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Abstract
Objectives Deep learning reconstruction (DLR) is a new reconstruction method; it introduces deep convolutional neural net-
works into the reconstruction flow. This study was conducted in order to examine the clinical applicability of abdominal ultra-
high-resolution CT (U-HRCT) exams reconstructed with a new DLR in comparison to hybrid and model-based iterative
reconstruction (hybrid-IR, MBIR).
Methods Our retrospective study included 46 patients seen between December 2017 and April 2018. A radiologist recorded the
standard deviation of attenuation in the paraspinal muscle as the image noise and calculated the contrast-to-noise ratio (CNR) for
the aorta, portal vein, and liver. The overall image quality was assessed by two other radiologists and graded on a 5-point
confidence scale ranging from 1 (unacceptable) to 5 (excellent). The difference between CT images subjected to hybrid-IR,
MBIR, and DLR was compared.
Results The image noise was significantly lower and the CNR was significantly higher on DLR than hybrid-IR and MBIR
images (p < 0.01). DLR images received the highest and MBIR images the lowest scores for overall image quality.
Conclusions DLR improved the quality of abdominal U-HRCT images.
Key Points
• The potential degradation due to increased noise may prevent implementation of ultra-high-resolution CT in the abdomen.
• Image noise and overall image quality for hepatic ultra-high-resolution CT images improved with deep learning reconstruction
as compared to hybrid- and model-based iterative reconstruction.
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Abbreviations
AiCE Advanced Intelligent Clear-IQ Engine
AIDR3D Adaptive iterative dose reduction

3-dimensional
CNR Contrast-to-noise ratio

CTDIvol CT dose index
DCNN Deep convolutional neural networks
DICOM Digital Imaging and Communications

in Medicine
DLP Dose-length product
DLR Deep learning reconstruction
EP Equilibrium phase
FIRST Forward-projected model-based iterative

reconstruction solution
HAP Hepatic arterial phase
HU Hounsfield units
Hybrid-IR Hybrid iterative reconstruction
MBIR Model-based iterative reconstruction
PVP Portal venous phase
ROI Region of interest
SD Standard deviation
SSDE Size-specific dose estimate
U-HRCT Ultra-high-resolution computed tomography
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Introduction

Ultra-high-resolution computed tomography (U-HRCT),
commercially available since 2017, features a smaller detector
element and tube focus size than conventional CT. U-HRCT
yields images of higher spatial resolution; their usefulness for
the examination of the lungs, coronary arteries, and peripheral
arteries has been reported [1–4]. However, compared to con-
ventional CT, U-HRCT has greater image noise due to rela-
tively insufficient incident photons on smaller detectors. As a
consequence, increased noise may prevent implementation for
abdominal examinations [1, 4, 5].

Model-based iterative reconstruction (MBIR) can improve
the image quality and potentially reduce radiation dose [6–8].
However, MBIR images are remarkably degraded due to low-
frequency noise, particularly at low radiation dose settings
[9–12]. In addition, the MBIR approach usually requires higher
computational power and longer computational time. Hybrid
iterative reconstruction (hybrid-IR) is faster than MBIR.
However, the overall imaging performance of hybrid-IR is not
as good as of MBIR in terms of the noise characteristics, spatial
resolution, and artifact reduction [6, 13–16].

Deep learning reconstruction (DLR) (Advanced Intelligent
Clear-IQ Engine [AiCE], Canon Medical Systems) is the first
commercialized deep learning reconstruction tool. It incorpo-
rates deep convolutional neural networks (DCNN) restoration
process into the reconstruction flow. For the deep learning-
based approach, given hybrid-IR images and high-dose
MBIR images as training pairs, statistical features that differ-
entiate signal from the noise and artifacts could be Blearned^
in the training process and then be Bupdated^ in the DCNN
kernel for future inference use (Fig. 1). As DCNN kernel is
trained with ideal MBIR images, we expect to see that not
only the DLR approach could generate comparable image
quality to the MBIR image but also that it takes shorter pro-
cessing time than MBIR; therefore, DLR could be useful for
reconstructing abdominal U-HRCT images. In this study, we

investigated the clinical applicability of DLR and compared
its image quality to hybrid-IR and MBIR.

Materials and methods

This retrospective study was approved by our institutional
review board; prior informed patient consent was waived be-
cause this study used existing CT images including raw data.
Patient records and information were anonymized and de-
identified prior to analysis.

Study population

We estimated the sample size needed to detect a difference
between CT images reconstructed with hybrid-IR, MBIR,
and DLR as 20 patients with an effect size of 0.85, an α of
0.013 (one third value of 0.05 because of Bonferroni correc-
tion for multiple comparison), and a statistical power of 0.8
[17]. Effect size was calculated based on the preliminary data
using images of 10 patients not included in this study.

This study included 46 consecutive patients (31 men, 15
women, age range 34–86 years; mean age, 73 years) who had
undergone hepatic dynamic CTusingU-HRCTat our institution
betweenDecember 2017 andApril 2018. The clinical indication
for hepatic dynamic CT was follow-up after surgery for malig-
nant liver tumor (n = 25), evaluation after chemotherapy for a
malignant liver tumor (n = 14), staging of a suspected malignant
liver tumor (n = 1), and screening for liver tumors (n = 6).

CT image acquisition

Images were acquired on a U-HRCT scanner (Aquilion
Precision, Canon Medical Systems). The scanning protocols
were as follows: rotation time 0.75 s, pitch factor 0.806, scan-
ning field of view 40 cm, voltage 120 kV, and tube current
250 mA. Hepatic dynamic CT images were obtained during

Fig. 1 Training and inference flowchart of deep learning reconstruction
(DLR) algorithm. a Parameters in the DCNN kernel optimized in the
training process when differences (loss) between the DCNN output and

the ideal MBIR image are stably minimized. b The DLR for the data
inference includes three major parts: data domain filtering, hybrid-IR
reconstruction, and a DCNN-based restoration module
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the hepatic arterial and the equilibrium phase (HAP, EP) in
super-high-resolution mode (1792 channels per detector row,
0.25 mm× 160 rows; matrix size, 1024) because these phases
are essential for diagnosing hepatocellular carcinoma [18–21].
An automatic bolus-tracking program was used to time the
start of scanning for each phase after contrast medium injec-
tion. The trigger threshold level was set at 200 Hounsfield
units (HU) in the abdominal aorta at the L1 vertebral body
level. HAP and EP scans were started at 17 and 152 s after
triggering. The contrast material (600 mgI/kg body weight)
was administered using a power injector (Dual Shot,
Nemoto Kyorindo) and a 20-gauge catheter inserted into an
antecubital vein. The injection duration was 30 s in all patients
and the delivery of contrast material was followed by flushing
with 30 mL of physiologic saline at the same injection rate.

Although pre-enhanced and portal venous phase (PVP)
scans were obtained for the clinical studies, they were not
evaluated in ours because they were not performed in super-
high-resolution mode.

To assess radiation exposure, we reviewed the CT dose
index (CTDIvol) and the dose-length product (DLP) recorded
as Digital Imaging and Communications in Medicine
(DICOM) data. We also calculated the size-specific dose esti-
mate (SSDE), an index in which the CTDI is corrected by the
body habitus [22, 23]. Size-dependent conversion factors were
obtained fromAAPMReport 204 [24]; they were based on the
sum of the anteroposterior and lateral dimensions at the mid-
liver level of each patient.

Image analysis

The CT images at HAP and EP were reconstructed with
hybrid-IR (Adaptive Iterative Dose Reduction 3-
Dimensional [AIDR3D, standard setting]; Canon
Medical Systems), MBIR (forward-projected model-
based iterative reconstruction solution [FIRST]; Canon
Medical Systems), and DLR (AiCE).

Table 1 Image noise and CNR on hybrid-IR, MBIR, and DLR images

Hybrid-IR MBIR DLR p values

Hybrid-IR vs MBIR Hybrid-IR vs DLR MBIR vs DLR

Image noise (HU)

HAP 24.9 (14.8–46.9) 22.2 (14.5–37.8) 13.9 (10.9–32.5) < 0.01 < 0.01 < 0.01

EP 25.5 (18.3–40.1) 23.1 (15.9–42.0) 14.6 (10.7–32.8) < 0.01 < 0.01 < 0.01

CNR at HAP

Aorta 11.7 (5.5–24.7) 12.7 (6.5–27.8) 19.9 (8.5–35.3) < 0.01 < 0.01 < 0.01

Portal vein 3.1 (− 0.8 to 6.8) 3.4 (− 0.9 to 7.5) 5.2 (− 1.3 to 12.2) 0.01 < 0.01 < 0.01

Liver 0.7 (− 0.7 to 1.9) 0.8 (− 0.6 to 1.8) 1.2 (− 1.5 to 3.2) 0.31 < 0.01 < 0.01

CNR at EP

Aorta 2.1 (1.1–4.6) 2.2 (1.1–4.8) 3.3 (1.6–7.5) 0.03 < 0.01 < 0.01

Portal vein 2.2 (1.4–4.8) 2.2 (1.4–5.5) 3.4 (1.9–8.2) 0.02 < 0.01 < 0.01

Liver 1.3 (0.7–2.8) 1.2 (0.4–2.7) 2.0 (0.9–4.6) 0.21 < 0.01 < 0.01

Data are median with ranges in parentheses

HAP hepatic arterial phase, EP equilibrium phase

Table 2 Qualitative analysis scores of hybrid-IR, MBIR, and DLR images

Hybrid-IR MBIR DLR p values

Hybrid-IR vs MBIR Hybrid-IR vs DLR MBIR vs DLR

HAP

Vessel conspicuity 3.50 (0.62) 4.33 (0.56) 3.67 (0.82) < 0.01 0.08 < 0.01

Overall image quality 2.91 (0.51) 2.59 (0.54) 4.04 (0.51) < 0.01 < 0.01 < 0.01

EP

Overall image quality 2.70 (0.55) 2.26 (0.49) 3.63 (0.49) < 0.01 < 0.01 < 0.01

Data are expressed as mean (standard deviation)

HAP hepatic arterial phase, EP equilibrium phase
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Qualitative image analysis

Two board-certified radiologists (Y.N. and K.A. with 14 and
31 years of experience in radiology, respectively) performed
consensual qualitative analysis of the CT images. They
inspected a total of 276 scans (46 × 2 × 3) of 0.25 mm section
thickness that were reconstructed with hybrid-IR, MBIR, and
DLR. They were blinded to all patient demographics and CT
parameters. The images were presented in random order on a
preset soft tissue window; the window width and level were
300 and 60 HU, respectively.

The readers were given standardized instructions and trained
on image sets from five patients not included in this study. They
ranked the images obtained from the 46 patients for vessel

conspicuity (visibility of small structures, especially the depic-
tion of the segmental branch level of the hepatic artery) on HAP
images and for overall image quality on HAP and EP images.
Vessel grading was on the 5-point Likert scale, where 1 = very
poor, 2 = suboptimal, 3 = acceptable, 4 = above average, and
5 = excellent [25]. The overall image qualitywas also scored
on the 5-point Likert scale [26, 27], where 1 = unacceptable
diagnostic image quality, 2 = subdiagnostic, 3 = average, 4 =
above average, and 5 = excellent [25].

Quantitative image analysis

Quantitative analysis of transverse images (section thickness
0.25 mm) was performed by one radiologist (M.A. with

Fig. 2 Hepatic arterial (a–c) and equilibrium phase images (d–f) of a 72-
year-old woman. Reconstruction was with hybrid-IR (a, d), MBIR (b, e),
and DLR (c, f). Compared with the hybrid-IR image, the image noise was

not reduced on the MBIR image. On the image reconstructed with DLR,
the image noise was lower than on the hybrid-IR image
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5 years of experience in radiology). For attenuation measure-
ments, regions of interest (ROIs) were placed within the
aorta, portal vein, liver, and paraspinal muscle. Aortic at-
tenuation was recorded at the celiac artery level using a
single, manually drawn ROI as large as the vessel lumen;
it avoided calcifications and/or soft plaques on the aortic
wall. Portal vein attenuation was also recorded based on a
single, hand-drawn ROI placed at the right and left portal
vein confluence level. Liver attenuation was recorded as
the mean measurement value of 4 ROIs in the right anteri-
or, right posterior, left medial, and left lateral segment of
the liver. Areas of focal changes in hepatic parenchymal
attenuation, large vessels, and prominent artifacts, if any,
were carefully avoided. Attenuation of the paraspinal

muscle was recorded, also avoiding macroscopic fat infil-
tration, at the level of the right portal vein. Each value was
calculated by averaging the three time measurements. The
standard deviation (SD) of attenuation measured in the
paraspinal muscle was used as the image noise.

For each of the image sets, the aortic, portal vein, and liver
contrast-to-noise ratio (CNR), relative to the muscle, was cal-
culated using the equation:

CNR ¼ ROIORGAN−ROIMUSCLEð Þ=N ;

where ROIORGAN is the mean attenuation of the organ of
interest, ROIMUSCLE the mean attenuation of the paraspinal
muscle, and N is the noise.

Fig. 3 Hepatic arterial (a–c) and equilibrium phase images (d–f) of a 76-year-old man. Reconstruction was with hybrid-IR (a, d), MBIR (b, e), and DLR
(c, f). The image noise was lower on the DLR image than on the other images
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Statistical analysis

Statistically significant differences were evaluated with JMP10
software (SAS Institute). Differences among CT images subject-
ed to hybrid-IR, MBIR, and DLR were determined. The two-
sided Wilcoxon signed rank test with Bonferroni correction was
applied to examine intergroup differences. Differences of
p < 0.013 for multiple comparisons using Bonferroni correction
were considered statistically significant.

For qualitative analysis, we calculated interobserver agree-
ment using the weighted kappa statistic to evaluate agreement
between the two readers. A kappa statistic in the range of
0.81–1.00 was interpreted as excellent, 0.61–0.80 as substan-
tial, 0.41–0.60 as moderate, 0.21–0.40 as fair, and 0.00–0.20
as poor agreement [28].

Results

Quantitative analysis of the image noise and CNR

As shown in Table 1, image noise was much lower on DLR
than hybrid-IR and MBIR images at HAP (median image
noise was 24.9, 22.2, and 13.9 HU for hybrid-IR, MBIR,
and DLR images, respectively; p < 0.01 for both), while there
was a little difference between hybrid-IR and MBIR images
(median image noise was 24.9 and 22.2 HU for hybrid-IR
and MBIR images, respectively; p < 0.01). On EP images,
DLR also yielded significantly lower image noise than
hybrid-IR and MBIR (median image noise was 25.5, 23.1,
and 14.6 HU for hybrid-IR, MBIR, and DLR images, respec-
tively; p < 0.01 for both); it was lower on MBIR than hybrid-
IR images (median image noise was 25.5 and 23.1 HU for
hybrid-IR and MBIR images, respectively; p < 0.01). While
there was a little difference in attenuation value of each organ
among three reconstruction methods both on HAP and EP
images (Supplemental Table 1), the aortic, portal vein, and
liver CNR was significantly higher with DLR than the other
reconstruction methods both on HAP and EP images
(p < 0.01). The difference for liver CNR on HAP images
and the aortic, portal vein, and liver CNR on EP images
between hybrid-IR and MBIR images was not significant.

Qualitative analysis

DLR showed the highest overall image scores, and MBIR the
lowest scores for both HAP and EP images (Table 2, Figs. 2,
3, and 4). All DLR images had a score of 3 (average) or higher
in terms of overall image quality. On the other hand, 17.4% of
hybrid-IR and 43.5% of MBIR images were subdiagnostic
(score = 2) at HAP. This was true for 34.8% of hybrid-IR
and 76.1% of MBIR images at EP. For vessel conspicuity,
MBIR images yielded the highest scores; the scores for DLR

and hybrid-IR images were comparable (Fig. 5). Interobserver
agreement between the two readers was substantial (kappa
value range 0.71–0.80).

Radiation exposure

The median CTDIvol, DLP, and SSDE values for hepatic dy-
namic scans were 12 .6 mGy (range 9 .7–16 .1 ) ,
1240.5 mGy cm (range 910.7–1950.5), and 17.7 mGy (range
15.6–20.4), respectively. They were slightly lower compared
to conventional hepatic dynamic CT reported as the Japanese
diagnostic reference levels [29].

Fig. 4 Hepatic arterial phase images of a 59-year-old man.
Reconstruction was with hybrid-IR (a), MBIR (b), and DLR (c). The
image noise on the DLR image was markedly lower than on the other
images. Note the improvement of image quality and better delineation not
only for the liver but also other organs such as the pancreas and kidney on
DLR image compared with hybrid-IR and MBIR images

Eur Radiol (2019) 29:6163–61716168



Discussion

We found that DLR yielded a significantly lower image noise
and higher CNRs than hybrid-IR and MBIR at both HAP and
EP. The subjective overall image quality score was significant-
ly better with DLR than hybrid-IR and MBIR. Thus, we con-
cluded that DLR can yield better image quality than hybrid-IR
and MBIR.

Although a reduction in the slice thickness degrades image
quality, we selected 0.25 mm, the thinnest, to maximize the
spatial resolution on these scans [30, 31]. In addition, image
noise was higher on U-HRCT than conventional HRCT images
due to the smaller size of the detectors [1, 4]. Thus, our protocol,
thin slice images using U-HRCT, results in worse image quality
due to increased noise as compared to conventional images.
Indeed, hybrid-IR and MBIR images were graded as
subdiagnostic (overall image quality score of 2 or lower) for
some cases (between 17.4 and 76.1%). On the other hand, over-
all image quality score of 3 (average) or higher was assigned for

all DLR images for all cases. Based on our findings, we suggest
that as DLR allows thinner slices in abdominal U-HRCT images
while maintaining image quality, DLR appears as an essential
reconstruction method for U-HRCT scanning.

MBIR images yielded significantly lower image noise than
hybrid-IR. However, MBIR resulted in the lowest scores
among the three reconstruction methods for overall image
quality. As determination of the SD is easy and quick, it is
widely used to estimate the image noise on CT scans [32, 33].
However, it yields a very limited description of the noise char-
acteristics because two images with very different noise tex-
tures may exhibit an identical SD [34]. MBIR is able to reduce
many of the high-frequency but not the low-frequency noise
components [9–11]. Therefore, we supposed that their quali-
tative image quality was not improved on MBIR images be-
cause the low-frequency noise components were not reduced.

In our study, vessel conspicuity was better on MBIR than
hybrid-IR and DLR images. MBIR yields better visualization
of small vessels than hybrid-IR because it reduces image noise

Fig. 5 Hepatic arterial phase
images of an 81-year-old woman.
Axial (a–c) and curved
multiplanar reformation (CPR)
images (d–f). Reconstruction was
with hybrid-IR (a, d), MBIR (b,
e), and DLR (c, f). On the hybrid-
IR and DLR images, the branch
level of the hepatic artery (arrow)
was visualized, but the vascular
edge was blurred and irregular; it
was sharp on the MBIR image
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while maintaining image contrast and resolution [16, 25, 35].
The DLR algorithm we applied was developed for abdominal
images and not optimized for the evaluation of vessels. Thus,
we think that DLR used in this study and MBIR are comple-
mentary for U-HRCT of the abdomen. Different DLR algo-
rithms might be needed for the evaluation of vessels.

There was a significant difference in attenuation value of
each organ among the three reconstruction methods although
the difference was small. Regarding the attenuation value of
aorta at HAP, for which the largest difference was observed,
MBIR showed the highest value (about 10 HU higher com-
pared to both hybrid-IR and DLR) as already reported [36,
37]. However, DLR yielded the higher CNR compared to
the other two reconstruction methods for all organs including
the aorta at both phases, indicating that noise reduction with
DLR may overcome the difference in attenuation value of
each organ.

Although the radiation exposure must be scrutinized [38],
dose reduction must be balanced against an acceptable level of
diagnostic accuracy. According to Pickhardt et al [12], the
ability to detect focal hepatic lesions was reduced on low-
dose MBIR images. DCNN for DLR was trained with
MBIR images acquired with a sufficient radiation dose. To
ascertain the ability to detect focal hepatic lesions on low-
dose DLR images, further studies are needed.

Our study has some limitations. The study population
was relatively small, and our investigation was retrospec-
tive and carried out at a single institution. Therefore, we
consider our findings preliminary. We enrolled 46 patients
although only 20 were required based on the power calcu-
lation. Very large samples may reject null hypotheses with
clinically negligible differences, leading that what is insig-
nificant may become significant [39]. However, the differ-
ence in image noise between DLR and other algorithms
was larger compared to standard deviation of image noise
of each reconstruction method, indicating that a significant
difference in our data was not clinically negligible even
though patient population was slightly larger compared to
the required one based on the power calculation. Also, to
avoid excessive radiation doses [29], PVP images of our
patients were not performed in super-high-resolution mode
and, consequently, were not included in this study.
However, as PVP imaging is important for the evaluation
of hypovascular hepatic metastases and of abnormalities of
the portal venous system [40], further studies including
PVP images are needed. We did not specifically evaluate
focal hepatic lesions, which should be done. Finally, there
is no external and further investigation including a larger
cohort study and a phantom study is certainly needed.

In conclusion, image noise, overall image quality, and
CNR for hepatic U-HRCT images improved with DLR com-
pared to hybrid-IR and MBIR. Thus, DLR can improve ab-
dominal CT image quality using U-HRCT.
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