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Abstract
Objectives To develop and validate a proof-of-concept convolutional neural network (CNN)–based deep learning system (DLS)
that classifies common hepatic lesions on multi-phasic MRI.
Methods A custom CNN was engineered by iteratively optimizing the network architecture and training cases, finally
consisting of three convolutional layers with associated rectified linear units, two maximum pooling layers, and two
fully connected layers. Four hundred ninety-four hepatic lesions with typical imaging features from six categories were
utilized, divided into training (n = 434) and test (n = 60) sets. Established augmentation techniques were used to
generate 43,400 training samples. An Adam optimizer was used for training. Monte Carlo cross-validation was
performed. After model engineering was finalized, classification accuracy for the final CNN was compared with
two board-certified radiologists on an identical unseen test set.
Results The DLS demonstrated a 92% accuracy, a 92% sensitivity (Sn), and a 98% specificity (Sp). Test set perfor-
mance in a single run of random unseen cases showed an average 90% Sn and 98% Sp. The average Sn/Sp on these
same cases for radiologists was 82.5%/96.5%. Results showed a 90% Sn for classifying hepatocellular carcinoma
(HCC) compared to 60%/70% for radiologists. For HCC classification, the true positive and false positive rates were
93.5% and 1.6%, respectively, with a receiver operating characteristic area under the curve of 0.992. Computation time
per lesion was 5.6 ms.
Conclusion This preliminary deep learning study demonstrated feasibility for classifying lesions with typical imaging features
from six common hepatic lesion types, motivating future studies with larger multi-institutional datasets and more complex
imaging appearances.
Key Points
• Deep learning demonstrates high performance in the classification of liver lesions on volumetric multi-phasic MRI,
showing potential as an eventual decision-support tool for radiologists.

• Demonstrating a classification runtime of a few milliseconds per lesion, a deep learning system could be incorporated into the
clinical workflow in a time-efficient manner.
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Abbreviations
CNN Convolutional neural network
CRC Colorectal carcinoma
DL Deep learning
DLS Deep learning system
FNH Focal nodular hyperplasia
HCC Hepatocellular carcinoma
ICC Intrahepatic cholangiocarcinoma
LI-RADS Liver Imaging Reporting and Data System
PACS Picture archiving and communication system
Sn Sensitivity
Sp Specificity

Introduction

Liver cancer is the second leading cause of cancer-related
deaths worldwide and hepatocellular carcinoma (HCC) repre-
sents the most common primary liver cancer [1, 2]. Contrary
to many other cancer types, HCC incidence rates continue to
rise [3]. Rapid and reliable detection and diagnosis of HCC
may allow for earlier treatment onset and better outcomes for
these patients. As the availability and quality of cross-
sectional imaging have improved, the need for invasive diag-
nostic biopsies has decreased, propelling imaging-based diag-
nosis to a more central role, with a unique status especially for
primary liver cancer. However, the radiological diagnosis of
potentially malignant hepatic lesions remains a challenging
task. In this setting, standardized image analysis and reporting
frameworks such as the Liver Imaging Reporting and Data
System (LI-RADS) can improve radiological diagnosis by
reducing imaging interpretation variability, improving com-
munication with referring physicians, and facilitating quality
assurance and research [4]. However, the increasing complex-
ity of LI-RADS has made its implementation less feasible in a
high-volume practice, leaving an unmet clinical need for com-
putational decision-support tools to improve workflow
efficiency.

Machine learning algorithms have achieved excellent per-
formance in the radiological classification of various diseases
and may potentially address this gap [5–7]. In particular, a
deep learning system (DLS) based on convolutional neural
networks (CNNs) can attain such capabilities after being
shown imaging examples with and without the disease.
Unlike other machine learning methods, CNNs do not require
definition of specific radiological features to learn how to
interpret images, and they may even discover additional dif-
ferential features not yet identified in current radiological
practice [8]. However, such capabilities have not yet been
fully demonstrated in the realm of HCC imaging. Most prior
machine learning studies classified liver lesions on 2D CT
slices and ultrasound images [9–14]. However, higher perfor-
mance may be achieved with a model that analyzes 3D

volumes of multi-phasic contrast-enhanced MRI, which is
the reference standard for image-based diagnosis.

Therefore, this study aimed to develop a preliminary CNN-
based DLS that demonstrates proof-of-concept for classifying
six common types of hepatic lesions with typical imaging
appearances on contrast-enhanced MRI, and to validate per-
formance with comparison to experienced board-certified
radiologists.

Materials and methods

This was a single-center engineering development and valida-
tion study compliant with the Health Insurance Portability and
Accountability Act and the Standards for Reporting of
Diagnostic Accuracy guidelines. The study was approved by
the institutional review board and informed consent was
waived. The two components of the study involved (1) engi-
neering a CNN-based liver tumor classifier, followed by (2)
proof-of-concept validation of the final optimized CNN by
comparison with board-certified radiologists on an identical
unseen dataset. An overview of the model training and vali-
dation portions is illustrated in Fig. 1.

Establishment of Bground truth^ cases

A medical student (CH) searched the picture archiving
and communication system (PACS) for abdominal MRI
examinations between 2010 and 2017 depicting one of
the following hepatic lesions: simple cyst, cavernous
hemangioma, focal nodular hyperplasia (FNH), HCC,
intrahepatic cholangiocarcinoma (ICC), and colorectal
cancer (CRC) metastasis. Due to the nature of a single-
institution investigation with limited availability of path-
ological proof, lesions were restricted to those displaying
typical imaging features, incorporating clinical criteria to
maximize the certainty of definite diagnosis. Table S1
contains the selected criteria for the Bground truth^ uti-
lized for each lesion type. Diagnosed lesions formally
described by radiology faculty on official reports were
double-checked post hoc according to these criteria with
another radiological reader (BL), and lesions were ex-
cluded if they contained discrepancies or displayed poor
image quality. Up to three imaging studies per patient
were included as long as studies were more than
3 months apart. Up to nine different lesions were used
in each study. The majority of included lesions were
untreated; treated lesions were only included if the se-
lected lesion showed progression, or the patient
underwent loco-regional therapy more than 1 year ago
and now presented with residual tumor. Patients younger
than 18 years were excluded.
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MRI acquisition protocol

This study involvedMRI examinations performed from 2010 to
2017 available throughout the institutional PACS, designed to
include a heterogeneous collection of MRI scanners and imag-
ing studies. This incorporated both 1.5-T and 3-T MR scanners,
including Siemens Aera, Espree, Verio, Avanto, Skyra, and Trio
Tim and GEDiscovery and Signa Excite scanners. Multi-phasic
contrast-enhanced T1-weighted breath-hold sequences from
standard institutional liver MR imaging protocols were used
with acquisition times of 12–18 s. Several different
gadolinium-based contrast agents were used (dosed at
0.1 mmol/kg), including Dotarem (Guerbet), Gadavist (Bayer),
Magnevist (Bayer), ProHance (Bracco Diagnostics), and
Optimark (Covidien). Post-contrast images were analyzed, in-
cluding late arterial phase (~ 20 s post-injection), portal venous
phase (~ 70 s post-injection), and delayed venous phase (~ 3min
post-injection). Imaging parameters varied across different scan-
ners and time frames; however, the majority were in the range of
TR 3–5 ms, TE 1–2 ms, flip angle 9–13°, bandwidth 300–
500 Hz, slice thickness 3–4 mm, image matrix 256 × 132 to
320 × 216, and field-of-view 300 × 200 mm to 500 × 400 mm.

Image processing

Eligible MRI studies were downloaded from the PACS and
stored as DICOM files. The location and size of a 3D bounding
box around the target lesion were manually recorded on the x-,

y-, and z-axis. The images were processed and automatically
cropped to show only the lesion of interest using code written
in the programming language Python 3.5 (Python Software
Foundation). The cropped image was then resampled to a reso-
lution of 24 × 24 × 12 voxels (Fig. 2). To minimize bias field
effects, cropped images were normalized to intensity levels from
− 1 to 1. Affine registration with a mutual information metric
was used to register portal venous and delayed phase MRI stud-
ies to the arterial phase. Ten lesions from each class were ran-
domly selected to comprise the test set (12% of the entire
dataset) using Monte Carlo cross-validation and the remaining
lesions comprised the training set. Each image in the training set
was augmented by a factor of 100 using established techniques
[15] to increase the number of training samples, which allows
the model to learn imaging features that are invariant to rotation
or translation. During augmentation, images randomly
underwent rotation, translation, scaling, flipping, interphase
translation, intensity scaling, and intensity shifting.

Deep learning model development

The CNN model was trained on a GeForce GTX 1060
(NVIDIA) graphics processing unit. The model was built
using Python 3.5 and Keras 2.2 (https://keras.io/) [16]
running on a Tensorflow backend (Google, https://www.
tensorflow.org/). Model engineering consisted of iteratively
adjusting the network architecture (number of convolutional
layers, pooling layers, fully connected layers, and filters for

Fig. 1 Flowchart of the lesion classification approach, including model training, model testing, and reader study
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each layer, along with parameter optimization) and training
cases (removing cases with poor imaging quality or
ambiguous imaging features and increasing the number of
training samples for lesion classes demonstrating lower
performance). The final CNN consisted of three
convolutional layers, where the first layer had 64
convolutional filters for each of the three phases in the
original image, and the other two had 128 filters across all
phases. Each filter generated filtered images by convolving
voxels in 3 × 3 × 2 blocks. The model also contained two
maximum pooling layers (size 2 × 2 × 2 and 2 × 2 × 1
respectively), which reduce the resolution of filtered images
to provide spatial invariance (i.e., a feature that is shifted by a
voxel can still be represented by the same neuron, which
facilitates learning). The final CNN contained two fully
connected layers, one with 100 neurons and the second with
a softmax output to six categories that corresponded to the
lesion types (Fig. 3). The selected imaging studies spanned
296 patients (155 male/141 female) (Table 1). A total of 334
imaging studies were selected, with a combined total of 494
lesions (74 cysts, 82 cavernous hemangiomas, 84 FNHs, 109
HCCs, 58 ICCs, 87 CRC metastases). The average diameter
of all lesions used was 27.5 ± 15.9 mm, ranging from 21.7 ±
15.5 mm for simple cysts to 45 ± 16.8 mm for ICCs (Table 2).
The CNN used rectified linear units after each convolutional
layer and the first fully connected layer, which helps the model
to learn non-linear features [15]. These are used in conjunction

with batch normalization and dropout, which are regulariza-
tion techniques that help the model to generalize beyond the
training data [17]. Each CNN was trained with an Adam op-
timizer using minibatches of five samples from each lesion
class. Hyperparameters were chosen via an exhaustive search
through a manually specified portion of the search, an ap-
proach known in the literature as a grid search [18]. Samples
were chosen randomly from the augmented dataset. The mod-
el was then tested on its ability to correctly classify 60 lesions
in the test dataset (10 from each lesion class) and performance
was averaged over 20 independent training iterations with
different groupings of training and test datasets to gain a more
accurate assessment.

Reader study validation

After development of the CNNmodel was complete, the clas-
sification accuracy of the final CNN was compared with two
board-certified radiologists, using an identical set of randomly
selected lesions that were unseen by either the CNN model or
the radiologists. The two radiologists (39 and 7 years of expe-
rience) did not take part in the model training process and
were blinded to the lesion selection. The reader study was
conducted on an OsiriX MD (v.9.0.1, Pixmeo SARL) work-
station. To provide even comparison of input data available to
the CNN model, the simulated ready study contained several
differences compared to actual clinical practice. The imaging

Fig. 2 Sample images of lesion classes and corresponding derived LI-RADS categories. Boxes indicate the cropping of each lesion, which adds padding
to the lesion coordinates as determined by a radiologist. The model was able to overcome extrahepatic tissues such as the kidney
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studies were anonymized, and the radiologists were fully
blinded to clinical data as well as MRI sequences not utilized
for the CNN training. The test set for the reader study
consisted of 10 randomly selected lesions of each class, 60
lesions in total, while the remaining lesions were assigned to
the training set. The randomization was based onMonte Carlo
cross-validation and the results of the reader study were com-
pared after a single iteration to mimic their Bfirst exposure^ to
the images. Each radiologist independently classified the 60
lesions characterized by the model in the test set based on the
original three contrast-enhanced MRI phases (late arterial,

portal venous, and delayed/equilibrium). Their performance
was evaluated in distinguishing the six lesion entities as well
as three broader categories that simulate the application of a
deep learning model to an HCC diagnostic imaging frame-
w o r k s u c h a s L I - RADS . T h e t h r e e b r o a d e r
derived categories were HCCs (corresponding to LR-5), be-
nign lesions (grouping cysts, hemangiomas, and FNHs, cor-
responding to LR-1), and malignant non-HCC lesions (group-
ing ICCs and CRC metastases, corresponding to LR-M). The
radiologists did not scroll any further than the superior and
inferior margins of the lesion in order to avoid revealing

Fig. 3 Neural network model
architecture used to infer the
lesion entity based on the input
image, shown for an example of
intrahepatic cholangiocarcinoma.
The derived LI-RADS
classification follows from the
lesion class
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possible other lesions within the liver and thereby biasing the
read. The time from opening the MRI phases until classifica-
tion of the lesion was recorded.

Statistics

The performance of the model was evaluated by averaging the
sensitivity, specificity, and overall accuracy over 20 iterations,
as described above. For validation of the CNN with radiolog-
ical readings, the performances of both the model and the
radiologists were computed by evaluating sensitivity, specific-
ity, and overall accuracy on the same single randomly selected
test set of unseen cases. Prevalence-based parameters such as
positive predictive value and negative predictive value were
not applicable for this study. A receiver operating characteris-
tic curve was plotted to compare the model and radiologist
performance in identifying HCC masses.

Results

Deep learning model

The final CNN demonstrated a training accuracy of 98.7% ±
1.0 (8567/8680 volumetric samples) across six lesion types
and 99.1% ± 0.7 (8602/8680) according to the three general
derived LI-RADS categories (Table 3). The average test

accuracy was 91.9% ± 2.9 (1103/1200) among individual le-
sions and 94.3% ± 2.9 (1131/1200) across the three broader
categories. The time to initially train the DLS was 29 ± 4 min.
Once the model was trained, the actual runtime to classify
each lesion in the test dataset was 5.6 ± 4.6 ms.

For the 20 iterations, the average model sensitivity across
the six lesion types was 92%, with an average specificity of
98% (Table 4). The model sensitivity for individual lesion
types ranged from 89% (177/200) for CRC metastases to
99% (197/200) for simple cysts (Table 4). The corresponding
model specificity for individual lesions ranged from 97%
(965/1000) for ICC to 100% (1000/1000) for simple cysts.
HCC lesions demonstrated a sensitivity of 94% (187/200)
and specificity of 98% (984/1000). For the case of the three
broader categories, the sensitivity ranged from 94% (187/200
for HCC, 563/600 for benign lesions) to 95% (381/400 for
malignant non-HCC lesions). The corresponding specificity
ranged from 96% (770/800 for malignant non-HCC lesions,
and 577/600 for benign lesions) to 98% (984/1000 for HCC).
The study was conducted using the same number of lesions
from each class, and thus does not reflect the actual prevalence
of each lesion type.

Reader study

Classification of unseen randomly selected lesions included in
the reader study demonstrated an average model accuracy of

Table 1 Patient characteristics and demographics. Total column does not equal the sum of the rows because some patients had multiple lesion types

Patient characteristics Cyst Cavernous hemangioma FNH HCC ICC CRC metastasis Total

Number of patients 37 49 53 88 36 39 296

Age at imaging (mean ± SD) 62 ± 10 50 ± 11 43 ± 11 63 ± 8 63 ± 14 61 ± 14 57 ± 14

Gender

Male 19 17 8 67 18 27 155

Female 18 32 45 21 18 12 141

Ethnicity

Caucasian 29 39 34 50 25 32 206

African American 2 3 11 12 3 2 32

Asian 3 0 0 3 1 0 5

Other 0 3 2 12 3 4 24

Unknown 3 4 6 11 4 1 29

Table 2 Imaging details for each category of lesion

Image characteristics Cyst Cavernous hemangioma FNH HCC ICC CRC metastasis Total

Number of patients 37 49 53 88 36 39 296

Number of imaging studies 42 50 57 96 49 44 334

Number of lesions 74 82 84 109 58 87 494

Lesion diameter (mm, mean ± SD) 21.7 ± 15.5 25 ± 11.6 28.4 ± 20.7 24.4 ± 10 45 ± 16.8 26.4 ± 12.3 27.5 ± 15.9

Total column does not equal the sum of the rows because some imaging studies had multiple lesion types
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90% (55/60 lesions). Radiologist accuracy was 80% (48/60)
and 85% (51/60) on these same lesions, respectively (Table 3).
The model accuracy for the three broader categories was 92%
(58/60), compared with 88% (53/60) for both radiologists.
The total elapsed time analyzing each lesion was 0.8 ms for
the classification model versus 14 ± 10 s and 17 ± 24 s for the
radiologists.

Lesions included in the reader study showed an average
CNN model sensitivity of 90% ± 14 (9/10) and specificity of
98% ± 2 (49/50) across the six lesion types. This compared to
an average sensitivity of 80% ± 16 (8/10) and 85% ± 15 (8.5/
10) and specificity of 96% ± 3 (48/50) 97% ± 3 (48.5/50) for
the two radiologists respectively (Table 4). The model sensi-
tivity ranged from 70% (7/10 for FNH) to 100% (10/10 for
simple cysts and hemangiomas) with a specificity ranging
from 92% (46/50 for HCC) to 100% (50/50 for simple cysts,
hemangiomas, and ICC). Radiologist sensitivity ranged from
50% (5/10 for CRC metastases) to 100% (10/10 for simple
cysts, hemangiomas), with specificity ranging from 92% (46/

50 for CRC metastases) to 100% (50/50 for HCC and ICC).
The average model sensitivity for three broader categories was
92% with a specificity of 97%. This compared to the radiolo-
gists’ sensitivity of 88% and specificity of 89% and 91%,
respectively. The model demonstrated highest sensitivity for
malignant non-HCC lesions at 95% (19/20) compared to 85%
(17/20) for both radiologists, whereas radiologists attained
highest sensitivity for benign lesions at 97% (29/30) and
100% (30/30), compared to 90% (27/30) for the CNN.

A receiver operating characteristic curve was constructed
by varying the probability threshold at which the CNN would
classify a lesion as HCC, with an area under the curve of 0.992
(Fig. 4). This included a true positive rate of 93.5% (187/200)
averaged over 20 iterations and a false positive rate of 1.6%
(16/1000). When including only lesions within the reader
study, the model true positive rate was 90% (9/10), and the
false positive rate was 2% (1/50). Radiologists had a true
positive rate of 60% and 70% (6/10 and 7/10, respectively)
and a false positive rate of 0% (0/50).

Table 4 Model and radiologist performance metrics for individual lesion types and LI-RADS classes

Average of 20 iterations Reader study

Model test set Model Radiologist 1 Radiologist 2

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Lesion type

Cyst 99% 100% 100% 100% 90% 96% 100% 98%

Hemangioma 91% 99% 100% 100% 100% 96% 100% 94%

FNH 91% 98% 90% 96% 90% 98% 90% 94%

HCC 94% 98% 90% 98% 70% 100% 60% 100%

ICC 90% 97% 60% 100% 80% 94% 90% 100%

CRC metastasis 89% 98% 100% 94% 50% 92% 70% 96%

Overall 92% 98% 90% 98% 80% 96% 85% 97%

Derived LI-RADS class

LR-1 (n = 30) 94% 96% 97% 93% 97% 87% 100% 80%

LR-5 (n = 10) 94% 98% 90% 98% 70% 100% 60% 100%

LR-M (n = 20) 95% 96% 95% 100% 85% 93% 85% 98%

Overall 94% 97% 95% 96% 88% 91% 88% 89%

Table 3 Overall accuracy and
runtimes for model classification
and classification by two
radiologists

Accuracy of lesion
classification
(mean ± SD %)

Accuracy of derived LI-RADS
classification
(mean ± SD %)

Runtime (mean ± SD)

Average of 20 iterations

Model training set 98.7 ± 1.0 99.1 ± 0.7 29 min ± 4

Model test set 91.9 ± 2.9 94.3 ± 2.9 5.6 ms ± 4.6

Reader study (n = 60)

Model 90.0 91.7 1.0 ms ± 0.4

Radiologist 1 80.0 88.3 14 ± 10 s

Radiologist 2 85.0 88.3 17 ± 24 s
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Discussion

This study demonstrates a deep learning–based prototype for
classification of liver lesions with typical imaging features
from multi-phasic MRI, demonstrating high performance
and time efficiency. While the study did not simulate clinical
practice conditions, comparison with equivalent data input
showed the potential of DL systems to eventually aid in im-
proving radiological diagnosis of six classes of hepatic lesions
(model accuracy of 92%, radiologist accuracy of 80% and
85%), as well as three broader categories of benign, HCC,
and malignant non-HCC lesions (model accuracy of 94%,
radiologist accuracy of 88%), with a classification time of
5.6 ms per lesion.

Building upon prior 2D CT and ultrasound models, the
inherent improved soft tissue contrast resolution of MRI can
enable this CNN to capture a wider variety of imaging features
[14]. Additionally, the 3D volumetric approach may improve
detection of inhomogeneous growth or enhancement patterns
that may be relevant to lesion classification, while removing
the model’s variability and dependence on manual slice selec-
tion [19, 20]. Furthermore, the use of heterogeneous imaging
sources demonstrated the robustness of DLS in the setting of
different MRI scanners and acquisition protocols.

Previous studies have paved the way for computational
classification of diverse lesion types by grouping hepatic le-
sion entities into three to five classes [11, 13, 14]. Moving
towards clinical implementation, classification becomes in-
creasingly challenging when lesions are ungrouped and single
entities are differentiated. In this case, a higher number of
differential features must be learned with a lower chance of
guessing correctly. The present study included six ungrouped
lesion classes, demonstrating a high accuracy level of 91.9%.

As expected, the overall accuracy was higher with three
grouped classes (94.3%).

Since single-center developmental efforts often suffer from
limited datasets, selection of idealized cases is often necessary,
making the interpretation of classification results ambiguous.
The direct comparison between the DLS and two radiologists
allows for better interpretation of performance and potential
clinical value. High sensitivity for HCC and CRC metastases
was demonstrated relative to radiologists. The radiologists
tended to misclassify HCCs with faint enhancement as CRC
metastases and HCCs with unclear washout as FNHs, whereas
the DLS could more reliably make use of other features to
correctly identify the HCCs. Similarly, radiologists
misclassified CRC metastases without clear progressive en-
hancement with cysts, and those with heterogeneous, nodular
appearances were misclassified for ICCs, whereas the compu-
tational predictions were likely more robust to the absence of
these features. Still, the radiologists’ diagnostic accuracy may
have matched or exceeded the DLS’s accuracy if given access
to clinical information or additional imaging sequences. As a
proof-of-concept study with limited sequences, this simulated
environment provided unbiased comparison between the DLS
and radiologists with the same available input data.

These performance metrics suggest that a DLS could serve
as a quick and reliable Bsecond opinion^ for radiologists in the
diagnosis of hepatic lesions, helping to reduce interpretation
difficulty and inter-reader variability when imaging features
are more ambiguous. In HCC diagnosis, most inter-reader
studies demonstrated a moderate level of reliability in deter-
mining LI-RADS classes [21–26], and the rigor and complex-
ity of LI-RADS constitutes a major barrier for broad adoption
[25, 27]. The DLS classified lesions into benign, HCC, and
malignant non-HCC lesions (roughly corresponding to LR-1,

Fig. 4 Model receiver operating
characteristic curve for
distinguishing HCCs. This model
achieves high sensitivity for HCC
at the cost of a few false positives.
AUC, area under curve
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LR-5, and LR-M respectively) with an accuracy of 94.3%.
While this is a preliminary feasibility study with many limita-
tions, it suggests that a DLS could potentially interface with
LI-RADS, for example, by averaging the model and radiolo-
gist predictions to score lesions that are suspicious for HCC
but lack a definite benign/malignant appearance (i.e., LR-2/3/
4). Such an implementation could reduce rote manual tasks,
helping to simplify LI-RADS for clinical workflow integra-
tion [27].

While these results are promising, there are several lim-
itations that make this a preliminary feasibility study. As a
single-center investigation, only a limited number of imag-
ing studies were available for each class. Thus, only lesions
with typical imaging features on MRI were used, excluding
lesions with more ambiguous features or poor image quality
as well as more complex lesion types such as infiltrative
HCC or complicated cysts. Additionally, LI-RADS is only
applicable to patients at high risk for HCC. However, be-
cause non-HCC lesions are much less common in cirrhotic
livers, this study also included lesions in livers without cir-
rhotic background or hepatitis-B/C, and thus the input does
not identically conform to current consensus. Additionally,
due to limited data from a single institution, pathological
proof was not available for all lesions. Thus, Bground truth^
criteria were carefully selected and defined for each lesion
type as thoroughly outlined in Table S1. Notably, for lesions
without pathological diagnosis, Bground truth^ was
established by analyzing all available clinical and imaging
data, including T1 pre-contrast, T2, and other sequences.
However, these sequences were not used in the model train-
ing and subsequent reader study, and thus their potential
additive value for the CNN performance needs to be evalu-
ated in further studies. Additionally, the simulated reader
comparison did not reflect conditions in clinical practice,
as the test set contained equal numbers of each lesion type
and participants did not have access to ancillary information
such as cl inical data . However, this al lowed for
initial validation of the CNN with radiologists using the
same conditions and input data for a more equivalent com-
parison. Within these limitations, this approach met the
study’s purpose to demonstrate initial feasibility of a liver
MRI lesion classification prototype from available data at
one large academic medical center, providing motivation
for the establishment of larger multi-institutional databases.

In summary, this preliminary study provides proof of prin-
ciple for a DLS that classifies six hepatic lesion types on
multi-phasicMRI, demonstrating high performance when val-
idated by comparison with board-certified radiologists. As the
demands of radiological practice continue to increase, a syn-
ergistic workflow that combines the experience and intuition
of radiologists with the computational power of DL decision-
support tools may offer higher-quality patient care in a time-
efficient manner.
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