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Abstract
Objectives This study was conducted in order to establish and validate a radiomics model for predicting lymph node (LN)
metastasis of intrahepatic cholangiocarcinoma (IHC) and to determine its prognostic value.
Methods For this retrospective study, a radiomics model was developed in a primary cohort of 103 IHC patients who underwent
curative-intent resection and lymphadenectomy. Radiomics features were extracted from arterial phase computed tomography
(CT) scans. A radiomics signature was built based on highly reproducible features using the least absolute shrinkage and selection
operator (LASSO) method. Multivariate logistic regression analysis was adopted to establish a radiomics model incorporating
radiomics signature and other independent predictors. Model performance was determined by its discrimination, calibration, and
clinical usefulness. The model was internally validated in 52 consecutive patients.
Results The radiomics signature comprised eight LN-status–related features and showed significant association with LN metas-
tasis in both cohorts (p < 0.001). A radiomics nomogram that incorporates radiomics signature and CA 19-9 level showed good
calibration and discrimination in the primary cohort (AUC 0.8462) and validation cohort (AUC 0.8921). Promisingly, the
radiomics nomogram yielded an AUC of 0.9224 in the CT-reported LN-negative subgroup. Decision curve analysis confirmed
the clinical utility of this nomogram. High risk for metastasis portended significantly lower overall and recurrence-free survival
than low risk for metastasis (both p < 0.001). The radiomics nomogram was an independent preoperative predictor of overall and
recurrence-free survival.
Conclusions Our radiomics model provided a robust diagnostic tool for prediction of LN metastasis, especially in CT-reported
LN-negative IHC patients, that may facilitate clinical decision-making.
Key Points
• The radiomics nomogram showed good performance for prediction of LN metastasis in IHC patients, particularly in the CT-
reported LN-negative subgroup.

• Prognosis of high-risk patients remains dismal after curative-intent resection.
• The radiomics model may facilitate clinical decision-making and define patient subsets benefiting most from surgery.
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Abbreviations
BTC Biliary tract cancer
DCA Decision curve analysis
IHC Intrahepatic cholangiocarcinoma
ICC Intraclass correlation coefficient
LASSO Least absolute shrinkage and selection operator
NPV Negative predictive value
OS Overall survival
PPV Positive predictive value
RFS Recurrence-free survival
ROC Receiver operating characteristic curve
ROI Region of interest
VIF Variance inflation factor

Introduction

Intrahepatic cholangiocarcinoma (IHC) is the second most
common primary liver malignancy after hepatocellular carci-
noma, and the global disease incidence is increasing [1].
According to macroscopic growth pattern, IHC can be cate-
gorized as mass-forming, periductal-infiltrating, or intraductal
types, and mass-forming tumor is the most common type [2].
Radical resection offers the only chance for prolonged surviv-
al, with 5-year survival rate of 15–40% [3]. Unfortunately,
fewer than 40% of IHC patients have early-stage disease that
is amenable to surgery, and tumor recurrence occurs in up to
50–70% of patients after curative-intent resection [3, 4].

Lymph node (LN) metastasis is the most prominent malig-
nant trait as well as the most relevant adverse prognostic factor
following surgery for IHCs. Metastatic nodal disease has been
reported in 20–60% of IHCs undergoing lymphadenectomy,
and median survival after resection for IHCs with LN metas-
tasis ranges from 6.6 to 24.0 months [5–7]. Despite this, the
role of routine lymphadenectomy remains controversial, espe-
cially for IHCs without nodal swelling. Although removal of
clinically apparent nodal disease is mandatory, some investi-
gators have argued that nodal dissection does not provide
therapeutic benefit [3, 8]. According to management guide-
lines, node-positive disease is a relative contraindication to
surgery, and postoperative adjuvant therapy should be strong-
ly considered for patients with nodal metastasis [3, 9].
Consequently, accurate staging of nodal status is a key step
in IHC management.

Preoperative determination of nodal status is difficult based
on conventional imaging procedures. Computed tomography
(CT) has long been the standard imaging method for assess-
ment of tumor extent but exhibits limited ability to detect
nodal involvement, with a sensitivity of 30–50% [10, 11].
Recent advances in computer-assisted imaging techniques
have facilitated the high-throughput extraction of quantitative
features from digital medical images. This approach, termed
radiomics, enables mineable high-dimensional data to be

applied within clinical decision support [12–14]. A set of im-
aging biomarkers provides a powerful tool for predicting LN
metastasis in several solid tumors [15–17]. A recent study has
demonstrated that radiomics features at portal phase CT can
facilitate prediction of nodal metastasis in biliary tract cancers
(BTCs) [18]. However, BTCs, which encompass intra- and
extrahepatic cholangiocarcinoma and gallbladder carcinoma,
are a diverse collection of tumors that may hinder the repro-
duction of results in a particular subset. Moreover, a relation-
ship has been established between arterial enhancement and
presence of LN metastasis: a relatively larger area of arterial
enhancement of IHC is associated with a lower rate of LN
metastasis [2, 19, 20]. To our knowledge, radiomics-based
approach for predicting LN metastasis in IHCs has not yet
been established.

Accordingly, the aim of this study was to develop and
validate a radiomics model for preoperative prediction of LN
metastasis in IHCs. Furthermore, we assessed the prognostic
value of the radiomics model.

Materials and methods

Patients

The ethics committee of Nanjing Medical University ap-
proved this retrospective analysis and waived the requirement
for informed consent. Patients who underwent curative-intent
resection and lymphadenectomy for IHC between June 2010
and March 2018 were identified from the institutional data-
base. Supplementary methods and Fig. S1 present the inclu-
sion and exclusion criteria as well as the patient recruitment
pathway. A total of 155 patients were enrolled and divided
into two independent cohorts: 103 patients treated between
June 2010 and January 2016 constituted the primary cohort,
while 52 patients treated from February 2016 to March 2018
constituted the validation cohort. Clinical data were obtained
by reviewing the hospital records. The cutoff for carbohydrate
antigen (CA) 19-9 level was 1000 U/ml because CA 19-9
concentration higher than 1000 U/ml is consistent with meta-
static disease [1, 10].

CT image acquisition, tumor segmentation,
and radiomics feature extraction

All patients were evaluated with contrast-enhanced CT and
speci f ic imaging parameters are deta i led in the
Supplementary methods. Two radiologists (F.P.Z. and Y.D.Z.
with 10 and 12 years of experience in abdominal imaging,
respectively), blinded to the pathologic details and prognosis,
reviewed transverse CT images in consensus to determine the
following features: (a) tumor size, defined as maximum diam-
eter on images; (b) tumor location, subclassified into perihilar
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type and peripheral type according to the presence or absence
of tumor invasion of the hepatic hilum; (c) vascular invasion,
defined as vessel occlusion, stenosis, or contour deformity
associated with tumor invasion; and (d) positive LN metasta-
sis, defined as a short-axis diameter over 10 mm, central ne-
crosis, or hyperattenuating compared with liver parenchyma
in the portal phase [6, 19, 21]. Any discrepant interpretation
was resolved through consultation.

The radiomics workflow is depicted in Fig. 1. Arterial
phase CT images at 1.5 mm thickness were retrieved for im-
age feature extraction. Tumor regions of interest (ROIs) were
manually segmented by two independent observers (see be-
low) along the primary tumor contour on each transverse slice
using an open-source software 3D Slicer (version 4.9.0; www.
slicer.org). After installation of a dependent radiomics
module, a total of 105 radiomics features, quantifying
phenotypic differences based on shape (n = 13), first-order
(n = 18), and texture (n = 74) features, were extracted from
the three-dimensional ROIs [22]. Details of feature algorithms
are described in the Supplementary methods.

Radiomics feature selection and signature
construction

A two-step procedure was devised for dimensionality reduc-
tion. First, we randomly chose 20 patients for ROI segmenta-
tion and feature extraction. To determine interobserver repro-
ducibility, ROI segmentations were performed in a blinded
fashion by one radiologist (reader 1, F.P.Z.) and one
hepatobiliary surgeon (reader 2, G.W.J. with 5 years of expe-
rience in hepatobiliary surgery and imaging); both were aware
of the diagnosis of IHC but were blinded to the clinicopatho-
logic details. To evaluate intraobserver reproducibility, reader
1 repeated the same procedure 1 month later. The remaining

image segmentations were then completed by reader 1. The
intraclass correlation coefficient (ICC) was used to assess re-
producibility of feature extraction. Only features with both
intraobserver and interobserver ICC values greater than 0.90
were initially selected. Second, the least absolute shrinkage
and selection operator (LASSO) logistic regression algorithm
[23], with penalty parameter tuning conducted by 10-fold
cross-validation, was used to select robust and nonredundant
features from the primary cohort. A radiomics signature was
created by a linear combination of selected features weighted
by their respective coefficients, and the corresponding
radiomics score was calculated for each patient.

Development, performance, and validation
of a radiomics nomogram

A radiomics model that incorporated the radiomics signature
and independent various risk factors for predicting LN metas-
tasis was built based on multivariate logistic regression anal-
ysis in the primary cohort. We checked the variables included
in the regression equations for multicollinearity using variance
inflation factor (VIF) [24]. A radiomics nomogram was then
constructed using the selected covariates to provide a visual
tool for clinical use. In addition, a clinical model was devel-
oped based on multivariate logistic regression analysis of can-
didate predictors with the exception of radiomics signature.

We determined the area under the curve (AUC) of the re-
ceiver operating characteristic curve (ROC) to assess the dis-
crimination performance of established models [25].
Differences in AUC estimates between various models were
compared using the DeLong algorithm [26]. Calibration
curves were plotted via bootstrapping with 1000 resamples
to evaluate the predictive accuracy of the radiomics nomo-
gram, accompanied by the Hosmer–Lemeshow test. Internal

Fig. 1 Workflow of necessary steps in this study. a Tumors were
contoured manually on all axial arterial phase CT slices. b Radiomics
features were extracted from within the defined tumor contours to
quantify tumor intensity, shape, and texture. c Two feature selection
steps were applied to all extracted features. d A radiomics signature
was constructed using a linear combination of selected features. The
performance of prediction models was determined using AUC value

and calibration curve. e A nomogram that incorporates radiomics
signature and independent risk factors was built to provide a more
understandable outcome measure for individualized evaluation,
followed by decision curve analysis and survival prediction. ROI,
region of interest; LASSO, least absolute shrinkage and selection
operator; ROC, receiver operating characteristic
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validation of established models was performed using an in-
dependent dataset.

All patients were divided into high-risk or low-risk metas-
tasis groups according to the radiomics nomogram. The
threshold for dichotomization was selected based on the max-
imized Youden index [27].

Clinical utility of the radiomics nomogram

To estimate the clinical utility of established models, decision
curve analysis (DCA) was performed by quantifying the net
benefits at different threshold probabilities in the validation
dataset [28].

Statistical analysis

Numerical variables were compared bymeans of the t test or
Mann–Whitney U test, and categorical variables were com-
pared using the χ2 test or Fisher’s exact test, when appro-
priate. Overall survival (OS) was computed as the interval
between the date of surgery and the date of death or last
follow-up. Recurrence-free survival (RFS) was defined as
the interval between surgery and radiographic detection of
recurrence or last follow-up. Survival curves were depicted
using the Kaplan–Meier method and compared using the
log-rank test. Univariate and multivariate Cox regression
analyses were performed to determine predictors of OS
and RFS. All variables with p value < 0.05 in univariate
analysis were selected for multivariate analysis. Statistical
analysis was done with R (version 3.4.4) with R packages
listed in the Supplementary methods. A two-sided p value <
0.05 was considered significant.

Results

Patient characteristics

Demographic and baseline characteristics of all patients
are summarized in Table 1 and Supplementary Table S1.
The rates of LN metastasis were 43.7 and 44.2% in the
primary and validation cohorts, respectively, while no sig-
nificant difference was found between the two cohorts
(p = 0.949). In total, 35 patients (51.5%, 35/68) with nod-
al metastasis were understaged and 20 patients (23.0%,
20/87) without nodal metastasis were overstaged based
on CT-reported LN status.

Feature selection and radiomics signature
construction

Of the 105 radiomics features, 67 most stable features (both
intraobserver and interobserver ICC values greater than 0.90)
were selected for subsequent analysis. Eight LN-status–relat-
ed features with nonzero coefficients in the LASSO logistic
regression model were screened based on the primary cohort
(Fig. 2). A radiomics signature was then constructed using the
calculation formula presented in the Supplementary material.
Distributions of the radiomics score and LN status for each
patient in the primary and validation cohorts are shown in
Supplementary Fig. S2.

Diagnostic validation of radiomics signature

A significant difference in radiomics score was initially
evidenced between patients with and those without LN

Table 1 Clinical characteristics of patients in the primary and validation cohorts

Characteristics Primary cohort (n = 103) Validation cohort (n = 52)

LN metastasis (−) LN metastasis (+) p value LN metastasis (−) LN metastasis (+) p value

Age, mean ± SD, years 59.9 ± 10.9 60.5 ± 8.4 0.646 60.1 ± 10.0 61.0 ± 8.7 0.644
Gender 0.755 0.829
Male 34 (58.6) 25 (55.6) 16 (55.2) 12 (52.2)
Female 24 (41.4) 20 (44.4) 13 (44.8) 11 (47.8)

Tumor location 0.630 0.463
Peripheral 36 (62.1) 30 (66.7) 16 (55.2) 15 (65.2)
Perihilar 22 (37.9) 15 (33.3) 13 (44.8) 8 (34.8)

Hepatitis B virus infection 9 (15.5) 8 (17.8) 0.759 5 (17.2) 7 (30.4) 0.262
CA 19-9 level ≥ 1000 U/ml 11 (19.0) 21 (46.7) 0.003 5 (17.2) 12 (52.2) 0.008
CT-reported vascular invasion 23 (39.7) 24 (53.3) 0.167 14 (48.3) 13 (56.5) 0.555
CT-reported tumor size > 5 cm 19 (32.8) 22 (48.9) 0.097 11 (37.9) 12 (57.2) 0.304
CT-reported LN status 0.009 0.038
LN negative 44 (75.9) 23 (51.1) 23 (79.3) 12 (52.2)
LN positive 14 (24.1) 22 (48.9) 6 (20.7) 11 (47.8)

Radiomics score, median
(interquartile range)

− 0.762
(− 1.004 to − 0.370)

0.186
(− 0.476 to 0.721)

< 0.001 − 0.876
(− 1.099 to − 0.334)

0.133
(− 0.176 to 0.386)

< 0.001

Data are the number of patients with percentage in parentheses unless otherwise indicated

LN, lymph node; SD, standard deviation; CA 19-9, carbohydrate antigen 19-9; CT, computed tomography
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metastasis in the primary cohort (p < 0.001), and then
confirmed in the validation cohort (p < 0.001). The
radiomics signature yielded an AUC of 0.8228 (95%

CI, 0.7391–0.9065) in the primary cohort and 0.8711
(95% CI, 0.7746–0.9676) in the validation cohort, indi-
cating favorable predictive efficacy.

Fig. 2 Radiomics feature
selection using a parametric
method, the LASSO logistic
regression. a Selection of tuning
parameter (λ) in the LASSO
model used 10-fold cross-valida-
tion via minimum criteria. The
AUC curvewas plotted versus log
(λ). Vertical lines were drawn at
the optimal values by using the
minimum criteria and the 1 stan-
dard error of the minimum criteria
(the 1-SE criteria). The optimal λ
value of 0.0311 with log (λ) = −
3.4694 was chosen. b LASSO
coefficient profiles of 67 selected
features. A vertical line was plot-
ted at the value selected using 10-
fold cross-validation, where opti-
mal λ resulted in eight features
with nonzero coefficients.
LASSO, least absolute shrinkage
and selection operator
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Development, performance, and validation
of prediction models

Results of multivariate regression analysis are shown in
Table 2. The VIFs of three potential predictors ranged from
1.05 to 1.09, indicating that there was no multicollinearity. A
radiomics model that incorporated two independent predictors
(radiomics signature and CA 19-9 ≥ 1000 U/ml) was con-
structed and presented as a nomogram (Fig. 3a). On the other
hand, a clinical prediction model was developed based on two
independent predictors (CT-reported LN status and CA 19-
9 ≥ 1000 U/ml) of LN metastasis without the addition of
radiomics signature.

ROC analyses comparing the discriminatory ability of the
radiomics nomogram to those of the clinical model and CT-
reported LN status alone are given in Fig. 3b, c. In the primary
cohort, the radiomics nomogram yielded the highest discrim-
ination between LN positive and negative, with an AUC of
0.8462 (95% CI, 0.7676–0.9248); the observed AUC value
was significantly higher than that of the clinical model (AUC
0.7136; 95% CI, 0.6174–0.8098; p = 0.046) and CT-reported
LN status alone (AUC 0.6238; 95% CI, 0.5313–0.7162;
p < 0.001). In the validation cohort, the radiomics model also
yielded the greatest AUC of 0.8921 (95% CI, 0.8096–0.9745)
that supported the improved predictive efficacy as compared
with either the clinical model (AUC 0.7219; 95% CI, 0.5882–
0.8555; p = 0.012) or CT-reported LN status alone (AUC
0.6357; 95% CI, 0.5071–0.7642; p = 0.001). The calibration
curve and the Hosmer–Lemeshow test statistic (p = 0.6398)
demonstrated favorable calibration of the nomogram in the
primary cohort (Fig. 3d). Good calibration was further con-
firmed in the validation cohort (Fig. 3e), and the Hosmer–
Lemeshow test yielded a p value of 0.8197, suggesting a per-
fect fit of the nomogram. Within the CT-reported LN-negative
subgroup, the AUC for the radiomics nomogram was 0.9224
(95% CI, 0.8661–0.9787), significantly higher than that for
the clinical model (AUC 0.6832; 95% CI, 0.5905–0.7758;
p < 0.001).

After obtaining risk scores from the radiomics model and
choosing the optimal cutoff value of − 0.535 (corresponding

total 41 points in the nomogram) at the point of the maximum
Youden index from the entire cohort, all patients were classi-
fied into low-risk or high-risk group. Significant discrimina-
tion of LN metastasis between high-risk and low-risk groups
was observed in the entire cohort and the CT-reported LN-
negative subgroup (both p < 0.001) (Supplementary
Table S2). According to this risk classifier, the radiomics mod-
el achieved a sensitivity of 86.8% and a specificity of 73.6%
for predicting LN status in the entire cohort, while positive
predictive value (PPV) and negative predictive value (NPV)
were 72.0 and 87.7%, respectively. Moreover, overall accura-
cy of this risk classifier in the CT-reported LN-negative sub-
group was 87.3%, with a sensitivity of 94.3%, a specificity of
83.6%, PPVof 75.0%, and NPVof 96.6% (Fig. 4).

Clinical use

DCA for the radiomics nomogram, clinical model, and CT-
reported LN status is presented in Fig. 5. The radiomics-based
nomogram provides a better net benefit than Btreat-all^ or
Btreat-none^ schemes and other two models for all threshold
probabilities.

Preoperative predictors of survival

Median OS and RFS for the entire cohort were 30.3 and
18.1 months after a median follow-up of 14.0 (range 1.1–
97.9) months. Kaplan–Meier curves demonstrated that the
radiomics nomogram was significantly associated with
OS and RFS in the overall cohort (both p < 0.001)
(Fig. 6). Although median OS was not available, median
RFS was 51.0 months in the low-risk group, with estimat-
ed 5-year OS rate of 59.7% and RFS rate of 44.1%.
However, median OS and RFS in the high-risk group
were only 12.2 and 8.8 months, with estimated 5-year
OS rate of 8.7% and RFS rate of 6.1%. Univariate and
multivariate Cox regression analyses confirmed that high-
risk LN metastasis was an independent preoperative factor
for unfavorable OS (HR 3.65; 95% CI, 1.95–6.80;

Table 2 Multivariate logistic
regression analysis for LN
metastasis in the primary cohort

Variables Radiomics model Clinical model *

Odds ratio (95% CI) p value Odds ratio (95% CI) p value

CA 19-9 ≥ 1000 U/ml 4.107 (1.433–11.771) 0.009 3.372 (1.367–8.319) 0.008

CT-reported LN status 1.169 (0.401–3.404) 0.775 2.668 (1.116–6.379) 0.027

Radiomics signature 7.309 (2.821–18.942) < 0.001 NA NA

CI, confidence interval; CA 19-9, carbohydrate antigen 19-9; CT, computed tomography; LN, lymph node; NA,
not available

*A clinical model was built based on independent predictors of nodal metastasis without the addition of radiomics
signature
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Fig. 3 Radiomics nomogram developed with ROC and calibration
curves. A radiomics nomogram was established based on the
primary cohort, with radiomics signature and preoperative CA
19-9 level incorporated (a). Comparison of ROC curves between
radiomics nomogram, clinical model, and CT-reported LN status

alone for prediction of LN metastasis in the primary (b) and
validation (c) cohorts. Calibration curves of radiomics nomogram
in the primary (d) and validation (e) cohorts. ROC, receiver op-
erating characteristic; LN, lymph node

Eur Radiol (2019) 29:3725–3735 3731



p < 0.001) and RFS (HR 2.77; 95% CI, 1.58–4.84;
p < 0.001), as was preoperative CA 19-9 level (Table 3).

With the addition of pathologic results, actual LN status
and radiomics nomogram were evaluated separately in multi-
variate Cox regression analyses because of collinearity be-
tween the two variables; our radiomics nomogram predicted
survival outcomes in a manner similar to actual LN status
(Supplementary Tables S3 and S4).

Discussion

In this study, we investigated the utility of a radiomics-
based model to predict LN metastasis in patients with
IHCs before surgery. A radiomics signature consisted of

eight robust features and successfully stratified patients
according to their statistical risk of LN metastasis. An
easy-to-use radiomics nomogram that incorporates
radiomics signature and CA 19-9 level achieved signifi-
cantly better performance than clinical prediction model
and nodal morphology. Moreover, the predicted LN me-
tastasis risk according to our radiomics nomogram
emerged as an independent preoperative predictor of sur-
vival outcomes following curative-intent surgery, thereby
providing important information for medical decision
support.

Discrimination of malignant from benign nodes on cross-
sectional imaging with traditional practice of visual interpre-
tation remains challenging. In this study, enhanced CT for
nodal staging was inaccurate in up to 35% of patients and,

Fig. 5 Decision curve analysis for
each model in the validation
dataset. The y-axis measures the
net benefit. The red line repre-
sents the radiomics nomogram.
The yellow line represents the
clinical prediction model. The
blue line represents CT-reported
LN status alone. The gray dotted
line represents the assumption
that all patients had LN metasta-
sis. The black dotted line repre-
sents the assumption that no pa-
tients had LN metastasis. LN,
lymph node

Fig. 4 An example of how to use the radiomics nomogram to predict LNmetastasis in a 61-year-old male patient with radiologically negative LN. ROI,
region of interest; LN, lymph node
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therefore, should not be considered as a valid alternative to
perform lymphadenectomy. Although positron emission to-
mography scans have beneficial effects for assessment of oc-
cult nodal metastasis, the reported sensitivity is merely 13–
38% [11]. These data suggest that current imaging modalities
based on morphologic criteria or metabolic activity fail to
accurately predict nodal status. This may be attributed to small
nodal metastasis and nonspecific inflammatory hyperplasia
[29, 30]. Alternatively, inter- and intratumor heterogeneity
indicates a high propensity for metastatic disease [31].
However, information derived from a standard workup with
conventional imaging refers to simple semantic traits, which
have limited the potential for precision medicine. Conversely,
radiomics approaches provide important complementary data
on the imaging phenotype that may encompass a wealth of
information. Among the eight selected radiomics features, five
texture features describe the patterns or spatial distribution of
voxel intensities within the ROI and, therefore, capture tumor

heterogeneity; a greater value is indicative of more heteroge-
neity and tumor metastasis. For predicting LN metastasis, the
radiomics signature derived from arterial phase images in this
study achieved AUC over 0.80 in IHCs, better than that de-
rived from portal venous phase images in BTCs [18]. The
radiomics-based predictive tool serves as a better surrogate
of LN metastasis than do nodal morphology. Given that LN
positivity is comparable between the primary and validation
sets, our data suggest that the proposed radiomics nomogram
facilitates individualized prediction of LN metastasis and may
have broad clinical applicability.

In a study by Yoh et al [32], a clinical risk score, consisting
of CA 19-9 level, hilar invasion, and CT-reported LN status,
showed good discrimination for LN metastasis in IHCs, with
an AUC of 0.874; however, no validation was performed. As
an alternative, a clinical prediction model was also developed
without radiomics signature in this study. The clinical model
incorporates preoperative CA 19-9 level and CT-reported LN

Fig. 6 Survival of patients stratified by the risk classification according to
the radiomics nomogram in the entire cohort (n = 155). Overall survival
(a) and recurrence-free survival (b) were significantly worse in patients at

high risk of lymph node metastasis compared with those at low risk after
curative-intent resection. Shaded areas represent 95% confidence
intervals

Table 3 Uni- and multivariate Cox regression analyses of preoperative predictors of overall and recurrence-free survival

Variables Overall survival Recurrence-free survival

Univariate Multivariate Univariate Multivariate

HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value

Age (≥ 60 vs < 60 years) 1.50 (0.91–2.45) 0.110 1.01 (0.65–1.56) 0.950
Sex (male vs female) 1.36 (0.84–2.22) 0.211 1.12 (0.73–1.73) 0.600
Tumor location (hilar vs peripheral) 1.51 (0.94–2.43) 0.088 1.64 (1.07–2.51) 0.024 0.87 (0.52–1.45) 0.596
Hepatitis B virus infection (yes vs no) 0.85 (0.43–1.58) 0.601 1.04 (0.60–1.81) 0.878
CA 19-9 level (≥ 1000 vs < 1000 U/ml) 3.88 (2.38–6.32) < 0.001 1.95 (1.11–3.43) 0.020 3.73 (2.37–5.86) < 0.001 2.11 (1.16–3.84) 0.015
CT-reported tumor size ( 5 vs ≤ 5 cm) 1.23 (0.77–1.99) 0.388 0.90 (0.58–1.41) 0.647
CT-reported vascular invasion (yes vs no) 0.99 (0.62–1.59) 0.964 1.19 (0.78–1.82) 0.424
CT-reported LN status (positive vs negative) 1.76 (1.10–2.81) 0.019 1.32 (0.80–2.17) 0.274 1.73 (1.13–2.65) 0.012 1.40 (0.89–2.20) 0.145
Radiomics nomogram (high risk vs low risk) 5.05 (2.90–8.81) < 0.001 3.65 (1.95–6.83) < 0.001 3.92 (2.44–6.32) < 0.001 2.77 (1.58–4.84) < 0.001

HR, hazard ratio; CI, confidence interval; CA 19-9, carbohydrate antigen 19-9; CT, computed tomography; LN, lymph node
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status, showing better predictive efficacy than CT-reported LN
status alone, but significantly inferior to the radiomics nomo-
gram. Note that 34.3% of patients (35/102) harbored radiolog-
ically occult nodal metastasis in this study. For patients with
macroscopically normal nodes on CT images, our score-based
risk classifier had 87.3% accuracy for detection of nodal in-
volvement and low-risk patients showed an actual metastasis
rate of only 3.4%.

Promisingly, our radiomics nomogram showed highly sig-
nificant differences in survival outcomes between IHCs predict-
ed to have high-risk and low-risk LN metastases. Patients at
high risk of LN metastasis according to our radiomics nomo-
gram had a 5-fold increased risk of death and 4-fold increased
risk of disease recurrence compared with low-risk patients.
Given that long-term outcomes in the high-risk group were
not satisfactory even after curative-intent resection, neoadjuvant
therapy may be indicated for high-risk subsets to evaluate tu-
mor biology and define patients most likely to benefit from
surgical intervention. Accordingly, our radiomics-based model
may alter indications for surgery, thus being applied within
clinical decision support systems for personalized treatment.

The current study had several limitations. First, the model
is established based on single-center data and prospective
multicenter studies are needed to further validate our results.
Second, the imaging–surgical–pathologic correlation of LN
metastasis was not assessed on a station-by-station basis.
False-negative diagnosis of nodal metastasis cannot be ruled
out due to inadequate LN sampling. Additionally, tumor loca-
tion was not associated with LN metastasis in this study; how-
ever, some investigators have reported that nodal metastasis is
more frequent in IHCs of large-duct type than in those of
small-duct type [2, 33, 34]. This discrepancy may be ex-
plained considering the interreader variance in imaging
interpretations.

In conclusion, we proposed and internally validated a
radiomics nomogram to predict LNmetastasis in IHC patients
before surgery, especially in the CT-reported LN-negative
subgroup. This easy-to-use nomogram predicts nodal metas-
tasis with high accuracy and risk stratifies survival outcomes;
thus, our radiomics model may facilitate clinical decision-
making and define patient subsets benefiting most from
surgery.
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