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Abstract
Objectives To develop a proof-of-concept Binterpretable^ deep learning prototype that justifies aspects of its predictions from a
pre-trained hepatic lesion classifier.
Methods A convolutional neural network (CNN) was engineered and trained to classify six hepatic tumor entities using 494
lesions on multi-phasic MRI, described in Part 1. A subset of each lesion class was labeled with up to four key imaging features
per lesion. A post hoc algorithm inferred the presence of these features in a test set of 60 lesions by analyzing activation patterns
of the pre-trained CNN model. Feature maps were generated that highlight regions in the original image that correspond to
particular features. Additionally, relevance scores were assigned to each identified feature, denoting the relative contribution of a
feature to the predicted lesion classification.
Results Theinterpretabledeeplearningsystemachieved76.5%positivepredictivevalueand82.9%sensitivity inidentifyingthecorrect
radiological features present in each test lesion. The model misclassified 12% of lesions. Incorrect features were found more often in
misclassified lesions than correctly identified lesions (60.4% vs. 85.6%). Feature maps were consistent with original image voxels
contributing to each imaging feature. Feature relevance scores tended to reflect themost prominent imaging criteria for each class.
Conclusions This interpretable deep learning system demonstrates proof of principle for illuminating portions of a pre-trained deep
neural network’s decision-making, by analyzing inner layers and automatically describing features contributing to predictions.
Key Points
• An interpretable deep learning system prototype can explain aspects of its decision-making by identifying relevant imaging
features and showing where these features are found on an image, facilitating clinical translation.

• By providing feedback on the importance of various radiological features in performing differential diagnosis, interpretable
deep learning systems have the potential to interface with standardized reporting systems such as LI-RADS, validating
ancillary features and improving clinical practicality.

• An interpretable deep learning system could potentially add quantitative data to radiologic reports and serve radiologists with
evidence-based decision support.
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Abbreviations
CNN Convolutional neural network
CRC Colorectal carcinoma
DL Deep learning
FNH Focal nodular hyperplasia
HCC Hepatocellular carcinoma
ICC Intrahepatic cholangiocarcinoma
LI-RADS Liver Imaging Reporting and Data System
PPV Positive predictive value
Sn Sensitivity

Introduction

Deep learning (DL) systems based on convolutional
neural networks (CNNs) have shown potential to revo-
lutionize the process of radiological diagnosis [1–3].
Unlike other artificial intelligence techniques, CNNs do
not need to be taught specific radiological features to
learn how to interpret images [4]. A synergistic
workflow that combines the experience of radiologists
and the computational power of artificial intelligence
systems may substantially improve the efficiency and
quality of clinical care. Part I of this article series dem-
onstrated a proof-of-concept 3D CNN for the classifica-
tion of liver lesions on multi-phasic MRI [5]. Although
CNNs have demonstrated high performance in diagnos-
tic classification tasks, their Bblack box^ design limits
their clinical adoption [6–8]. Despite recent advances in
interpretable machine learning [9], deep learning models
still do not provide information about the factors used
in decision-making in a manner that can be understood
by radiologists and other physicians, which prevents
them from incorporating their results into an informed
decision-making process. The inability to explain their
reasoning also leads to a lack of safeguards and ac-
countability when they fail. DL systems that demon-
strate high accuracy in a more transparent manner are
more likely to gain clinical acceptance.

This is especially applicable when incorporating DL into
standardized reporting systems such as the Liver Imaging
Reporting and Data System (LI-RADS). While LI-RADS
has changed the diagnostic workflow of malignant lesions
and contributed to higher quality diagnosis and reporting
[10–12], most studies have demonstrated moderate inter-
observer agreement for LI-RADS categories [13–19]. Recent
studies also highlighted issues regarding the application of LI-
RADS ancillary features, which are primarily based on a com-
bination of biological plausibility, single-center retrospective
studies, and expert opinion with somewhat low level of evi-
dence [20, 21]. For example, the application of such features
resulted in an increased number of misclassifications [10, 14,
22] and ancillary features were not seen as a useful tool for

assigning definite LR classes [13]. Moreover, the application
of a number of ancillary features may be inefficient, as they
affected the final diagnosis in at most 10% of cases [13, 19].
The American College of Radiology has called for novel sys-
tems to increase the efficiency and accuracy of LI-RADS and
to make it more feasible for daily radiology practice [21].
Interpretable DL systems could help to address this gap by
automating the validation, detection, and standardized
reporting of diagnostic imaging features, providing a way
for radiologists to efficiently interact with such tools in a
shared decision-making paradigm.

This study investigates an integrative interpretable DL ap-
proach for DL systems used in clinical radiology, using tech-
niques for identifying, localizing, and scoring imaging features.
In addition to developing a liver lesion classifier for multi-
phasic MRI (Part I), the aim of Part II was to develop a proof-
of-concept interpretable system that justifies aspects of its deci-
sions through internal analysis of relevant radiologic features.

Materials and methods

Deep learning system and model-agnostic
interpretability

This single-center retrospective study is based on an insti-
tutional review board–approved protocol, and the require-
ment for written consent was waived. The specific methods
for patient selection, lesion reference standard, MRI tech-
nique, image processing techniques, and DL model are de-
scribed in Part I of this study [5]. Briefly, a CNN was uti-
lized with three convolutional layers and two fully connect-
ed layers, which was capable of differentiating benign cysts,
cavernous hemangiomas, focal nodular hyperplasias
(FNHs), HCCs, intrahepatic cholangiocarcinomas (ICCs),
and colorectal carcinoma (CRC) metastases after being
trained on 434 hepatic lesions from these classes. This study
was integrated into the Part I DL workflow so that the sys-
tem could be trained to classify lesion types before incorpo-
rating techniques to identify, localize, and score their radio-
logical features (Fig. 1). Specifically, the current study uti-
lized the DL model from Part I which has been trained on a
large dataset including 494 lesions. Additionally, custom
algorithms were applied to analyze specific hidden layers
of this pre-trained neural network in a model-agonistic ap-
proach. This method is also known as post hoc analysis (not
to be confused with the post hoc analysis in statistics) and is
generalizable to various pre-trained machine learning neu-
ral networks [23, 24]. Under the taxonomy of established
interpretability methods, these algorithms fall under the
general category of feature summary statistic. In terms of
scope, the methods used describe local interpretability
where the focus is on individual predictions, as opposed to
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global scope where the entire model behaviour is
analysed. These selected techniques are especially useful

for the purposes of communicating feature information to
radiologists. These algorithms are described in detail below.

Table 1 Radiological features
labeled for each class. A total of
224 example images were used
across the 14 radiological
features, and some images were
labeled with multiple features

Radiological features Associated lesion
types

Number of
examples

Frequency in the
test set

Arterial phase hyperenhancement FNH, HCC 20 19/60

Central scar FNH 10 1/60

Enhancing rim (CRC metastasis),
capsule/pseudocapsule (HCC)

CRC metastasis,
HCC

20 15/60

Heterogeneous lesion ICC, HCC
(OPTN5B/X)

20 17/60

Hyperenhancing mass on delayed phase Cavernous
hemangioma

17 8/60

Hypoenhancing core (CRC metastasis),
hypoenhancing mass (cyst)

Cyst, CRC
metastasis

20 20/60

Infiltrative appearance ICC 15 4/60

Iso-intensity on venous and delayed phase FNH 20 9/60

Nodularity ICC 15 6/60

Nodular/discontinuous peripheral
hyperenhancement

Cavernous
hemangioma

20 10/60

Progressive centripetal filling Cavernous
hemangioma

20 9/60

Progressive hyperenhancement CRC metastasis,
ICC

20 19/60

Thin-walled mass Cyst 20 8/60

Washout HCC 20 9/60

Fig. 1 Flowchart of the approach
for lesion classification and
radiological feature identification,
mapping, and scoring. The entire
process was repeated over 20
iterations
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Radiological feature selection

Fourteen radiological features were selected comprising lesion
imaging characteristics that are observable on multi-phasic MRI
andare commonlyutilized in day-to-day radiological practice for
differentiating between various lesion types [25, 26] (Table 1).
This includes LI-RADS features for HCC classification, includ-
ing arterial phase hyperenhancement, washout, and pseudocap-
sule.Up to 20 hepatic lesions in the training set that best exempli-
fied each feature were selected (Fig. 2). From this sample, ten
were randomly selected in each repetition of this study. Imaging
features with similar appearances were grouped. A test set of 60
lesions was labeled with the most prominent imaging features in
each image (1–4 features per lesion). This test setwas the sameas
that used to conduct the reader study in Part I.

Feature identification with probabilistic inference

For each radiological feature, a subset of ten sample lesions
with that feature was passed through the CNN, and the inter-
mediate outputs of the 100 neurons in the fully connected
layer were inspected. By analyzing these neuronal outputs
among the ten samples, each radiological feature was associ-
ated with specific patterns in these neurons. The test image
was passed through the CNN to obtain its intermediate out-
puts, which were compared to the outputs associated with
each feature. When the intermediate outputs of a test image
are similar to the outputs observed for lesions with a particular
feature, then the feature is likely to be present in the test image
(see Fig. 3). The intermediate outputs were modeled as a 100-
dimensional random variable and the training dataset was
used to obtain its empirical distribution (refer to Bmarginal
distributions^ and Bconditional distributions^ in [27]. Using
kernel density estimation, the features present in each test

Fig. 2 Examples of labeled sample lesions for the 14 radiological features

Fig. 3 CNN model architecture used to infer the lesion entity and
radiological features based on the input image, shown for an example
of intrahepatic cholangiocarcinoma. Patterns in the convolutional layers
are mapped back to the input image to establish feature maps for each
identified feature. As well, relevance scores are assigned to the features
based on the correspondence between patterns in the convolutional
layers, the lesion classification, and the identified features
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image were probabilistically inferred. The neuronal outputs of
augmented versions of all images were used to provide more
robust estimates of the probability distributions. As described
in Part I, image augmentation creates copies of images with
stochastic distortions.

The CNN system’s performance was assessed by its ability
to correctly identify the radiological features in the test set of
60 labeled lesions. Performance was evaluated in 20 iterations
with separately trained models using different choices of the
ten sample lesions. Positive predictive value (PPV) and sen-
sitivity (Sn) were measured for the entire population (aver-
aged over the total number of features across all lesions).
This was performed for each feature individually and for each
lesion class.

Feature mapping with weighted activations

After identifying the radiological features observed in an input
lesion image, 3D feature maps were derived from the CNN’s
layer activations to show where features are observed within
each image. For this analysis, the post-activation neuronal
outputs of the final convolutional layer were used, which has
128 channels. The original images have 24 × 24 × 12 resolu-
tion and pass through padded convolutions and a 2 × 2 × 2
max pooling layer before reaching this layer at 12 × 12 × 6
spatial dimensions. The feature map was constructed for a test
image by obtaining this layer’s output and applying a weight-
ed average over the 128 channels using different weights for
each of the 1–4 radiological features identified within the im-
age. The resulting 12 × 12 × 6 feature maps were upsampled
using trilinear interpolation to correspond to the 24 × 24 × 12
resolution of the original image. The mapping to the three
MRI phases cannot be readily traced. The channel weights
used for each feature were determined by correlating the chan-
nel with at most one of the features based on the channel
outputs observed in the sample lesions labeled with the
feature.

Feature scoring with influence functions

Among the radiological features identified in an image,
some features may be more important for classifying the
lesion than others. The contribution of each identified
feature to the CNN’s decision was analyzed by
impairing the CNN’s ability to learn the specific feature
and examining how this impacts the quality of the
CNN’s classification. If the feature is not important for
classifying the lesion, then the CNN should still make
the correct decision, even if it can no longer identify
the feature. The CNN’s ability to learn a particular fea-
ture can be hampered by removing examples of that
feature from its training set. Although repeatedly remov-
ing examples and retraining the model is prohibitively

time-consuming, Koh et al. developed an approximation
of this process that calculates an Binfluence function^
[28]. The influence function of a feature with respect
to a particular image estimates how much the probabil-
ity of the correct lesion classification deteriorates for
that image as examples of the feature are removed from
the CNN’s training set. Thus, the radiological feature
that is most influential for classifying a particular lesion
is the feature with the largest influence function for that
image. Scores were obtained for each feature by mea-
suring their respective influence functions, then dividing
each by the sum of the influences. No ground truth was
used for the optimal weighting of radiological features
for diagnosing a given image, since a CNN does not
Breason^ about radiological features in the same way
as a radiologist. The definition and further interpretation
of the influence function are provided in Supplement 1.

Results

Characteristics of the 296 patients included in this study are
described in Part I of this article series. CNN model classifi-
cation performance is also described in detail in Part I.

Feature identification with probabilistic inference

A total of 224 annotated images were used across the
14 radiological features, and some images were labeled
with multiple features. After being presented with a ran-
domly selected subset of 140 out of 224 sample lesions,
the model obtained a PPV of 76.5 ± 2.2% and Sn of
82.9 ± 2.6% in identifying the 1–4 correct radiological
features for the 60 manually labeled test lesions over
20 iterations (see Table 2).

Among individual features, the model was most suc-
cessful at identifying relatively simple enhancement pat-
terns. With a mean number of 2.6 labeled features per
lesion, the model achieved a precision of 76.5 ± 2.2%
with a recall of 82.9 ± 2.6% (see Table 3). It achieved
the best performance at identifying arterial phase
hyperenhancement (PPV = 91.2%, Sn = 90.3%) ,
hyperenhancing mass on delayed phase (PPV = 93.0%,
Sn = 100%), and thin-walled mass (PPV = 86.5%, Sn =
100%). In contrast, the model performed relatively poor-
ly on more complex features, struggling to identify
nodularity (PPV = 62.9%, Sn = 60.8%) and infiltrative
appearance (PPV = 33.0%, Sn = 45.0%). The CNN also
overestimated the frequency of central scars (PPV =
32.0%, Sn = 80.0%), which only appeared once among
the 60 test lesions.

The model misclassified lesions with higher frequency
when the radiological features were also misclassified. For
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the 12% of lesions that the model misclassified over 20 itera-
tions, its PPV and Sn were reduced to 56.6% and 63.8%,
respectively. Furthermore, the feature that the model predicted
with the highest likelihood was only correct in 60.4% of
cases—by comparison, the feature that the model predicts
with the greatest likelihood in correctly classified lesions
was correct 85.6% of the time.

This effect was also observed when the feature identifica-
tion metrics are grouped by lesion classes, as the model gen-
erally identified features most accurately for classes in which
the lesion entity itself was classified with high accuracy. The
model obtained the highest PPV for benign cyst features at
100% and lowest for CRC metastasis features at 61.2%. The
model attained the highest sensitivity for hemangioma fea-
tures at 96.1% and lowest for HCC features at 64.2%. The
lesion classifier performed better on both cysts (Sn = 99.5%,
Sp = 99.9%) and hemangiomas (Sn = 93.5%, Sp = 99.9%) rel-
ative to HCCs (Sn = 82.0%, Sp = 96.5%) and CRCmetastases
(Sn = 94.0%, Sp = 95.9%).

Feature mapping with weighted activations

The feature maps (Fig. 4) were consistent with radiolog-
ical features related to borders: enhancing rim and cap-
sule/pseudocapsule, and a thin wall yield feature maps
that trace these structures. Additionally, the model’s fea-
ture maps for hypoenhancing and hyperenhancing masses
were well localized and consistent with their location in
the original image: hypoenhancing core/mass and
nodularity had fairly well-defined bounds, as did arterial
phase hyperenhancement and hyperenhancing mass in
delayed phase. Iso-intensity in venous/delayed phase
was also well defined, capable of excluding the
hyperenhancing vessels in its map. In contrast, features
describing enhancement patterns over time were more
diffuse and poorly localized. There was slight misregis-
tration between phases included in the hemangioma ex-
ample, contributing to artifacts seen in the feature map
for nodular peripheral hyperenhancement.

Table 2 Precision and recall of
the model for determining
individual radiological features
present in lesion images

Radiological feature Positive predictive value
(mean ± SD)

Sensitivity (mean ±
SD)

Arterial phase hyperenhancement 91.2 ± 5.6% 90.3 ± 3.8%

Central scar 32.0 ± 21.7% 80.0 ± 40.0%

Enhancing rim (CRC metastasis),
capsule/pseudocapsule (HCC)

74.8 ± 7.5% 75.3 ± 8.7%

Heterogeneous lesion 64.9 ± 4.8% 75.6 ± 5.4%

Hyperenhancing mass on delayed phase 93.0 ± 6.2% 100.0 ± 0.0%

Hypoenhancing core (CRC metastasis),
hypoenhancing mass (cyst)

82.4 ± 4.5% 71.3 ± 11.8%

Infiltrative appearance 33.0 ± 11.3% 45.0 ± 10.0%

Iso-intensity on venous and delayed phase 69.5 ± 8.7% 92.2 ± 9.4%

Nodularity 62.9 ± 14.0% 60.8 ± 22.5%

Nodular/discontinuous peripheral hyperenhancement 80.3 ± 10.0% 94.0 ± 7.3%

Progressive centripetal filling 73.7 ± 8.5% 95.0 ± 5.5%

Progressive hyperenhancement 87.1 ± 5.4% 92.6 ± 3.9%

Thin-walled mass 86.5 ± 8.5% 100.0 ± 0.0%

Washout 67.4 ± 10.0% 66.7 ± 9.3%

Overall 76.5 ± 2.2% 82.9 ± 2.6%

Table 3 Precision and recall of
the model for determining the
radiological features present in
test images grouped by lesion
class

Lesion class Mean number of labeled
features per lesion

Precision (mean ± SD) Recall (mean ± SD)

Benign cyst 1.8 100.0 ± 0.0% 94.7 ± 7.1%

Cavernous hemangioma 2.7 81.9 ± 3.4% 96.1 ± 3.2%

Focal nodular hyperplasia 2.0 77.1 ± 7.7% 95.0 ± 5.7%

Hepatocellular carcinoma 3.2 83.5 ± 5.0% 64.2 ± 6.9%

Intrahepatic cholangiocarcinoma 3.0 69.3 ± 4.0% 83.3 ± 5.2%

Colorectal carcinoma metastasis 2.7 61.2 ± 4.9% 74.4 ± 7.0%

Overall 2.6 76.5 ± 2.2% 82.9 ± 2.6%
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Feature scoring with influence functions

The most relevant radiological feature for cavernous
hemangiomas was progressive centripetal filling, with a
s c o r e o f 4 8 . 6% c omp a r e d w i t h 3 4 . 0% f o r
hyperenhancing mass on delayed phase and 21.6% for
nodular/discontinuous peripheral hyperenhancement.
Thin-walled mass was a more relevant feature for clas-
sifying benign cysts than hypoenhancing mass (67.1%
vs. 46.6%; Table 4). The most relevant feature for

correctly classifying FNHs was iso-intensity on venous/
delayed phase (79.4%), followed by arterial phase
hyperenhancement (65.8%) and central scar (37.4%).
The relevance scores for HCC imaging features were
49.5% for capsule/pseudo-capsule, 48.5% for heteroge-
neous lesion, 40.3% for washout, and 38.4% for arterial
phase hyperenhancement. The relevance scores for ICC
imaging fea tures were 58 .2% for progress ive
hyperenhancement, 47.3% for heterogeneous lesion,
43.8% for infiltrative appearance, and 37.2% for

Fig. 4 2D slices of the feature maps and relevance scores for examples of
lesions from each class with correctly identified features. The color and
ordering of the feature maps correspond to the ranking of the feature
relevance scores, with the most relevant feature’s map in red. The

feature maps are created based on the entire MRI sequence, and do not
correspond directly to a single phase. These results are taken from a single
iteration

Table 4 Features ranked by mean relevance score for the features for test lesions in each class. Percentages do not sum to 100% because some lesions
only have a subset of the features listed above

Lesion class Feature 1 Feature 2 Feature 3 Feature 4

Benign cyst Thin-walled mass (67.1%) Hypoenhancing mass (46.6%) N/A N/A

Cavernous
hemangioma

Progressive centripetal
filling (48.6%)

Hyperenhancing mass on
delayed phase (34.0%)

Nodular/discontinuous
peripheral
hyperenhancement
(21.6%)

N/A

Focal nodular
hyperplasia

Isointense on venous/delayed
phase (79.4%)

Arterial phase
hyperenhancement (65.8%)

Central scar (37.4%) N/A

Hepatocellular
carcinoma

Capsule/pseudo-capsule (49.5%) Heterogeneous lesion (48.5%) Washout (40.3%) Arterial phase
hyperenhancement (38.4%)

Intrahepatic
cholangiocarcinoma

Progressive hyperenhancement
(58.2%)

Heterogeneous lesion (47.3%) Infiltrative appearance
(43.8%)

Nodularity (37.2%)

Colorectal carcinoma
metastasis

Progressive hyperenhancement
(67.2%)

Hypoenhancing core (52%) Enhancing rim (46.9%) N/A
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nodularity. The most relevant imaging feature for cor-
rectly classifying CRC metastases was progressive
hyperenhancement (67.2%), followed by hypoenhancing
core (52.0%) and enhancing rim (46.9%).

Discussion

This study demonstrates the development of a proof-of-
concept prototype for the automatic identification, mapping,
and scoring of radiological features within a DL system, en-
abling radiologists to interpret elements of decision-making
behind classification decisions. While DL algorithms have
the opportunity to markedly enhance the clinical workflow
of diagnosis, prognosis, and treatment, transparency is a vital
component. Indeed, it is unlikely that clinicians would accept
automated diagnostic decision support without some measure
of Bevidence^ to justify predictions. The method of identify-
ing and scoring radiological features allows the algorithm to
communicate factors used inmaking predictions. Radiologists
can then quickly validate these features by using feature maps
or similar interpretability techniques to check whether the sys-
tem has accurately identified the lesion’s features in the correct
locations.

The CNN was able to identify most radiological features
fairly consistently despite being provided with a small sample
of lesions per class, in addition to being trained to perform an
entirely different task (classifying the lesion entity in Part I). For
many simple imaging features such as hyperenhancing or
hypoenhancing masses, the model was able to accurately and
reliably determine its presence, location, and contribution to the
lesion classification. However, it had greater difficulty identify-
ing or localizing features that consist of patterns over multiple
phases than patterns that are visible from a single phase or
constant across all phases. It struggled in particular on more
complex features that may appear quite variable across different
lesions such as infiltrative appearance, suggesting that these
features are not well understood by the CNN or that more
examples of these features need to be provided. By highlighting
which radiological features the CNN fails to recognize, this
system may provide engineers with a path to identify possible
failure modes and fine-tune the model, for example, by training
it on more samples with these features.

A general relationship was observed between the model’s
misclassification of a lesion entity and its misidentification of
radiological features, which could provide researchers and
clinicians with the transparency to identify when and how a
CNN model fails. If the model predicts non-existent imaging
features, clinicians will be aware that the model has likely
made a mistake. Moreover, this gives developers an example
of a potential failure mode in the model. An interpretable DL
system can be utilized as a tool for validation of imaging
guidelines, particularly for entities which are uncommon or

have evolving imaging criteria, such as bi-phenotypic tumors
and ICCs [12, 29, 30]. As shown in the results on feature
scoring, the model tends to put greater weight on imaging
features that have greater uniqueness and differential diagnos-
tic power in the respective lesion class. An interpretable CNN
could be initially presented with a large set of candidate im-
aging features. Then by selecting the imaging features with the
highest relevance score output by the model, one could deter-
mine which features are most relevant to members of a given
lesion class. This approach also addresses the need for more
quantitative evidence-based data in radiology reports.

An interpretable DL system could help to address the large
number of ancillary imaging features that are part of the LI-
RADS guidelines and similar systems by providing feedback
on the importance of various radiological features in performing
differential diagnosis. With further refinements, the presented
concepts could potentially be used to validate newly proposed
ancillary features in terms of frequency of occurrence, by apply-
ing it to a large cohort and analyzing the CNN’s predictions.
Features thatarepredictedwith lowfrequencyor relevancecould
be considered for exclusion from LI-RADS guidelines. This
could be a first step towards providing a more efficient and clin-
ically practical protocol [13, 19]. An interpretable DL model
could also enable the automated implementation of such com-
plex reporting systems as LI-RADS, by determining and
reporting standardized descriptions of the radiological features
present. By enabling such systems to become widely adopted,
there is potential for the reporting burden on radiologists to be
alleviated, dataquality to improve, and thequality andconsisten-
cy of patient diagnosis to increase.

Since the present study is designed as a proof-of-concept
development, there are multiple limitations that future studies
will address. As a single-institution study with limited data avail-
ability, a relatively small number of sample lesions was included
for each lesion type. This will be remedied by eventually utiliz-
ing larger multi-institutional datasets. In addition, while feature
extraction could be easily validated with ground truth confirma-
tion by radiological readers, there is intrinsically no existing
ground truth criteria for validating feature maps and relevance
scores. As a result, more formal validation of these elements will
require an aggregate of forthcoming studies that demonstrate
reproducibility under different DL models and datasets. Such a
system would also need to demonstrate similar functionality
using different choices of radiological features and lesion types.
Future work will demonstrate this technique on LI-RADS ancil-
lary features, which will require incorporating a more complex
CNNmodel capable of analyzing other types ofMRI sequences.

In summary, this study demonstrates a proof-of-concept
interpretable deep learning system for clinical radiology.
This provides a technique for interrogating relevant portions
of an existing CNN, offering rationale for classifications
through internal analysis of relevant imaging features. With
further refinement and validation, such methods have the
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potential to eventually provide a cooperative approach for
radiologists to interact with deep learning systems, facilitating
clinical translation into radiology workflows. Transparency
and comprehensibility are key barriers towards the practical
integration of deep learning into clinical practice [31]. An
interpretable approach can serve as a model for addressing
these issues as the medical community works to translate use-
ful aspects of deep learning into clinical practice.
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