging characterization of
RCC given different prognostic and management consid-
erations for each subtype and Fuhrman grade [6–11].
Although the degree of contrast enhancement may be valu-
able for differentiation, there is considerable overlap of
imaging features between subtypes, including tumor size,
attenuation/signal intensity, and growth pattern [12].

CT texture analysis (CTTA) has emerged as a promising
technique for assessing tumor heterogeneity and as a bio-
marker in predicting treatment response and prognosis
[13–15]. A few studies have looked at the value of CTTA
in differentiating benign and malignant renal tumors [16,
17]. Two prior studies investigated the differentiation of
clear cell and papillary renal cancers using CTTA [18,
19]. A small study (n = 53) showed that machine
learning–based CTTA was able to predict Fuhrman grade
of renal cancers [20]. However, to our knowledge, no study
has evaluated CTTA for its ability to both differentiate
ccRCC from pRCC and predict the pathological grade of
these tumors. The purpose of this study is to investigate
CTTA parameters in the differentiation ccRCC from pRCC
and to attempt prediction of the Fuhrman grade of RCC,
based on a large cohort.

Materials and methods

Patients

This HIPAA-compliant retrospective study was approved
by the Institutional Review Board with a waiver of in-
formed consent. The pathology database was queried to
find all the cases with histopathologic confirmation of
ccRCC or pRCC between January 2007 and December
2014. Only cases with available contrast-enhanced CT
studies before treatment were included. The inclusion and
exclusion criteria were selected to minimize confounding
variables (Fig. 1).

CT examination

All contrast-enhanced CT scans were performed on multi-
slice CT systems (Philips Medical Systems), using similar
protocols: 120 kVp, 180–450 mAwith automatic tube current
modulation, matrix of 512, field of view of 380–500 mm, and
4- or 5-mm reconstructed section thickness. Intravenous injec-
tion of 120 mL of 370 mg of iodine/mL of iopamidol (Isovue
370, Bracco Diagnostics) was delivered at 3 mL/s. The portal
venous phase was obtained 75 s after commencement of con-
trast agent administration.

CT texture analysis

CT images were reviewed, and the maximum tumor diameter
was recorded at a picture archiving and communications sys-
tem (PACS) workstation (Synapse, FujifilmMedical Systems)
by a radiologist with 15 years of experience in body imaging
(YD), blinded to pathology. The axial-enhanced CT image of
the largest tumor cross section was identified, anonymized,
and exported to a Digital Imaging and Communications in
Medicine (DICOM) file. The DICOM files were uploaded to
a cloud server with the TexRAD CTTA software (version 3.9,
TexRAD Ltd.). A region of interest (ROI) was drawn to in-
clude the entire tumor (Fig. 2). The solid lesion algorithm was
implemented which included only pixels above – 50 HUwith-
in the ROI using Bthreshold^ as padding (erosion scale = 0) for
reducing edge artifact.

CTTA methodology using the filtration-histogram tech-
nique has been described elsewhere [13, 21–23]. Once ROIs
are obtained, the CTTA software modifies the pixel data using
several Laplacian spatial scaling factors (SSF), which extracts
and enhances features of different sizes (mm) ranging from
fine (SSF = 2 mm), medium (SSF = 4 mm), and coarse
(SSF = 6 mm) texture scales. A fine filter tends to enhance
tissue parenchymal features, while medium to coarse filters
enhance vascular features [24]. The filtration step derives fil-
tered maps, which are quantified to yield four parameters by
histogram and statistical analysis. These parameters were
mean value of positive pixels (average brightness considering
only the positive pixel values), entropy (heterogeneity of pixel
intensities), kurtosis (peakedness or sharpness of the pixel
distribution), and skewness (asymmetry of pixel distribution).
The mathematical process of calculating these parameters has
been previously described [15, 25, 26].

Reference standard

The prospective histopathological reports were used as the
reference standard. These were read by fellowship-trained his-
topathologists specialized in renal diseases. The Fuhrman
grading was performed as per well-established guidelines
[27]. As per multiple prior imaging and clinical studies
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assessing outcome of renal cancers, we separated high-grade
(Fuhrman 3, 4) from low-grade (Fuhrman 1, 2) cancers [20,
28–30].

Statistical analysis

The age of the patient and the size of the ccRCC and pRCC
tumors were compared using two independent samples t test.
The gender and Fuhrman grade between ccRCC and pRCC
were compared using the chi-square test. A binary logistic
regression analysis was performed to quantify any correlation
between the CTTA parameters and the tumor size or histology.
Receiver operating characteristic (ROC) analyses were used to
assess the performance of CTTA parameters in the differenti-
ation of subtypes of RCC. A multinomial logistic regression
analysis was performed to correlate the CTTA parameters
with Fuhrman grade. Statistical analysis was performed by
using IBM SPSS Statistics for Windows, version 24.0 (IBM
Corp.). Holm-Bonferroni correction of p values for multiple
testing bias [31] was performed. A corrected p < 0.05 was
deemed statistically significant.

Results

Demographics

The final cohort consisted of 244 patients with 249 ccRCC
lesions (5 patients had two lesions) and 46 patients with 49
pRCC lesions (3 patients had two lesions). Epidemiological
and clinical differences between the two groups of patients are

given in Table 1. The only significant difference noted was
that pRCC patients were more likely to be males than ccRCC
patients (p = 0.01).

Comparison of CTTA parameters between ccRCC
and pRCC

There was no significant difference in tumor sizes between the
ccRCC and pRCC groups (p = 0.94). The CTTA parameters
for ccRCC and pRCC and their value in differentiating the two
entities are given in Table 2. The box and whisker plot of
entropy values of renal cancers at medium spatial filter is
given in Fig. 3. Entropy with fine and medium spatial filters
of ccRCC was significantly higher than that of pRCC (p =
0.047 and 0.033, respectively).

Area under the ROC curves (AUC) of entropy at fine,
medium, and coarse spatial filters were 0.804 with a 95%
confidence interval of 0.755–0.848, 0.841 (0.803–0.888),
and 0.822 (0.774–0.864), respectively (Fig. 4). Entropy great-
er than 5.34 at medium spatial filter had sensitivity and spec-
ificity of 77.5% and 83.7%, respectively, for diagnosing
ccRCC.

Correlation between CTTA parameters and Fuhrman
grade

High Fuhrman grade (3 and 4) cancers were associated with
larger tumor diameter (p < 0.001) and a high entropy value
(p = 0.01) with a coarse filter (SSF6). The other parameters
were not significantly associated with high Fuhrman grade.

Fig. 1 Inclusion and exclusion
criteria for study cohort

Eur Radiol (2019) 29:6922–69296924



Discussion

CTTA has demonstrated promising diagnostic and prognostic
capabilities for evaluation of malignancies and other disease
processes, especially in the pulmonary, gastrointestinal, and
genitourinary systems [32–34]. Further refinement and stan-
dardization of protocols and parameters may allow CTTA to
be implemented in clinical practice. For example, in heteroge-
neous tumors such as RCC, a percutaneous biopsy of one
region of the tumor may underestimate the overall tumor
grade. Performing CTTA in this circumstance could function
as a Bfailsafe,^ triggering additional investigation and mitigat-
ing sampling bias. CTTA could also potentially spare biopsy
or resection for poor surgical candidates. If the lesion appears
unlikely to cause short-term morbidity and mortality, a multi-
disciplinary Bwait and watch^ approach may be selected.

The current paradigm of RCC imaging interpretation is
based on a visual process which includes assessment of the
shape, margin, as well as degree and heterogeneity of en-
hancement. These subjective methods do not adequately ad-
dress discrepancies in the cellularity, angiogenesis, matrix,
and areas of necrosis between different tumor subtypes (i.e.,
inter-tumoral heterogeneity) [35]. Texture analysis is an image

processing technique that can extract texture information in a
quantitative manner, allowing for mathematical detection of
changes in pixel intensity which may be visually impercepti-
ble. This study explores the usefulness of texture analysis for
the differentiation of ccRCC from pRCC and for predicting
Fuhrman grade.

Prior studies have shown that ccRCC enhance substantially
more than pRCC, particularly in the corticomedullary phase of
enhancement [9, 10, 36–39]. Sensitivity and specificity of
contrast-enhanced CT in distinguishing ccRCC and pRCC
have been reported to vary from 70 to 98 and 62–92, respec-
tively [9, 10, 12, 39]. Some studies have suggested that on the
whole ccRCC are subjectively more heterogenous than pRCC
[40]. However, when heterogeneity was assigned a three-point
score, there was substantial overlap in the scores of ccRCC
and pRCC [41]. In another study, 84% of ccRCC and 74% of
pRCC subjectively showed heterogenous enhancement [12].
Thus, an objective score of heterogeneity, such as entropy
seen in CTTA, may help increase specificity in some cases
to distinguish ccRCC from pRCC. In such cases, CTTA may
obviate need for additional imaging tests, such as MRI.

Among CTTA parameters, entropy was seen to be the best
predictor for differentiation of ccRCC from pRCC. Entropy

Fig. 2 CT texture analysis of
ccRCC. a Delineation of tumor
(blue line). b–d Color texture
overlays of tumor outlined by
ROI at fine (b), medium (c), and
coarse (d) spatial filters. These
images undergo pixel-by-pixel
histogram analysis to yield CTTA
parameters. When a fine spatial
filter is applied, the internal
structure of the tumor can be
clearly seen
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represents the randomness or irregularity of gray-value distri-
bution, and heterogeneous tumors tend to have greater entropy
[42]. In accordance with previous studies, ccRCC demon-
strates higher entropy compared to pRCC, signifying in-
creased intra-tumoral heterogeneity [41]. Entropy greater than
5.34 at medium spatial filter (SSF4) has sensitivity and spec-
ificity of 74% and 88%, respectively, to distinguish of ccRCC
from pRCC, a significant improvement in specificity when
compared to standard techniques. Chen et al also demonstrat-
ed increased entropy of ccRCC compared to pRCC (increased
standard deviation and interquartile range), most apparent in
the arterial phase of the CT examination [19]. Lubner et al
found that entropy higher than 4.86 was the best predictor of
ccRCC [18]. In addition, they found that high mean of posi-
tive pixels was associated with ccRCC. We did not find this to
be the case. There are a few potential reasons for the differ-
ences between our paper and that of Lubner et al. Our cohort is
much larger. The Holms correction for multiple testing bias
that we used is thought to be more stringent than the
Bonferroni correction [31] used in the paper of Lubner et al.

The heterogeneity of RCC as elucidated by CTTA also
demonstrates a statistically significant association with
Fuhrman grade in this study. High entropy at coarse filter cor-
relates with high Fuhrman grade (p = 0.05). Various CTTA
parameters have demonstrated efficacy for gradingmalignancy
in multiple organs, highlighting the need for future research in
this field. In a study of 44 patients with gliomas, the coarse
texture entropy and uniformity are found useful in
distinguishing between low- and high-grade tumors [43]. In
addition to higher entropy, higher standard deviation, higher
kurtosis, and positive skewness are postulated to represent in-
creased intra-tumoral heterogeneity and portend poorer prog-
nosis [44, 45]. Recent studies correlate imaging features to
Fuhrman grade and find that intra-tumoral necrosis was a
strong predictor of aggressive histology [46, 47]. Visually im-
perceptible intra-tumoral necrosis, however, may result in un-
derestimation of tumor heterogeneity and aggressiveness. In a
study of differentiation between lipid-poor angiomyolipoma
and RCC based on unenhanced CTTA, Hodgdon et al find that
visual analysis was less accurate than textural analysis [48]. In

Table 1 Patient characteristics
Clear cell RCC (n = 249) Papillary RCC (n = 49) p

Age 60.1 (18–93 years) 62.7 (34–75 years) 0.18

Gender M:F = 147:102 M:F = 38:11 0.01

Fuhrman grade (low/high) 173/76 30/19 0.26

AJCC stage (1/2/3/4) 187/15/40/4* 41/5/3/0 0.12

Tumor size in cm: mean (SD) 4.0 (2.6) 4.1 (2.7) 0.94

Except where indicated, data are numbers of patients

AJCC, American Joint Committee on Cancer staging classification: 7th edition

*No staging available in 3 patients

Table 2 CTTA parameters in
differentiating ccRCC from
pRCC

Spatial filter CTTA parameter ccRCC* pRCC* p value**

Fine (SSF 2) Entropy 8.3 (14.8) − 4.9 (21.4) 0.047

Mean pos.*** 5.6 (0.3) 5.22 (0.35) 0.907

Skewness 0.01 (0.48) − 0.07 (0.51) 0.113

Kurtosis 0.96 (4.27) 1.17 (2.34) 0.114

Medium (SSF 4) Entropy 14.3 (28.1) − 10.1 (29.0) 0.033

Mean pos. *** 5.6 (0.33) 5.1 (0.3) 0.076

Skewness − 0.01 (0.43) 0.15 (0.61) 0.524

Kurtosis 0.18 (1.23) 1.90 (4.64) 0.085

Coarse (SSF 6) Entropy 17.8 (37,9) − 13.3 (30.1) 0.053

Mean pos. *** 5.54 (0.36) 5.1 (0.38) 0.055

Skewness − 0.09 (0.46) 0.18 (0.72) 0.634

Kurtosis − 0.05 (0.86) 1.63 (3.76) 0.260

*Mean (standard deviation) of CTTA parameter values

**p values after Holm correction

***Mean value of positive pixels
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this context, CTTAmay be more objective than visual analysis
to assess heterogeneity inside an RCC. Consistent with previ-
ous studies, tumor size also demonstrates significant correla-
tion with Fuhrman grade [49, 50]. Therefore, increased intra-
tumoral heterogeneity (entropy) and large tumor size are risk
factors for high-grade malignancy.

We are aware of limitations of our study. Our study was
retrospective. We had only one CTTA reviewer in this study.
However, prior CTTA studies have shown good to excellent
interobserver agreement [48, 51–54]. We used a single axial
slice of tumor to assess CTTA, rather than using a three-
dimensional approach. The latter would have been time con-
suming to do in large cohort. It has been shown that two-
dimensional texture analysis gives adequate results, though
multi-slice volume analysis may be more representative of tu-
mor [55]. Selection bias toward high-grade, larger tumors may
have been introduced due to the need for histopathologic con-
firmation in the study design. Smaller tumors, especially in
older patients, may not necessarily undergo surgical excision.
The prognostic ability of Fuhrman tumor grading for pRCC
remains unclear currently due to conflicting evidence [56, 57].
Nevertheless, in routine urological practice, Fuhrman grading
continues to be used. Finally, only two of the CTTA parameters
tested achieved statistical significance for discrimination of
ccRCC from pRCC, with p values that approached the cutoff
of less than 0.05. This was mainly due to the robust post hoc
Holm correction that was employed to reduce type I errors [31].

Establishing a more sophisticated and automatic tumor bor-
der tracking method is a promising future direction for this
research to enable full evaluation of the volumetric heteroge-
neity of the tumor. We did not perform high-order statistics
such as gray-level co-occurrence matrix (GLCM), gray-level
run-length (GLRL), gray-level gradient matrix (GLGM), and
Laws’ features [16, 35]. The first-order texture analysis per-
formed in this study, however, was easy to implement and
spatially invariant. Several studies prove that first-order pa-
rameters correlate to underlying physiological changes. The
correlation between higher order texture analysis–derived pa-
rameters with pathophysiological changes remains unknown,
although a recent study shows the diagnostic performance of
first-order CCTA is more accurate than higher order CTTA in
the differentiation of renal tumors [16].

In conclusion, CTTA is a promising modality for evalua-
tion of renal tumors. CTTAmay have utility for discrimination
of tumor subtype, and for prediction of aggressive pheno-
types. Entropy at fine and medium spatial scaling filters was
able to differentiate ccRCC from pRCC with high specificity
and sensitivity. Large tumor size and increased entropy corre-
late with high Fuhrman grade.
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Fig. 3 Box and whisker plot of entropy values for papillary (pRCC) and
clear cell (ccRCC) renal cancers at medium spatial scaling filter (SSF =
4). Pap RCC, papillary-type renal cell carcinoma; ccRCC, clear cell–type
renal cell carcinoma. Boxes represent interquartile range. Central line in
the box is the median value. Whiskers represent range of all values. Small
circles and triangles refer to outliers. Note that the boxes of the two groups
of RCC do not overlap

Fig. 4 ROC curves plotting sensitivity (y-axis) and 1-specificity (x-axis)
of entropy at different spatial filters in differentiating ccRCC from pRCC.
Entropy 2, entropy at fine spatial filter (SSF = 2 mm); entropy 4, entropy
at medium spatial filter (SSF = 4mm); entropy 6, entropy at coarse spatial
filter (SSF = 6 mm). Area under ROC curves (AUC) are given in the text
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Statistics and biometry No complex statistical methods were necessary
for this paper.

Informed consent Written informed consent was waived by the
Institutional Review Board.

Ethical approval Institutional Review Board approval was obtained.

Methodology
• Retrospective
• Case-control study
• Performed at one institution
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