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Abstract
Objectives To establish and validate a radiomics nomogram for prediction of induction chemotherapy (IC) response and survival
in nasopharyngeal carcinoma (NPC) patients.
Methods One hundred twenty-three NPC patients (100 in training and 23 in validation cohort) with multi-MR images were enrolled.
A radiomics nomogramwas established by integrating the clinical data and radiomics signature generated by support vector machine.
Results The radiomics signature consisting of 19 selected features from the joint T1-weighted (T1-WI), T2-weighted (T2-WI),
and contrast-enhanced T1-weighted MRI images (T1-C) showed good prognostic performance in terms of evaluating IC re-
sponse in two cohorts. The radiomics nomogram established by integrating the radiomics signature with clinical data
outperformed clinical nomogram alone (C-index in validation cohort, 0.863 vs 0.549; p < 0.01). Decision curve analysis dem-
onstrated the clinical utility of the radiomics nomogram. Survival analysis showed that IC responders had significant better PFS
(progression-free survival) than non-responders (3-year PFS 84.81% vs 39.75%, p < 0.001). Low-risk groups defined by
radiomics signature had significant better PFS than high-risk groups (3-year PFS 76.24% vs 48.04%, p < 0.05).
Conclusions Multiparametric MRI-based radiomics could be helpful for personalized risk stratification and treatment in NPC
patients receiving IC.
Key Points
• MRI Radiomics can predict IC response and survival in non-endemic NPC.
• Radiomics signature in combination with clinical data showed excellent predictive performance.
• Radiomics signature could separate patients into two groups with different prognosis.
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SVM Support vector machine
T1-C T1 contrast

Introduction

Nasopharyngeal carcinoma (NPC) is the most common
head and neck cancer in Southeast Asia. Previous studies
indicated that NPC had different characteristics in en-
demic vs non-endemic areas [1, 2]. Concurrent chemora-
diation (CCRT) is a standard of care for locally advanced
NPC [3]. With the development of intensity-modulated
radiotherapy (IMRT), despite a favorable 5-year local
rate (> 90%), distant metastases are the predominant risk
[2, 4, 5], suggesting a need for more systemic therapies.
Induction chemotherapy (IC) is better tolerated than ad-
juvant chemotherapy, and the achieved dose intensity is
greater. A meta-analysis and one phase III trial both in-
dicated that IC could improve survival compared with
CCRT alone in locoregionally advanced NPC [6, 7].
We suggested that IC-CCRT was safe and effective in
the treatment of NPC from non-endemic regions [8].

Tumor response to IC is an independent prognostic
factor for survival after IMRT in NPC [9]. However,
not all patients respond well to IC. Pretreatment identifi-
cation of non-responders would allow more personalized
treatment selection, avoiding toxicity and unnecessary
costs for non-responders. However, no ideal clinical fea-
tures or biological biomarker is available today.

Modalities like 18F-fluorodeoxyglucose positron emis-
sion tomography and MRI-DWI have been proposed as
potential imaging biomarkers for the prediction of re-
sponse to IC in NPC [10, 11]. Radiomic analysis is
promising in cancer diagnosis, prognosis, and prediction
of response to treatment [12, 13]. Recent studies showed
that texture parameter of pretreatment MRI or MRI-based
radiomics nomogram could predict PFS in endemic NPC
[14, 15]. Pretreatment MRI signature could also predict
early IC response in endemic NPC patients, although
there was no independent validation [16]. However, no
study has reported the role of MRI-based radiomics for
the prediction of IC response in non-endemic region. Its
role in predicting both IC response and survival is still
unclear. The current study aims to investigate the role of
a MRI-based radiomics nomogram in predicting the re-
sponse to IC in locally advanced NPC patients of
Northwest China. Also, we sought to correlate it with
clinical parameters and survival.

Materials and methods

Patients

A total of 200 patients with histologically confirmed NPC
treated with IC and CCRT between January 2012 and
December 2016 in Xijing Hospital were enrolled in the study.
T1-WI, T2-WI, and T1-C (T1 contrast) images were collected
before treatment (3-T GE or Siemens MRI scanners). All pa-
tients were staged according to the 7th Edition of American
Joint Committee on Cancer (AJCC) TNM classification. A
total of 123 patients were enrolled and were allocated to the
training and validation cohorts randomly. One hundred and 23
patients were allocated to the training cohort (28 responders vs
72 non-responders) and validation cohort (6 responders vs 17
non-responders), respectively. The details of chemotherapy
are shown in supplemental materials.

Endpoints and follow-up

The clinical treatment response after IC was defined as
stable disease (SD), progressive disease (PD), partial re-
sponse (PR), or complete response (CR) based on the
Response Evaluation Criteria in Solid Tumors 1.1
(RECIST) criteria [17]. Patients were categorized into IC
responders (CR/PR) and non-responders (SD/PD). All pa-
tients were followed up weekly during radiotherapy treat-
ment and every 2–3 months during the first 2 years, then
every 3–4 months during the year after radiotherapy treat-
ment 3–5, and annually thereafter.

Tumor segmentation, radiomics feature extraction,
and development of multiparametric MRI-based
radiomics model

The details of tumor segmentation (Fig. 1a) are shown in
supplemental methods. Imaging features calculated for each
patient from a unimodal MR image using MATLAB proce-
dure algorithm (Fig. 1b), which was described in the supple-
mental material. Features from T1-C, T1-WI, and T2-WI or
the combination were used for subsequent analysis, respec-
tively. For the feature selection step, a filter method based on
the selection frequency was employed to obtain a ranking of
features with the most discriminative power. The frequency of
each feature selected by the two-step feature selection
methods across 100 training partitions of the leave-one-out
cross-validation (LOOCV) was calculated to assess the vari-
able importance (> 50% selection probability across parti-
tions). The two-step feature selection method consisted the
two-sample t test between responders and non-responder in
the training cohort and the logistic regression model with
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LASSO (the least absolute shrinkage and selection operator)
(Fig. 1c) [18–20]. A tuning parameter λ which controls the
strength of regularization was chosen using tenfold cross-
validation repeated 1000 times via minimum criteria. All im-
portant features were ranked by the selection frequency.

The ranked 29 features (> 50% selection probability)
were used to generate different subsets and train the
SVM (support vector machine) model. For example, the
first subset consisted of the first two features, the second
one consisted of the first three features, and so on. Twenty-
eight feature subsets were generated in total. The support
vector machine (SVM) with linear kernel was developed to
evaluate the role of each feature subset in predicting the
response to IC (Fig. 1d). Tenfold cross-validation was ap-
plied to select the regularization parameter C from 0.01 to
1 with a step size 0.01 based on AUC maximum criteria. In
this study, fivefold cross-validation was used to estimate
group classification and prediction accuracies and repeated
1000 times in the training cohort. Furthermore, the feature
subset with the best performance was used to train and
validate the final SVM model in the training and validation
cohort respectively. The optimal cutoff value of the
radscore were based on the score test from the Cox regres-
sion model and calculated from the “cutp” function of the
“survMisc” R package [21]. Random forest (RF) was used
as a second machine learning algorithm to validate the
previous results (supplemental methods).

Accuracy (ACC), positive predictive value (PPV), negative
predictive value (NPV), and the area under the receiver oper-
ating characteristic curve (AUC) are used for evaluating the
model performance. ROC curves were drawn to display and
compare the performance of different models [22].
Identification of the role of radiomics signature in the predic-
tion of survival is shown in supplemental materials.

Development of the clinical and radiomics nomogram

Multivariable logistic regression model–based nomograms
are shown in Fig. 1e. The clinical parameters used in the
clinical model include the following: age; gender; T, N,
and clinical stage; EB-DNA; histology; IC cycles and
regimens; the diameter and volume of lymph nodes and
nasopharyngeal before IC; and the level of leukocytes,
platelets, lymphocytes, and albumin before IC. Radscore
from the joint multimodal images was enrolled in the es-
tablishment of radiomics nomogram. The likelihood ratio
test with Akaike’s information criterion was applied as the
stopping rule for backward stepwise logistic regression
analysis. Harrell’s C-index, AUC, ACC, PPV, and NPV
were used to quantify the discriminative performance.
Decision curve analysis was conducted to estimate the
clinical usefulness of the models. The details of statistical
analysis are described in the supplemental material.
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Fig. 1 A general schema for predictive nomogram establishment. a
Three-dimensional manual segmentation. b Four types of features
were finally calculated for each patient from single segmentation. c
The two-sample t test and the logistic regression model with LASSO

based on LOOCV were used to select useful features. d Radiomics
signature was established with support vector machine. e
Multivariable backward stepwise logistic regression model was used to
develop a radiomics nomogram

Eur Radiol (2020) 30:537–546 539



Results

Clinical characteristics of the patients

The characteristics of all NPC patients in both the training and
validation cohorts are shown in Table 1 and Supplemental
Table 1. There was no significant difference between the two
cohorts in terms of IC response rate (28% and 26.1% in the
training and validation cohorts, respectively, p = 0.853). Also,
no significant difference was observed between IC responders
and non-responders, except that there were more females and

more patients with ≥ 5000 copies/ml EBV DNA level in the
responders group of the training cohort.

Establishment of multiparametric MRI-based
radiomics signature

A total of 4503 imaging features were finally calculated for
each patient from the extracted tumor region of a unimodal
MR image. Twenty-nine features (> 50% selection probabili-
ty) selected from the combination of the three modalities were
ranked by the selection frequency and the top 19 features

Table 1 Characteristics of the patients in the training and validation cohorts (χ2 test)

Parameters Training Validation

Responders (n = 28) Non-responders (n = 72) p Responders (n = 6) Non-responders (n = 17) p

Age (years)b 0.581 0.131

Mean ± SD 49.43 ± 11.55 48.13 ± 10.18 52.17 ± 5.12 44.76 ± 10.99

Sex 0.024 0.423

Male 4 (14.3) 27 (37.5) 2 (33.3) 3 (17.6)

Female 24 (85.7) 45 (62.5) 4 (66.7) 14 (82.4)

AJCC 0.746 0.131

T1 2 (7.1) 4 (5.6) 0 (0) 2 (11.8)

T2 9 (32.1) 22 (30.6) 0 (0) 3 (17.6)

T3 8 (28.6) 15 (20.8) 3 (50.0) 2 (11.8)

T4 9 (32.1) 31 (43.1) 3 (50.0) 10 (58.8)

AJCC 0.083 0.613

N0 0 (0) 1 (1.4) 0 (0) 0 (0)

N1 5 (17.9) 4 (5.6) 2 (33.3) 3 (17.6)

N2 10 (35.7) 43 (59.7) 3 (50.0) 10 (58.8)

N3 5 (17.9) 14 (19.4) 1 (16.7) 2 (11.8)

N4 8 (28.6) 10 (13.9) 0 (0) 2 (11.8)

Clinical stage 0.475 0.669

III 8 (28.6) 25 (34.7) 3 (50.0) 5 (29.4)

IVa 7 (25.0) 23 (31.9) 2 (33.3) 8 (47.1)

IVb 13 (46.4) 24 (33.3) 1 (16.7) 4 (23.5)

EB-DNA 0.040 0.462

< 5000 copies/ml 25 (89.2) 50 (69.4) 5 (83.3) 16 (94.2)

≥ 5000 copies/ml 3 (10.7) 22 (30.6) 1 (16.7) 1 (5.9)

Histology 0.937 1.000

WHO II 8 (28.6) 20 (27.8) 1 (16.7) 5 (29.4)

WHO III 20 (71.4) 52 (72.2) 5 (83.3) 12 (70.6)

Induction chemotherapy regimens 0.340 0.462

TP 21 (75.0) 60 (83.3) 5 (83.3) 16 (94.1)

GP 7 (25.0) 12 (16.7) 1 (16.7) 1 (5.9)

White blood cellsb 0.148 0.736

Mean ± SD 6.38 ± 1.85 7.02 ± 2.00 6.34 ± 1.96 6.63 ± 1.74

Radscorecc < 0.001 0.006

Median (QL,QU) 1.00 (0.67,1.73) −2.50 (−4.17, −1.02) 0.57 (−0.97,4.40) -2.33 (−3.79,−0.76)

b Two independent sample t test
cc Rank sum test
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consisting of 5 from enhanced T1-C, 4 from T1-WI, and 10
from T2-WI images showed the best performance in training
the models (Table 2, Fig. 2). The classification accuracy and
the AUC value using the combination of three modalities by
repeated fivefold cross-validation were 88.58% and 0.8866,
respectively (Supplemental Table 3). Multi-modality images
showed better prediction performance than unimodal MR im-
age alone (Supplemental Table 3) and RF model generated
similar results to SVM model (Supplemental Table 7). The

distributions of radiomics signatures for each patient in both
the training and validation cohorts are shown in Fig. 3 a and b.
There was a significant difference in radiomics scores between
responders and non-responders in both the training cohort
(p < 0.001) and the validation cohort (p = 0.002; Table 1).
The AUC, ACC, PPV, and NPV of the SVM model in the
training cohort were 0.9494, 95.00%, 96.00%, and 94.67%,
respectively, and in the validation cohort were 0.8725,
86.96%, 71.43%, and 93.75%, respectively (Table 3). ROC
curve is shown in Fig. 3c.

Establishment of clinical and radiomics nomogram

Sex and the level of leukocytes before treatment were identi-
fied as independent predictors with significance for IC re-
sponse (p < 0.05). The clinical nomogram based on these
two factors yielded a C-index of 0.708 (95% CI, 0.588–
0.827) in the training cohort and 0.549 (95% CI, 0.197–
0.705) in the validation cohort. The AUC, ACC, PPV, and
NPV of clinical nomogram in the training cohort were
0.7076, 76%, 62.50%, and 78.57%, respectively, and in the
validation cohort were 0.5490, 65.22%, 0%, and 71.43%, re-
spectively (Table 3). ROC curve is shown in Fig. 4a. We next
developed a radiomics nomogram that integrated the
radiomics signature (p < 0.0001) from the joint T1-C, T1-
WI, and T2-WI with all the independent clinical factors,
which provided a higher C-index of 0.952 (95% CI, 0.895–
1) in the training cohort and 0.863 (95%CI: 0.706–1) in the
validation cohort (Fig. 4c). The AUC, ACC, PPV, and NPVof
the radiomics nomogram in the training cohort were 0.9524,
95.00%, 92.59%, and 95.89%, respectively, and in the valida-
tion cohort were 0.8627, 82.61%, 100%, and 80.95%, respec-
tively (Table 3). The ROC curves are shown in Fig. 4b. The
calibration curves of the radiomics nomogram showed good
agreement between the observed actual probabilities of the
response and nomogram predicted probabilities in the training

Table 2 Radiomics feature selection results

Index Name Sequences Category Frequency

1 “W8.Co_Var_2” T1-C Textural 92

2 “W5.Cluster_Shade_
2”

T1-WI Textural 92

3 “W6.Co_Corr_mean” T1-WI Textural 92

4 “W5.Co_Corr_4” T2-WI Textural 92

5 “W8.Co_Corr_3” T2-WI Textural 92

6 “W3.Co_Var_9” T2-WI Textural 91

7 “W7.SRHGLE_3” T1-WI Textural 87

8 “W7.Co_Corr_9” T2-WI Textural 87

9 “W7.Co_Corr_4” T2-WI Textural 81

10 “W7.IMC1_6” T2-WI Textural 80

11 “W1.SRE_3” T1-C Textural 74

12 “W4.Cluster_Shade_
2”

T1-C Textural 74

13 “W6.IMC2_5” T1-C Textural 72

14 “W7.HGLRE_3” T1-WI Textural 71

15 “W6.SRHGLE_1” T2-WI Textural 66

16 “W4.Co_Corr_3” T1-C Textural 62

17 “W6.AutoCorr_3” T2-WI Textural 62

18 “W4.Min” T2-WI First-order 61

19 “W4.SRHGLE_11” T2-WI Textural 61

20 “W5.Co_Corr_3” T1-C Textural 55

21 “W5.LRLGLE_3” T1-C Textural 55

22 “W5.IDNM_3” T1-C Textural 54

23 “W4.SRLGLE_6” T1-WI Textural 52

24 “W8.IDNM_12” T2-WI Textural 52

25 “W1.LRE_3” T1-C Textural 52

26 “W7.Co_Corr_10” T2-WI Textural 51

27 “W7.Co_Corr_5” T2-WI Textural 51

28 “W7.Inverse_var_3” T2-WI Textural 50

29 “W8.Co_Corr_12” T2-WI Textural 50

Co_Var, variance;Cluster_Shade, cluster shade; SRHGLE, short run high
gray level emphasis; IMC, Informational measure of correlation; SRE,
short run emphasis; HGLRE, high gray level run emphasis; AutoCorr,
autocorrelation; Min, minimum; LRLGLE, long run low gray level em-
phasis; IDNM, inverse difference moment normalized; SRLGLE, short
run low gray level emphasis; LRE, long run emphasis; Inverse_var, in-
verse variance; W1-8, wavelet decompositions, W0 represents the origi-
nate plane andW1-8 represent 8 wavelet planes. The number written after
the feature named as 1–13 represents the direction of the texture matrix.
Mean indicates the average of the 13 directions

Fig. 2 One thousand times of fivefold cross-validation were used to
examine different subsets of features and evaluate the SVM models.
Features of the feature subset with the highest AUC value were the
most important and the feature subset was used to train and validate the
final SVM model in the training and validation cohort respectively
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and validation cohorts shown in Fig. 5 a and b, respectively.
The decision curve analysis for the radiomics nomogram is
presented in Fig. 5c, showing that the radiomics nomogram
provided better performance.

The role of radiomics signature in the prediction
of survival

Survival analysis showed that responders to IC had signifi-
cantly better PFS than non-responders (3-year PFS 84.81%
vs 39.75%, p < 0.001; Fig. 6a). Log-rank test was used to
select the radscore with significant significance and radscore
value (− 0.317) was used to divide patients into high- and low-
risk groups for different PFS. Low-risk groups with higher

radiomics signature had significantly better PFS than higher-
risk groups (3-year PFS 76.24% vs 48.04%, p < 0.05; Fig. 6b).

Discussion

In this study, we established a multiparametric MRI-based
radiomics nomogram to predict IC response before treatment
in locally advanced non-endemic NPC. The radiomics signa-
tures from combination of T1-WI, T2-WI, and enhanced T1-
WI images demonstrated excellent prediction value. The no-
mogram established by addition of MRI radiomics to clinical
parameters outperformed that based on clinical data alone.
Also, the radiomics signature could separate patients into

Fig. 3 The distribution of
radiomics signature and
performance of the SVM model.
a Distributions of radiomics
signature in the training cohort. b
Distributions of radiomics
signature in the validation cohort.
cROC curves for the SVMmodel
in the training and validation
cohorts

Table 3 Performance of SVM
classification, clinical model, and
radiomics-based nomogram

Metrics Radiomics signature Clinical model Radiomics-based nomogram

Primary
cohort

Validation
cohort

Primary
cohort

Validation
cohort

Primary
cohort

Validation
cohort

AUC 0.9494 0.8725 0.7076 0.5490 0.9524 0.8627

ACC 95.00% 86.96% 76.00% 65.22% 95.00% 82.61%

PPV 96.00% 71.43% 62.50% 0.00% 92.59% 100.00%

NPV 94.67% 93.75% 78.57% 71.43% 95.89% 80.95%

AUC, the area under ROC curve; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value
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Fig. 4 The radiomics nomogram
and the ROC curves in both the
training and validation cohorts. a
ROC curves for the clinical
nomogram in the training and
validation cohorts. b ROC curves
for the radiomics nomogram in
the training and validation
cohorts. c Radiomics nomogram
integrating the radiomics
signature from the joint T1-C, T1-
W, and T2-W with all the
independent clinical factors. d
Representative T2-WI image of
NPC patient as IC responder
before and after IC. e
Representative T2-WI image of
NPC patient as IC non-responder
before and after IC

Fig. 5 The calibration and decision curves. a Calibration curves for the
radiomics nomogram in the training cohort. The dashed line indicated
ideal reference line where predicted probabilities would match the
observed proportions. The solid line represented the performance of the
radiomics nomogram. b Calibration curves for the radiomics nomogram
in the validation cohort. c Decision curve analysis for the radiomics

nomogram. The x-axis represented the probability of the response to IC
ranging from 0 to 100%. The y-axis measured the net benefit. The black
line represented the scheme in which all patients were assumed to be
responders. The gray line represented the assumption that all patients
were non-responders
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high- and low-risk groups based on significantly different PFS
rate.

Anatomical MRI has been widely used to determine the
treatment response in NPC [23]. Currently, there are no ideal
clinical features or biomarkers to predict IC response in NPC.
One study found NPC patients with low ADCs before treat-
ment responded better to IC [10]. In a retrospective study
consisting of 120 endemic NPC patients, pretreatment MRI
radiomics signature could predict early IC response [16].
However, there was no validation by an independent cohort.
One study showed that MRI-based texture analysis had the
potential to predict chemoradiotherapy response with a high
accuracy, but this was in a relatively small number of NPC
patients [24]. In another study, T2-weighted and contrast-
enhanced T1-weighted MRI radiomics predicted progression
of endemic NPC in both the training and validation groups
[25].

However, several key points need to be considered in MRI
radiomics prediction model establishment. Firstly, the major-
ity of MRI radiomics studies were performed in endemic NPC
patients and the predictive model cannot be directly applied to
non-endemic NPC, given that characteristics differentiate en-
demic and non-endemic tumors. Our previous studies indicat-
ed thatWHO type II histology represented a higher proportion
of cases diagnosed in northwest China versus endemic regions
(> 25% vs < 10%) and WHO type II histology was associated
with poor outcomes. Furthermore, less than 15% patients had
detectable EBV DNA, while over 90% patients in endemic
regions have detectable EBV DNA [1, 2]. Here, we
established and validated a radiomics nomogram for non-
endemic NPC patients and more studies need to be done to
study the difference of radiomics between endemic and non-
endemic NPC.

Secondly, the role of clinical factors or the combination of
clinical factors and radiomics needs to be clarified. One recent
study extracted 970 radiomics features from T2-WI and
contrast-enhanced T1-WI MRI [15]. The radiomics nomo-
gram was established by combining radiomics signature with
TNM and showed a significant improvement in PFS predic-
tion of NPC when compared with TNM alone. Our study

developed a radiomics nomogram that integrated radiomics
signature from the joint T1-C, T1-WI, and T2-WI with all
the independent clinical factors. This provided a higher C-
index in both the training and validation cohorts, indicating
that radiomics was more accurate than the clinical nomogram
alone in the prediction of IC response. Accordingly, radiomics
features seems to be more sensitively and closely correlated
with the clinical endpoints we defined (clinical treatment re-
sponse after ICwas the endpoint in this study) when compared
with diagnostic radiologic, or clinical information.

Lastly, the role of multiple versus single MRI sequences
needs to be studied. Here, we used three MRI sequences to
extract image radiomics features, and 4503 imaging features
were calculated for each patient from single modality. Of
these, 19 features consisting of 5 from enhanced T1-C, 4 from
T1-WI, 10 from T2-WI images were input to the SVMmodel.
Our results showed that features extracted from several se-
quences performed better than when acquired from a single
sequence, as shown by both fivefold cross-validation in the
training cohort and independent validation in the validation
cohort. In order to overcome the limitation of SVM, we also
used the random forest (RF) as a second machine learning
algorithm and the results were similar. Image information
from different sequences could be a more meaningful repre-
sentation of the radiomics diversity within the tumor.

Given the capability to predict IC response in NPC, we
wondered whether this model could also predict survival,
which is a very important clinical endpoint. Some reports have
showed that tumor response to IC was an independent prog-
nostic factor for survival after radiation therapy in NPC [9]. In
this study, we also found that IC responders had significantly
better PFS than those non-responders (3-year PFS 84.81% vs
39.75%, p < 0.001). Also, we divided patients into high-risk
and low-risk groups by radiomics signature. The low-risk
group had a significantly better PFS. These results were in
accordance with a previous study showing a significant im-
provement in PFS prediction by combination of radiomics and
TNM than by TNM alone [15].

It has long been demonstrated that radiomics features were
associated with tumor biology. Adding radiomics features to

Fig. 6 Survival analysis stratified
by IC response and radiomics
signature. a Survival analysis for
responders and non-responders to
IC. b Survival analysis for high-
and low-risk patients with
different radiomics signatures
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molecular pathology is an important extension of radiomics
[13]. Panth KM et al found radiomics was able to identify
early effects of changed gene expression after radiation treat-
ment in tumors with similar volumes [26]. “Radio-genomics”
combining radiomics with genomics data is another emerging
prognostic tool [13]. One study indicated that neuroimaging
and DNAmicroarray analysis could create a multidimensional
map of gene expression patterns in glioblastoma multiforme
[27]. Another study indicated that measures of spatial diversi-
ty fromMRI images were associated with both tumor subtype
status and survival status [28]. In NLCLC, a study established
a radiogenomics map and found a metagene from EGF path-
way was significantly correlated with ground-glass opacity
and irregular nodules or nodules with poorly defined margins
[29]. NRGOncologyHN001 trial (NCT02135042) is ongoing
with the aim to identify NPC patients who would more likely
benefit from additional systemic chemotherapy based on EBV
DNA levels. Therefore, radiogenomics in prediction of NPC
treatment response and prognosis is an attractive future
direction.

Because of its retrospective nature, our study has several
limitations. Firstly, due to the critical inclusion criteria of pa-
tients included, we had a relatively small number of patients
that may affect the final conclusion of the study. Secondly, the
single institutional nature of the study may also limit the ap-
plicability of our findings for patients from other geographical
regions and institutions. Lastly, as pathologic examination of
the treatment response was not possible in NPC patients who
are mainly treated by radiotherapy, IC response evaluation
only based on anatomical MRI imaging might be less accu-
rate. Furthermore, other MRI technique, especially DCE-
MRI-based radiomics, has been used in the prediction of treat-
ment response for breast cancer and its role in NPC needs to
be further explored [30].

In conclusion, the current study established a
multiparametric MRI-based radiomics nomogram to predict
the IC response before treatment in locally advanced NPC in
non-endemic areas. The results might be more easily general-
izable in other countries, due to the non-endemic nature of this
cohort. MRI-based radiomics could be especially helpful for
personalized risk stratification and treatment in NPC patients
receiving IC.
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