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Abstract
Objective To develop and validate a radiomics-based nomogram for preoperatively predicting grade 1 and grade 2/3 tumors in
patients with pancreatic neuroendocrine tumors (PNETs).
Methods One hundred thirty-eight patients derived from two institutions with pathologically confirmed PNETs (104 in the training
cohort and 34 in the validation cohort) were included in this retrospective study. A total of 853 radiomic features were extracted from
arterial and portal venous phase CT images respectively. Minimum redundancy maximum relevance and random forest methods were
adopted for the significant radiomic feature selection and radiomic signature construction. A fusion radiomic signature was generated
by combining both the single-phase signatures. The nomogram based on a comprehensive model incorporating the clinical risk factors
and the fusion radiomic signature was established, and decision curve analysis was applied for clinical use.
Results The fusion radiomic signature has significant association with histologic grade (p < 0.001). The nomogram integrating
independent clinical risk factor tumor margin and fusion radiomic signature showed strong discrimination with an area under the
curve (AUC) of 0.974 (95%CI 0.950–0.998) in the training cohort and 0.902 (95%CI 0.798–1.000) in the validation cohort with
good calibration. Decision curve analysis verified the clinical usefulness of the predictive nomogram.
Conclusion We proposed a comprehensive nomogram consisting of tumor margin and fusion radiomic signature as a powerful
tool to predict grade 1 and grade 2/3 PNET preoperatively and assist the clinical decision-making for PNET patients.
Key Points
• Radiomic signature has strong discriminatory ability for the histologic grade of PNETs.
• Arterial and portal venous phase CT imaging are complementary for the prediction of PNET grading.
• The comprehensive nomogram outperformed clinical factors in assisting therapy strategy in PNET patients.
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Abbreviations
ACC Accuracy
AFP α-Fetoprotein
AUC Area under the curve
CA199 Carbohydrate antigen 19-9
CEA Carcinoembryonic antigen
CI Confidence interval
CT Computed tomography
DMPD Dilatation of the main pancreatic duct
GLCM Gray level co-occurrence matrix
GLDM Gray level dependence matrix
GLRLM Gray level run length matrix
GLSZM Gray level size zone matrix
ICCs Intra- and inter-class correlation coefficient
MR Magnetic resonance
MRMR Minimum redundancy maximum relevance
NGTDM Neighboring gray tone difference matrix
NPV Negative predictive value
PA Pancreatic atrophy
PACS Picture archiving and communication system
PBG Preoperative blood glucose
PFP Protrusion from the outline of the pancreas
PLM Preoperative liver metastasis
PNETs Pancreatic neuroendocrine tumors
PPV Positive predictive value
RF Random forest
ROC Receiver operating characteristics
ROI Region of interest
SENS Sensitivity
SPEC Specificity
WHO World Health Organization

Introduction

Pancreatic neuroendocrine tumors (PNETs) account for 2% and
10% of all pancreatic tumors [1], which now have an increasing
diagnosed incidence probably due to the improvement of medi-
cal imaging in the past few years [2]. The 2010 WHO classifi-
cation categorizes PNETs into three grades on the basis of theKi-
67 proliferation index and mitotic count [3]. All PNETs have
potential to be malignant tumors according to the new classifica-
tion; furthermore, PNETs with different histologic grades usually
indicate a varied biological aggressiveness and have a significant
correlation with prognosis [4–6].

As the WHO 2010 grading has shown a strong guidance
for therapeutic decision-making in previous clinical practice
[7, 8], the accurate assessment of grade is critical for the PNET
patient. However, the grade can only be obtained through
histopathological exams after surgery. The endoscopic
ultrasonography-guided fine-needle aspiration before surgery
had an efficient diagnosis of PNETs, but showed poor perfor-
mance for differentiating histologic grade of PNETs and

inevitable invasiveness [9, 10]. Many studies have tried to
identify preoperative imaging biomarkers to predict tumor
grade of PNETs using computed tomography (CT) and mag-
netic resonance (MR) [11–23]; however, limited accuracy or
insufficient validation cannot fulfill the clinical requirements.

An emerging technique, termed as radiomics, provides a new
way to solve this problem. Based on computer vision technology,
radiomics automatically extracts imaging features from
encrypted medical images [24–26]. The most correlated features
with the clinical target would be selected using machine learning
methods based on big medical data, thus generating a stable
imaging marker–radiomic signature to realize the prediction. It
has been successfully applied in cancer screening, diagnosis, and
treatment evaluation [27–32]. In terms of grading classification,
previous studies revealed the validity of radiomics on high-grade
and low-grade discrimination in clear cell renal cell carcinoma,
colorectal adenocarcinoma, and gliomas [33–35]. However, re-
garding PNET, research on histologic grade classification using
the radiomics method is relatively limited. CT textural analysis
was recently explored for PNET grading, but the results lacked
either accuracy or essential external validation [18, 19]. These
studies enlightened the work to solve the PNET grading using a
quantitative imaging approach.

Thus, in this multicenter study, we build a radiomic-based
predictive model to noninvasively and operatively achieve
PNET grading using CT images. Meanwhile, we would also
explore the predictive value of clinical and radiological vari-
ables, as comparisons with the radiomic signature. A final
combinedmodel integrating both radiomic and clinical factors
is expected to accurately classify PNET grading.

Materials and methods

Workflow

The workflow of the radiomics analysis included image seg-
mentation, feature extraction, radiomics signature modeling.
and model analysis (Fig. 1).

Patients

Both of the institutional review boards of the participating centers
approved the retrospective study, and the requirement of the
informed consent for patients was waived. According to the in-
clusion and exclusion criteria (Fig. 2), a total of 138 patients
derived from two Chinese hospitals in different regions with
pathologically confirmed PNET were recruited in our study.
The patients from the two institutionswere considered as training
and validation cohorts respectively. The training cohort consisted
of 104 patients (47 males and 57 females; mean age 52.4 ±
11.6 years; range 18–77 years) between April 2009 and
November 2017 from Zhongshan Hospital of Fudan
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University, while the validation cohort contained 34 patients (15
males and 19 females; mean age 55.6 ± 12.5 years; range 19–
82 years) between September 2009 andDecember 2017 from the
Affiliated Hospital of Qingdao University. Clinical and radiolog-
ical characteristics used in this study and the pathology analysis
of the patients are described in Supplementary Information 1.

CT image acquisition, segmentation, and feature
extraction

All arterial and portal venous phase CT images were retrieved
from a picture archiving and communication system (PACS)
for further analysis. The procedure of CT image acquisition,
segmentation, reproducibility analysis, and feature extraction
are described in Supplementary Information 2.

Clinical risk factors

Univariable analysis was used to assess the association between
clinicopathological/radiological factors and PNET grading in the

training and validation cohorts. The t test or Mann–Whitney U
test were performed for quantitative variables, while the chi-
square test or Fisher’s exact test was executed for qualitative
variables to assess their differences between grade 1 and grade
2/3 groups. Those significant factors with a p value < 0.05 from
the univariable analysis in the training cohort were entered into a
stepwisemultivariable logistic regression analysis. Variableswith
a p value < 0.05 from the multivariate analysis were identified as
potential clinical risk factors related to the histologic grade and
were included for clinical model building with multivariable lo-
gistic regression.

Radiomic feature reduction and selection

All of the radiomic features were standardized into a normal
distribution with z scores. The intra- and inter-class correlation
coefficients (ICCs), which were calculated from 15 segmented
lesions in the CT images, were used to determine the intra- and
inter-observer reproducibility of the radiomic features. Features
with the ICCs higher than 0.80 were obtained in the following

Fig. 2 Flow chart of the study of the enrolled patients

Fig. 1 Workflow of the radiomics analysis
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analysis. The univariable analysis was performed on the repro-
ducible radiomic features using a t test. Variables with a p value
< 0.1 were considered to be correlated to the PNET grading and
were adopted for further analysis. In order to reduce the redun-
dancy and unnecessary complexity for the computation and
modeling, minimum redundancy maximum relevance
(MRMR) was used for feature selection [36]. The algorithm
generated an importance score for each feature, and then the
top-ranked 20 features were entered into the fivefold cross-
validation for the selection of the best feature number. The asso-
ciation between all of the selected features and grades was eval-
uated by a univariable analysis, and the predictive performance
for a single feature was also assessed. All of the processes of the
feature analysis were performed on the training cohort and vali-
dated on the validation cohort in both arterial and portal venous
phase CT images.

Construction of the radiomic signature

Awidely usedmachine learning classifier of the random forest
(RF) was trained for the radiomic signature construction.
Considering the potential interactions between features, we
selected the best feature subset using the Bwrapper^ method
[37] with the top-ranked 20 MRMR features. Specifically, the
forward feature selection was done step by step according to
the feature score with the fivefold cross-validation in the RF
model. We repeated the process in the training cohort which
was randomly divided into five folds 100 times; then, the
optimal feature number and parameters for the RF model
which had the maximum mean cross-validation area under
the curve (AUC) for the classification of the grade were
adopted for the single radiomic signature building.
Furthermore, the fusion radiomic signature was developed
by combining the two signatures of the arterial and portal
venous phases in the multivariable logistic regression. The
radiomic score was calculated for each patient to show the
prediction risk of grade 2/3 via the radiomic signature. The
association between the radiomic score and grade was ex-
plored by a t test.

Development of the nomogram

To test whether the radiomic signature and clinical factors were
complementary for the prediction of grade, a comprehensive
model incorporating significant clinical factors and the fusion
radiomic signature with multivariable logistic regression anal-
ysis was also constructed on the training cohort. Next, a nomo-
gram was developed based on the proposed comprehensive
model as a graphical presentation. The calibration curves were
created to identify the agreement of nomogram-predicted prob-
ability and the actual rate for grade 2/3 in both the training and
validation cohorts with a Hosmer–Lemeshow test [38].
Decision curve analysis, considering the true-positive and

false-positive rates synthetically, was conducted to validate
the clinical utility of the nomogram by estimating the net ben-
efits at a range of threshold probabilities [39].

Model evaluation and comparison

We compared the clinical model, radiomic signatures, and the
comprehensive nomogram with a receiver operating charac-
teristic (ROC) analysis. The ROC curves were plotted and
AUCs were used to quantify the discriminative ability of each
model. The performances of different ROC curves were com-
pared by the Delong test. According to the radiomic score of
each patient, we divided all of the patients into grade 1 and
grade 2/3 by the optimal cutoff value. Thus, several evaluation
indices including AUC with a 95% confidence interval (95%
CI), accuracy (ACC), sensitivity (SENS), specificity (SPEC),
positive predictive value (PPV), and negative predictive value
(NPV) were calculated. We further validated the predictive
nomogram using a stratification analysis in patients grouped
by age and gender.

Statistical analysis

All of the statistical analyses were performed using SPSS
(version 20.0) and R software (version 3.4.1). A p value less
than 0.05 was considered statistically significant with a two-
tailed test. The detailed R packages used in the study are listed
in Supplementary Information 3.

Radiomic quality score

To assess the quality of our radiomics study, we calculated the
radiomic quality score at http://www.radiomics.world/ [24].

Results

Patient characteristics

A total of 138 patients were contained in our study, among
which 57 (41.3%) patients were categorized as grade 1, 69
(50%) patients were grade 2, and 12 (8.7%) patients were
grade 3. No significant differences were found in age, gender,
and histologic grade between the training and validation co-
horts (Supplementary Table S1).

Clinical modeling

All of the basic clinicopathological and radiological charac-
teristics were compared between grade 1 and grade 2/3 groups
in both the training and validation cohorts using a univariable
analysis, and the results are listed in Table 1. Univariate anal-
ysis showed that the tumor margin, carcinoembryonic antigen,
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preoperative liver metastasis, dilatation of the main pancreatic
duct, pancreatic atrophy, and protrusion from the outline of the
pancreas were significantly related to grade (p < 0.05).
Examples of typical radiological characteristics are illustrated
in Supplementary Fig. S1. At the multivariable logistic regres-
sion analysis, only the tumor margin (OR 0.091; 95% CI
0.032–0.231; p < 0.001) was considered an independent pre-
dictor. The final clinical model with a single factor tumor
margin yielded an AUC of 0.764 (95% CI 0.681–0.847) in
the training cohort and 0.625 (95% CI 0.500–0.750) in the
validation cohort.

Radiomic feature selection

After the reproducibility analysis, 283 and 173 features were
included for arterial and portal venous phase CT images sepa-
rately. The distributions of the radiomic feature reproducibility
in both phases are presented in Supplementary Fig. S2. Next,
205 and 82 features in the two phases were found to be signif-
icantly related to grade with a univariable analysis. The results
of mean AUCs with 100 times fivefold cross-validation in the
RF classifier and feature numbers are shown in Fig. 3. It can be
inferred from the curves that the RF classifier obtained the best

Table 1 Comparison of patient
and tumor characteristics in
training and validation cohorts

leftacteristics Training dataset (n = 104) Validation dataset (n = 34)

Grade 2/3 Grade 1 p Grade 2/3 Grade 1 p

Age (years) 50.7 ± 12.2 55.3 ± 10.0 0.055 54.9 ± 13.7 56.2 ± 11.9 0.415

PBG (mmol/L) 4.81 ± 1.57 4.84 ± 1.98 0.841 3.99 ± 1.08 4.34 ± 1.61 0.517

AFP (ng/mL) 4.09 ± 7.08 2.76 ± 1.85 0.662 2.79 ± 0.87 2.31 ± 0.88 0.143

CEA (ng/mL) 1.88 ± 1.85 2.06 ± 1.27 0.028* 1.58 ± 0.42 1.79 ± 1.40 0.888

CA199 (U/mL) 14.37 ± 22.03 13.30 ± 13.27 0.738 10.98 ± 8.90 11.31 ± 7.49 0.958

Gender 0.944 0.790

Male 30 (45.5%) 17 (44.7%) 7 (46.7%) 8 (42.1%)

Female 36 (54.5%) 21 (55.3%) 8 (53.3%) 11 (57.9%)

PLM 0.001* 0.253

Yes 16 (24.2%) 0 (0%) 1 (6.7%) 0 (0%)

No 50 (75.8%) 38 (100.0%) 14 (93.3%) 19 (100.0%)

Tumor location 0.625 0.217

Head or neck 30 (45.5%) 13 (34.2%) 9 (60.0%) 9 (47.4%)

Body 10 (15.2%) 11 (28.9%) 4 (26.7%) 5 (26.3%)

Tail 26 (39.4%) 14 (36.8%) 2 (13.3%) 5 (26.3%)

Tumor margin < 0.001* 0.085

Well defined 19 (28.8%) 31 (81.6%) 1 (6.7%) 6 (31.6%)

Ill defined 47 (71.2%) 7 (18.4%) 14 (93.3%) 13 (68.4%)

DMPD 0.017* 0.214

Yes 12 (18.2%) 1 (2.6%) 5 (33.3%) 3 (15.8%)

No 54 (81.8%) 37 (97.4%) 10 (66.7%) 16 (84.2%)

PA 0.026* 0.603

Yes 11 (16.7%) 1 (2.6%)) 2 (13.3%) 2 (10.5%)

No 55 (83.3%) 37 (97.4%) 13 (86.7%) 17 (89.5%)

PFP 0.016* 0.338

Yes 45 (68.2%) 17 (44.7%) 5 (33.3%) 4 (21.1%)

No 21 (31.8%) 21 (55.3%) 10 (66.7%) 15 (78.9%)

Fusion

radiomics

score

2.726 ± 1.183 − 4.259 ± 4.096 < 0.001* 1.660 ± 1.583 1.150 ± 1.754 < 0.001*

Qualitative variables are in n (%) and analyzed using chi-square or Fisher exact tests, while quantitative variables
are in mean ± SD and analyzed using t test or Mann–Whitney U test, as appropriate

PBG preoperative blood glucose, AFP α-fetoprotein, CEA carcinoembryonic antigen, CA199 carbohydrate anti-
gen 19-9,PLM preoperative liver metastasis,DMPD dilatation of the main pancreatic duct, PA pancreatic atrophy,
PFP protrusion from the outline of pancreas.

*p < 0.05
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discrimination performance with 15 and 10 features in the arte-
rial and portal venous phases respectively. The number of
radiomic features after these feature selection methods is de-
scribed in Table 2. All of the selected features of the double
phases and predictive performance in the training and valida-
tion cohorts are shown in Supplementary Table S2.

Performance of the radiomic signature

Either of the radiomic signatures of the arterial and portal
venous phases yielded satisfying predictive performance with
AUCs of 0.929 (95% CI 0.868–0.989) and 0.913 (95% CI
0.856–0.971) in the training cohort, and with AUCs of 0.877
(95% CI 0.764–0.991) and 0.879 (95% CI 0.735–1) in the
validation cohort. The fusion radiomic signature gained opti-
mal performance in both the training (AUC 0.970; 95% CI
0.943–0.997) and validation (AUC 0.881; 95% CI 0.760–1)
cohorts. The best cutoff value for the grade classification of
the fusion radiomic score was − 0.171. Significant difference
of the fusion radiomic score in grade 1 and grade 2/3 groups
was found in both the training (2.726 ± 1.183 vs. −

4.259 ± 4.096) and validation (1.660 ± 1.583 vs. −
1.150 ± 1.754) cohor t s wi th a p va lue < 0.001
(Supplementary Fig. S3).

Development and validation of the nomogram

A comprehensive model integrating the tumor margin and
fusion radiomic signature was established. Performances of
the clinical model, radiomic signatures, and the comprehen-
sive model are presented in Table 3. ROC curves of these
models are shown in Fig. 4. The comprehensive model
displayed the best predictive performance with AUCs of
0.974 (95% CI 0.950–0.998) and 0.902 (95% CI 0.798–1) in
the training and validation cohorts respectively. The AUCs
were much better than in the clinical model alone
(p < 0.001), which indicated a powerful incremental value of
the radiomic signature. Additionally, the patient characteris-
tics and the performance of the proposed models with training
and validation cohorts composed with each different period of
two hospitals are presented in Supplementary Table S3 and
S4. The performance of the proposed models after training
and validation cohorts randomly divided is presented in
Supplementary Table S5. Stratification analysis showed out-
standing performance in both subgroups of age and gender
(Table 4).

A nomogram based on the comprehensive model which
can provide the probability of grade 2/3 for PNETs is given
in Fig. 5a. The best cutoff value for the predicted probability to
classify grade 1 and grade 2/3 was 0.731. Calibration curves
of the nomogram are shown in Fig. 5b with good agreement in
both the training (p = 0.732) and validation (p = 0.119) co-
horts. Decision curve analysis was adopted for the assessment
of grade diagnosis (Fig. 6). The predictive nomogram obtain-
ed more net benefits than the clinical model with Btreat-all^
and Btreat-none^ strategies when the probability threshold was
greater than 1% in the training cohort and 2% in the validation
cohort.

Radiomic quality score

In addition to the prominent predictive performance, our study
got a satisfactory score of 57.7% according to the estimation
of the radiomic quality score.

Discussion

In this multicenter study, we proposed an optimal model inte-
grating clinical risk factors and the fusion radiomic signature
from the arterial and portal venous phase CT images for the
preoperative prediction of histologic grade of PNETs. Firstly,
the radiomic analysis showed that both the single-phase
radiomic signatures could discriminate grade 2/3 from grade

Fig. 3 The mean AUC for 100 times the fivefold cross-validation in the
random forest classifier constructed with different feature subset sizes.
The optimal feature subset sizes for the arterial and portal venous
phases were 15 and 10 with the best cross-validation AUC of 0.795 and
0.684 in the training cohort

Table 2 Feature numbers after feature selection

CT sequences Feature number

Intra- and
inter-observer
reproducibility
selection

Univariable
analysis
selection

MRMR
cross-validation
selection

Arterial phase 283 205 15

Portal venous phase 173 82 10
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1 with high accuracy. Secondly, the statistical analysis indicat-
ed that the clinical factor mostly related to the grade was tumor
margin; however, the clinical model building with it had lim-
ited performance. Therefore, we developed the comprehen-
sive model to test whether the radiomics signatures and clin-
ical factor were complementary. The nomogram based on the
comprehensive model obtained the most ideal performance
with AUC 0.974 and 0.902 in the training and validation co-
horts respectively; thereby, we considered it as a powerful tool
for the prediction of PNET grading and clinical decision-
making.

Previous studies have investigated the relationship between
the tumor imaging characteristic and PNET grading [10–23].
These studies were commonly based on small sample size,
utilized subjective semi-quantitative imaging descriptors, or
lacked reliable external validation. Shigeru et al concluded
that the CT ratio in dynamic CT could predict pathological
grade 3 disease in PNET with high sensitivity, specificity,
and diagnostic accuracy [10]. They did not validate the per-
formance independently and had a poor accuracy of 47% for
all grades. Belousova et al found that tumor size, arterial en-
hancement ratio, and contrast enhancement pattern in multi-
detector CTshowed an accuracy of 74.7%, 79.5%, and 74.4%,
respectively, for PNET grading prediction [15]. However,
their study lacked the validation for the combined model and
had less predictive performance. Two recent studies investi-
gated whether the CT findings and CT texture analysis have
predictive performance of PNET grading without independent
validation [18, 19]; similarly, they both obtained AUCs less
than 0.8, which was much lower than our independent exter-
nal validation results. To our knowledge, this is the first mul-
ticenter study to assess the association between histologic

grade and radiomic features in PNET patients in a single cen-
ter and to validate the consequence in another center.

For the significant predictor in the clinical model, the ill-
defined margin mostly existed in grade 2/3 in our study.
Namely, the tumor in PNET patients with higher grade was
more likely to have an ill-defined margin, which was consis-
tently proven in previous studies [11, 12, 18, 20, 21]. A pos-
sible explanation is that higher-grade tumors tend to show
more infiltration into the surrounding tissue than lower-
grade tumors [40, 41].

For the radiomic signature development, the best features
subset was selected using the MRMR feature selection algo-
rithm and was subsequently applied to the RF classifier.
MRMR was previously proven to be an effective and reliable
feature selection method for radiomics [42]. The RF classifier
was also given a stable and satisfying performance in a
radiomic analysis [43]. Consistently with previous work, our
radiomic model building with MRMR and RF showed great
AUC with robust features.

For the fusion radiomic signature, we build a multivariable
logistic regression model using the two single-phase radiomic
signatures. The fusion radiomic signature outperformed either
of the single-phase radiomic signatures. Potential reasons for
this finding may be that the combination of the two phases
could show the vascularity of PNETs more accurately than
only one phase [44]. The fusion signature could also provide
more textural information in the tumor microenvironments
since the most effective features from the two phases in this
study were texture features.

To explore clinical use, we established a nomogram based
on the comprehensivemodel as an individualized tool to predict
the risk of grade 2/3 for each PNET patient. Though the

Table 3 Predictive performance for the proposed models

Different models Training cohort (n = 104) Validation cohort (n = 34)

AUC
(95% CI)

ACC SENS SPEC PPV NPV AUC
(95% CI)

ACC SENS SPEC PPV NPV

Clinical model

Tumor margin 0.764
(0.681–0.847)

75.0% 71.2% 81.6% 87.0% 62.0% 0.625
(0.500–0.750)

58.8% 93.3% 31.6% 51.9% 85.7%

Radiomics signature

Arterial phase 0.929
(0.868–0.989)

91.4% 97.0% 81.6% 90.1% 93.9% 0.877
(0.764–0.991)

82.4% 86.7% 79.0% 76.5% 88.2%

Portal vein phase 0.913
(0.856–0.971)

89.4% 95.5% 79.0% 88.7% 90.9% 0.879
(0.735–1.000)

85.3% 86.7% 84.2% 81.3% 88.9%

Fusion signature 0.970
(0.943–0.997)

92.3% 97.0% 84.2% 91.4% 94.1% 0.881
(0.76–1.000)

85.3% 86.7% 84.2% 81.3% 88.9%

Comprehensive model

Fusion signature and tumor
margin

0.974
(0.950–0.998)

92.3% 93.9% 89.5% 93.9% 89.5% 0.902
(0.798–1.000)

88.2% 86.7% 89.5% 86.7% 89.5%

AUC area under the curve, CI confidence interval, ACC accuracy, SENS sensitivity, SPEC specificity, PPV positive predictive value, NPV negative
predictive value
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variability of CT image acquisition was found between the
training and validation cohorts of the two institutions, the pre-
dictive nomogram had strong results with a higher AUC, which
indicated a great capacity for prediction and generalization of
the model. Furthermore, more net benefits of the model for the
majority of the threshold probabilities could be derived from the
decision curve analysis, meaning that using our nomogram for
therapy strategy would get better clinical outcome. Thus, in
patients who were diagnosed with PNET preoperatively [45],
our nomogram provided a promising tool to assist radiologists
and oncologists in diagnosis of grade and treatment.
Specifically, with the stratified result of grade 1 and grade 2/3,
different treatment strategies could be applied. Patients with

grade 1 could undergo treatment of parenchyma-sparing pan-
creatic resection. And for patients with grade 2/3, the compre-
hensive treatment planning including surgical resection and
systematic therapy would be recommended [46].

This study had several limitations. Firstly, as a retrospective
study standing on multicenter cohorts, we used CT imaging with
heterogeneous scanning parameters in various companies, which
may cause potential noise in the distribution of images in the two
cohorts. Though resampling and normalization were applied to
all of the voxels in CT images in our study, further standardiza-
tion for the preprocessing of the CT images in the radiomic
analysis could be investigated. Secondly, due to limited sample
size, the number of patients with grade 3 PNETs was very small.

Table 4 Stratification analysis of the comprehensive model for identifying histologic grade

Group Training cohort Validation cohort

AUC (95% CI) ACC SENS SPEC PPV NPV AUC (95% CI) ACC SENS SPEC PPV NPV

Age (years)

≤ 53 (n = 71) 0.988
(0.969–1.000)

94.6% 92.3% 100.0% 100.0% 85.0% 0.839
(0.613–1.000)

86.7% 87.5% 85.7% 87.5% 85.7%

> 53 (n = 67) 0.972
(0.936–1.000)

91.7% 92.6% 90.5% 92.6% 90.5% 0.941
(0.840–1.000)

89.5% 85.7% 91.7% 85.7% 91.7%

Gender

Male (n = 62) 0.975
(0.941–1.000)

95.7% 100.0% 88.2% 93.8% 100.0% 0.932
(0.821–1.000)

86.7% 85.7% 87.5% 85.7% 87.5%

Female (n = 76) 0.978
(0.943–1.000)

93.0% 94.4% 90.5% 94.4% 90.5% 0.893
(0.723–1.000)

89.5% 87.5% 90.9% 87.5% 90.9%

Age is grouped by the median age

AUC area under the curve, CI confidence interval, ACC accuracy, SENS sensitivity, SPEC specificity, PPV positive predictive value, NPV negative
predictive value

Fig. 4 Comparison of receiver operating characteristics (ROC) curves for
prediction of the histologic grade. ROC curves of the clinical model,
radiomic signature for the arterial phase, portal venous phase, fusion

radiomic signature, and the comprehensive model incorporating clinical
risk factors and the fusion radiomic signature in the training (a) and
validation (b) cohorts
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Therefore, we divided the patients into grade 1 and grade 2/3
PNETs. In the future, a larger sample size could be done for the
prediction of three grades in PNETs. Thirdly, manual tumor seg-
mentation was time-consuming. A more stable and efficient
method such as automatic segmentationwith deep learning could
be applied to the radiomic analysis.

In conclusion, the proposed nomogram integrating the clin-
ical predictor tumor margin and fusion radiomic signature had
a powerful predictive capability for grade 1 and grade 2/3 in
PNET patients. We presented it as a noninvasive and practical
method to assist in the clinical diagnosis and decision-making
of PNET patients.

Fig. 6 Decision curves for the comprehensive model and clinical model
in the training and validation cohorts. The y-axis represents the net
benefit. The benefit was calculated by summing the benefits (true-
positive results) and subtracting the harms (false-positive results),
weighting by the relative harm of an undetected cancer compared with
the harm of an unnecessary treatment. The relative harm was calculated
with the Bthreshold probability p^ by formula Bp/(1 − p).^ The threshold
probability is where the expected benefit of treatment and the expected

benefit of avoiding treatment are equal [37]. The orange line measures the
benefit obtained from the comprehensive model, and the green line
measures the benefit of the clinical model. The gray line represents the
assumption that all patients were grade 2/3 (Btreat all^); the black line
represents the assumption that no patients were grade 2/3 (Btreat none^).
The comprehensive model shows the optimal net benefit in both the
training (a) and validation (b) cohorts in most of the ranges of the
threshold probability

Fig. 5 (a) The nomogram based on the comprehensive model
incorporating the clinical risk factor tumor margin and the fusion
radiomic signature. To use the nomogram, locate the margin according
to the patient information and draw a line straight up to the points axis to
obtain the score associated with the margin. Repeat for the radiomics
signature. By summing the scores of each point and locating it on the
total points and drawing a line straight down to the bottom axis, the

estimated probability of grade 2/3 could be determined. (b) Calibration
curves for the training and validation cohorts. The y-axis represents the
actual rate of grade 2/3 in the patients; the x-axis represents the
nomogram-predicted probability of grade 2/3. The black diagonal
dashed line means an ideal agreement fitted by a perfect model.
Hosmer–Lemeshow test showed good agreement of the nomogram
with p values > 0.05 in both the training and validation cohorts
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