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Abstract
Objectives To explore the value of combining apparent diffusion coefficients (ADC) and texture parameters from diffusion-
weighted imaging (DWI) in predicting the pathological subtypes and stages of thymic epithelial tumors (TETs).
Methods Fifty-seven patients with TETs confirmed by pathological analysis were retrospectively enrolled. ADC values and
optimal texture feature parameters were compared for differences among low-risk thymoma (LRT), high-risk thymoma (HRT),
and thymic carcinoma (TC) by one-way ANOVA, and between early and advanced stages of TETs were tested using the
independent samples t test. Receiver operating characteristic (ROC) curve analysis was performed to determine the differenti-
ating efficacy.
Results The ADC values in LRT and HRT were significantly higher than the values in TC (p = 0.004 and 0.001, respectively),
also in early stage, values were significantly higher than ones in advanced stage of TETs (p < 0.001). Among all texture
parameters analyzed in order to differentiate LRT from HRT and TC, the V312 achieved higher diagnostic efficacy with an
AUC of 0.875, and combination of ADC and V312 achieved the highest diagnostic efficacy with an AUC of 0.933, for
differentiating the LRT fromHRTand TC. Furthermore, combination of ADC andV1030 achieved a relatively high differentiating
ability with an AUC of 0.772, for differentiating early from advanced stages of TETs.
Conclusions Combination of ADC and DWI texture parameters improved the differentiating ability of TET grades, which could
potentially be useful in clinical practice regarding the TET evaluation before treatment.
Key Points
• DWI texture analysis is useful in differentiating TET subtypes and stages.
• Combination of ADC and DWI texture parameters may improve the differentiating ability of TET grades.
• DWI texture analysis could potentially be useful in clinical practice regarding the TET evaluation before treatment.
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Abbreviations
ADC Apparent diffusion coefficient
CT Computed tomography
DWI Diffusion-weighted imaging
FOV Field of view
HRT High-risk thymoma
LRT Low-risk thymoma
MRI Magnetic resonance imaging
NEX Number of excitations
ROC Receiver operating characteristic
ROI Region of interest
TC Thymic carcinoma
TE Echo time
TETs Thymic epithelial tumors
TR Repetition time
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VOI Volume of interest
WHO World Health Organization

Introduction

Thymic epithelial tumors (TETs) are relatively rare tu-
mors, accounting for 0.2–1.5% of adult malignancies,
but they represent the most common primary tumors of
the anterior mediastinum [1, 2]. Masaoka staging and
World Health Organization (WHO) pathological classifi-
cation are the major prognostic indicators in addition to
resectability [3, 4]. Clinical management of TETs is main-
ly dependent on the pathological subtypes and stages [5].
Early-stage (stages I and II) TETs are generally treated
with surgery, and advanced stage (stages III and IV) of
TETs frequently recommend a multimodality treatment
regime [5–9]. Therefore, it is critically important to accu-
rately identify the risk grades of TETs before treatment for
guiding treatment decision-making.

Imaging diagnosis and risk grades of TETs would be valu-
able and desirable for determining appropriate treatment strat-
egies [10]. Computed tomography (CT) and conventional
magnetic resonance imaging (MRI) are used as routine imag-
ing modalities for TET patients, and they can provide detailed
morphologic information regarding tumor location, shape,
contour, homogeneity, infiltration, and so on [11–14].
Although conventional imaging showed considerable poten-
tial, these examination methods depend on qualitative param-
eters, with many degrees of overlap among different entities,
and cannot quantitatively assess the subtypes and stages of
TETs accurately [4].

With the technical advances in fast MR imaging,
diffusion-weighted imaging (DWI) has been successfully
used in studies of lung cancer, mediastinal tumors, and
pleural lesions [15–17]. DWI is considered the most sen-
sitive method to detect the differences of water molecular
diffusion in living tissues [18], and the apparent diffusion
coe f f i c i en t (ADC) va lue ob ta ined by us ing a
monoexponential model, providing information on tumor
cellularity, can be potentially useful in quantitatively dif-
ferentiating the grades of TETs [9, 19, 20].

Texture analysis evaluates the distribution of signal inten-
sity at a pixel level within a tumor to quantify the tumor
heterogeneity, which occurs due to variations in genomic sub-
types, cell proliferation or apoptosis, metabolic activity, vas-
cular structure, and other factors [21]. Comparing with mor-
phological analysis of conventional imaging, texture parame-
ters provide a more detailed and quantitative information on
tumor composition through a pixel-by-pixel analysis. A series
of texture analysis studies have demonstrated a potential role
in differential diagnosis, staging, and predicting prognosis on
different tumors [22–27]. However, it remains largely

unknown whether DWI texture analysis can improve the effi-
cacy in predicting the grades of TETs.

In the present study, we aimed to evaluate the potential
value of combining ADC and DWI texture parameters in
predicting the pathological subtypes and stages of TETs
preoperatively.

Materials and methods

Subjects

This retrospective single-center study was approved by the
local Ethics Committee, and informed consent was waived.

Between December 2013 and March 2016, 91 consec-
utive patients with suspected TETs based on CT
underwent conventional MRI and DWI examination of
the thorax, and the final diagnosis was based on patholog-
ical analysis. Of these, 20 patients were excluded for non-
TETs diagnosis based on pathological evaluation, 11 pa-
tients were excluded for poor image quality or motion
artifact, and 3 patients were excluded for solid part of
the tumor < 2.0 cm in size. The final study population
was comprised of 57 patients (36 men, 21 women; mean
age, 48.9 ± 11.4 years) with newly diagnosed TETs ac-
cording to the pathological results (Fig. 1 and Table 1).

Thorax MRI protocol

All patients were examined preoperatively with the same
imaging acquisition protocol on a 3.0-T whole-body sys-
tem (MR750, GE Healthcare) with a 40-mT/m maximum
gradient capability and a standard 8-channel torso coil.
Conventional MRI and DWI were performed in regular

Fig. 1 Flow diagram of patient selection, quantitative metrics, and
grouping
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sequence during the same examination. The conventional
MRI protocol included respiratory triggering T1-weighted
spin-echo in the axial plane, T2-weighted fast spin-echo
in the axial planes and coronal planes, and axial T2-
weighted turbo spin-echo images with fat suppression.
Subsequently, DWI sequences (b = 1000 s/mm2) were per-
formed with a single-shot diffusion-weighted spin-echo
echo-planar sequence. We used the respiratory triggering
and chemical shift-selective fat suppression technique to
reduce the artifacts. Parallel imaging was used with an
acceleration factor of 2. A local shim box covering the
whole thorax was applied to minimize the susceptibility
artifacts. Other parameters were as follows: TR/TE,
6000 ms/51 ms; matrix size, 96 × 128; FOV, 40 cm ×
40 cm; slice thickness, 5 mm; gap, 0.5 mm; NEX, 4.
The total scan time was approximately 1 min and 33 s.

ADC value measurement

All data were analyzed on a GE ADW4.6 workstation. The
mean ADC values were measured independently by one ex-
perienced radiologist (B.L., with 15 years of experience in
MRI) using a commercial software (Functool 9.4.05, GE
Healthcare). He was aware that the patients had TETs, but
blinded to the pathological subtypes of the tumors. First, he
reviewed the conventional MR images carefully to determine
the solid part of each tumor. Next, the DWI data were ana-
lyzed. Two circular regions of interest (ROIs) were manually
drawn using an electronic cursor in the slice containing the
largest cross-sectional area, which were placed to include the
solid tumor elements by defining ROIs based on the relatively
high signal intensity on the DW image (bright region, b =
1000 s/mm2, as shown in Fig. 2a) or the relatively low ADC
value in the ADC map (deep-blue region, as shown in Fig.
2b), avoiding large vessels and hemorrhagic, cystic, and ne-
crotic areas. The mean ROI area was 46.9 ± 20.2 mm2 (range,
11.5–88.0 mm2). The ADC value was calculated by fitting the
b0 image and DW images at 1000 s/mm2b value into the
conventional ADC equation (Eq. (1)) [28]:

Sb=S0 ¼ exp −b ADCð Þ ð1Þ

The ADC maps were generated automatically (as shown in
Fig. 2b) and the mean ADC values within two ROIs were
obtained. The final ADC is the average of the ADC values
of two ROIs.

DWI texture analysis

Tumor segmentation

All images were anonymized and stored in DICOM format.
One experienced radiologist (B.L., with 15 years of experi-
ence in MRI) manually segmented the tumor area on axial
DW images by using commercial software applications,
NordicICE (Version 4.0.4, NordicNeuroLab). A volume of
interest (VOI) was drawn manually around the entire cross-
sectional tumoral region in three consecutive slices containing
the largest cross-sectional area on DW images in a slice-by-
slice method. Care was taken to exclude adjacent tissues,
attempting to maintain an approximate distance of 1–2 mm
away from the tumor margin to minimize the partial volume
phenomenon (Fig. 2c).

Feature extraction

Using a non-commercial Analysis-Kit software (GE
Healthcare), the quantitative features were extracted on DW
images based on the drawn VOI in the previous step. Forty-

Table 1 Clinical and demographic characteristics of 57 patients with
thymic epithelial tumor

Patient characteristics

Age (years)

Mean ± SD 48.9 ± 11.4

Sex—no. (%)

Males 36 (63.2)

Females 21 (36.8)

Major symptoms or signs—no. (%)

No symptom 10 (17.5)

Myasthenia gravis 15 (26.3)

Chest pain 14 (24.6)

Respiratory symptoms 11 (19.3)

Other 7 (12.3)

Method for obtaining pathologic results—no. (%)

Surgery 47 (82.5)

Puncture biopsy 10 (17.5)

Masaoka–Koga stage—no. (%)

Stage I 17 (29.8)

Stage II 15 (26.3)

Stage III 7 (12.3)

Stage IV 18 (31.6)

WHO classification—no. (%)

Thymoma 44(77.3)

A 1 (1.8)

AB 8 (14.0)

B1 3 (5.3)

B2 23 (40.4)

B3 9 (15.8)

Thymic carcinoma 13 (22.7)

Squamous cell carcinoma 7 (12.3)

Adenocarcinoma 3 (5.2)

Neuroendocrine carcinomas 3 (5.2)
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two first-order histograms, 983 second-order textures (432
gray-level co-occurrence matrix, 540 gray-level run length
matrix, and 11 gray-level size zone matrix), 9 form factors,
and 10 Haralick features were extracted; thus, a total of 1044
quantitative features were obtained from the original images.
Detail descriptions regarding the quantitative features extract-
ed in this study are presented in Supplemental file (Texture
parameters description.docx).

Feature selection

Due to the large number of features, we applied a three-step
feature selection process to remove irrelevant or redundant
features and identify ones that are the most informative.
First, one-way ANOVAwas used to test for significant differ-
ences of texture features among low-risk thymoma (LRT),
high-risk thymoma (HRT), and thymic carcinoma (TC)
groups, and features with p value < 0.01 were kept for further
feature selection. Similarly, independent samples t test was
used to test for significant differences of texture features be-
tween early and advanced TETs, and p < 0.05 as the selecting
criteria. Further reduction of features was conducted by
Pearson’s correlation tests. When the Pearson correlation co-
efficient of any two features was larger than 0.9, one of them
was selected at random, and the rest could be treated in the
same manner [29]. Finally, the optimal feature with the best
discriminative performance from similar category was
selected.

Pathologic diagnosis

The final diagnosis was determined by surgical or puncture
biopsy specimen and confirmed with pathologic analysis,
which was performed by an expert in the pathology depart-
ment, who was blinded to the MR findings. Based on the
criteria of the 2004 World Health Organization (WHO)

histological classification and Jeong simplification classifica-
tion of the thymic tumors [30, 31], TETs were divided into
three subgroups: LRT (types A, AB, and B1), HRT (types B2
and B3), and TC. Early (stages I and II) and advanced stages
(stages III and IV) of TETs were defined according to the
Masaoka staging system [3].

Statistical analysis

The Kolmogorov–Smirnov (K–S) test was used to assess
the normality of data distributions. Numerical variables
with normal distribution were denoted as mean and stan-
dard deviation. The ADC value and DWI texture param-
eters in TETs were compared for differences among LRT,
HRT, and TC groups with one-way ANOVA (equal vari-
ances assumed) or Brown–Forsythe test (equal variances
not assumed), and further post hoc multiple comparisons
were performed with Bonferroni test (equal variances as-
sumed) or Dunnett’s T3 test (equal variances not as-
sumed). The ADC value and texture parameters between
early (Masaoka stages I and II) and advanced (stages III
and IV) stages of TETs were tested for differences using
the independent samples t test. The binary logistic regres-
sion analysis was used in evaluating the effects of combi-
nation of multiple parameters. Receiver operating charac-
teristic (ROC) curve analyses were performed to deter-
mine optimum thresholds for differentiating the defined
groups by various parameters, and also to calculate the
sensitivity, specificity, and area under the curve (AUC).
The leave one out cross-validation (LOOCV) was used in
resampling in the area under the ROC curve. All statisti-
cal analyses above were performed with IBM SPSS 20.0
software (IBM Corp). Differences between the AUCs
were compared by using a Delong test and performed
using Medcalc version 18.5 software (MedCalc).
Statistical significance was accepted as p < 0.05.

Fig. 2 The schematic diagram of tumor segmentation. Two circular
regions of interest were drawn to include the solid tumor elements by
defining ROIs based on the relatively high signal intensity on the DW
image (a, bright region, b = 1000 s/mm2), or the relatively low ADC

value in the ADC map (b, deep-blue region), and a volume of interest
(VOI) was drawn around the entire cross-sectional tumor region in three
consecutive slices on DW images (c)
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Results

Demographic characteristics

Table 1 exhibits the demographic characteristics of the
patients. The major clinical features of the patients include
myasthenia gravis (26.3%; 15 of 57 patients), chest pain
(24.6%; 14 of 57), respiratory symptoms (19.3%; 11 of 57),
and others (12.3%; 7 of 57), and no symptom in 10 patients
(17.5%).

Forty-seven TET patients were staged based on surgical
specimen, and the other 10 advanced-stage patients who were
proved by puncture biopsy were staged by the presence of
pleural or pericardium implants or metastasis at imaging.
According to the Masaoka stages, 17 (29.8%) patients were
in clinical stage I, 15 (26.3%) in clinical stage II, 7 (12.3%) in
stage III, and 18 (31.6%) in stage IV. As for the pathological
subtypes, 12 patients had LRT (types A (n = 1), AB (n = 8),
and B1 (n = 3)); 32 HRT (types B2 (n = 23) and B3 (n = 9));
and 13 TC (squamous cell carcinoma (n = 7), adenocarcinoma
(n = 3), and neuroendocrine carcinomas (n = 3)). The relation-
ship between Masaoka stage and the simplified WHO histo-
logic classification is shown in Table 2. None of LRTs was in
the advanced stage (stages III and IV) compared with 12 of 32
(37.5%) HRTs, and all of 13 TC patients.

Comparison of ADC values and DWI texture
parameters among low-risk thymomas, high-risk
thymomas, and thymic carcinomas

After feature selection, seven texture parameters with good
discriminative performance were obtained, including V80

(Clus ter Shade_angle90_of f se t1 ) , V140 (GLCM
En t ropy_A l lD i re c t i on_o f f s e t 3 ) , V 1 5 3 (Clu s t e r
Prominence_AllDirection_offset3_SD), V204 (GLCM
E n t r o p y _ a n g l e 0 _ o f f s e t 4 ) , V 2 9 6 ( C l u s t e r
Shade_Al lDirec t ion_of f se t6_SD ) , V312 (Cluster
Shade_ang l e45_o f f s e t6 ) , and V735 (Shor t Run
Emphasis_AllDirection_offset5_SD). The statistic results of
the ADC and selected texture parameters among LRTs,
HRTs, and TCs are shown in Table 3 and Fig. 3.

The mean ADC values in LRTs or HRTs were significantly
higher than ones in TC groups according to the one-way
ANOVA (ADC, 1.63, 1.30, and 0.86 × 10−3 mm2/s, p =
0.004 and 0.001, respectively), while there were no significant
differences in ADC values between the LRT and HRT groups
(p > 0.017). With regard to 7 selected DWI texture features,
significant differences were found among LRT, HRT, and TC
groups (all p < 0.05). After further post hoc multiple compar-
isons, V80 and V312 values in LRTs were significantly higher
than ones in HRT or TC groups (all p < 0.017).

Comparison of ADC values and DWI texture
parameters between early and advanced stages
of TETs

After feature selection, nine texture parameters with better
discriminative performance remained, including V57 (Cluster
Prominence_AllDirection_offset1_SD), V204 (GLCM
E n t r o p y _ a n g l e 0 _ o f f s e t 4 ) , V 2 7 8

(Corre la t ion_ang le135_o f f se t5 ) , V296 (Clus t e r
Shade_AllDirection_offset6_SD), V735 (Short Run
Emphasis_AllDirection_offset5_SD), V920 (High Gray-Level
Run Emphasis_AllDirection_offset8_SD), V1025 (Sphericity),
V1030 (Maximum 3D Diameter), and V1033 (Spherical
Disproportion). The statistic results of the ADC and selected
texture parameters between early and advanced TETs are
shown in Table 4 and Fig. 4.

ThemeanADC value in early-stage TETs was significantly
higher than that in advanced-stage TETs (1.48 vs. 1.00 ×
10−3 mm2/s, p < 0.001). As for the nine selected DWI texture
parameters, significant differences were found between early
and advanced stages of TETs (all p < 0.05).

ROC analysis

Based on the ROC analyses, the V80 and V312 values achieved
higher diagnostic efficacy with an AUC of 0.862 and 0.875,
the same sensitivity of 75.0%, and specificity of 88.1% and
90.5%, for differentiating the LRT from HRT and TC at the
cutoff value of 1.29 × 106 and 5.00 × 105, respectively. As for
the ADC value, the AUC, sensitivity, specificity, and the cut-
off value for differentiating the LRT from HRT or TC were
0.746, 50.0%, 90.5%, and 1.86 × 10−3 mm2/s, respectively. In
addition, we made a binary logistic regression by using the
group as a dependent variable and using V80 and V312 or ADC
and V312 as covariates, and then acquired each patient’s pre-
dicted probability (p value). These p values were then ana-
lyzed by ROC curve analysis. Logistic (ADC, V312) achieved
the highest diagnostic efficacy with an AUC of 0.933, sensi-
tivity of 95.2%, and specificity of 91.7%, and logistic (V80,
V312) did not improved the differentiating efficacy with an
AUC of 0.877 (Table 5 and Fig. 5a). Pairwise comparison of
the AUCs revealed that AUC of logistic (ADC, V312) was

Table 2 Relationship between histopathological subtypes andMasaoka
stages of thymic epithelial tumors

LRT (n = 12) HRT (n = 32) TC (n = 13) Total

Stage I 9 (75.0%) 8 (25.0%) 0 17 (29.8%)

Stage II 3 (25.0%) 12 (37.5%) 0 15 (26.3%)

Stage III 0 3 (9.4%) 4 (30.8%) 7 (12.3%)

Stage IV 0 9 (28.1%) 9 (69.2%) 18 (31.6%)

LRT, low-risk thymoma;HRT, high-risk thymoma; TC, thymic carcinoma
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significantly higher than AUC of ADC value for differentiat-
ing the LRT fromHRTand TC (p = 0.0147), but no significant
differences were found between AUCs from any other param-
eters (all p > 0.05).

As shown in Table 5 and Fig. 5b, for differentiating early
from advanced stages of TETs, the ADC value obtained a
relatively high differentiating ability with an AUC of 0.755,
sensitivity of 68.8%, and specificity of 76.0% at the cutoff
value of 1.18 × 10−3 mm2/s. The AUC, sensitivity, and spec-
ificity for V204, V1030, and logistic (ADC, V1030), respectively,
were as follows: V204, 0.720, 68.0%, and 75.0%; V1030, 0.726,
92.0%, and 56.3%; and logistic (ADC, V1030), 0.772, 84.0%,
and 65.6%. Pairwise comparison of the AUCs revealed no
significant differences between AUCs from the above param-
eters for differentiating early from advanced stages of TETs
(all p > 0.05).

In the discriminant analysis performed across the two sub-
types (LRT vs. HRT and TC), 92.6% of original or cross-
validated grouped cases were correctly classified by ADC+
V312, and 71.9% of original or cross-validated grouped cases
were correctly classified across the two stages (early vs. ad-
vanced stages) by ADC+V1030 according to the LOOCV
procedure.

Discussion

As a crucial big-data source for the mining of large infor-
mation, digital medical images are routinely acquired for
almost every patient with tumor, and texture analysis is
rapidly becoming a noninvasive means of lesion charac-
terization and classification for improved decision support
[32]. In this study, we evaluated whether the DWI texture
analysis could be used to predict the histological subtypes

and stages of TETs. The results revealed significant dif-
ferences of several texture parameters in different patho-
logical subtypes or stages of TETs, and combination of
ADC and V312 significantly improved the differentiating
ability of subtypes than ADC alone, which could poten-
tially be used in clinical practice regarding the TET eval-
uation before treatment.

Stage and histological type were two of the most important
factors that bridge the biology and clinical behavior of TETs
[33]. WHO histological subtypes of TETs were correlated
with clinical stages [19, 34]. Accurate identification of TET
risk grades before treatment is a crucial question facing clini-
cians and radiologists for guiding therapeutic strategies. In this
study, all of the LRTs were early stage, and most of HRTs and
all TCs were advanced disease. Therefore, to a certain extent,
pathological classification was correlated with the clinical
stage of TETs.

Previous studies showed that the ADC value was helpful in
differentiating different subtypes or stages of TETs [9, 19, 20].
Similarly, our results also found different mean ADC values
among different subtypes or stages of TETs. Comparing with
the LRT or early-stage TETs, the HRT and TC or advanced-
stage TETs have more significantly enlarged nuclei and show
hypercellularity, consequently leading to the decreased ADC
value [19, 20].

The various parameters derived from imaging texture
analysis are biologically regarded as good indices of tu-
mor heterogeneity, which were thought to result from re-
gional differences in tumor cellularity, proliferation, an-
giogenesis, hypoxia, and necrosis, all of which are related
to tumor risk grades [35, 36]. Two recent studies differ-
entiated the pathological subtypes of TETs using PET/CT
textural features and demonstrated its potential value in
TET tumor grades [27, 35]. In this study, the results

Table 3 ADC and DWI texture
parameter comparisons among
low-risk thymoma, high-risk
thymoma, and thymic carcinoma

Parameters LRT (n = 12) HRT (n = 32) TC (n = 13) p

ADC (×10−3 mm2/s) 1.63 ± 0.63 1.30 ± 0.51 0.86 ± 0.20#§ 0.002*

Texture analysis

V80 (×10
6) 1.57 ± 0.68 0.75 ± 0.70# 0.67 ± 0.54# 0.001

V140 9.02 ± 1.02 9.93 ± 1.14 10.47 ± 1.02# 0.006

V153 (×10
7) 7.46 ± 5.77 3.67 ± 3.03 2.46 ± 1.75 0.016*

V204 8.96 ± 1.12 9.79 ± 1.27 10.48 ± 1.02# 0.009

V296 (×10
5) 3.00 ± 2.03 1.52 ± 1.41 0.82 ± 0.53# 0.005*

V312 (×10
5) 8.24 ± 5.60 1.44 ± 2.14# 2.14 ± 3.56# < 0.001*

V735 (×10
−3) 7.14 ± 3.97 4.01 ± 2.30# 4.33 ± 3.04 0.008

* p values were calculated by Brown–Forsythe F test (unequal variances), and the other p values were obtained
based on one-way ANOVA (equal variances). # Significant difference compared with LRT group. § Significant
difference compared with the HRT group based on post hoc multiple comparisons (p < 0.017)

LRT, low-risk thymoma; HRT, high-risk thymoma; TC, thymic carcinoma; ADC, apparent diffusion coefficients;
V80, Cluster Shade_angle90_offset1; V140, GLCM Entropy_AllDirection_offset3; V153, Cluster Prominence_
AllDirection_offset3_SD; V204, GLCM Entropy_angle0_offset4; V296, Cluster Shade_AllDirection_offset6_
SD; V312, Cluster Shade_angle45_offset6; V735, Short Run Emphasis_AllDirection_offset5_SD
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Fig. 3 Box plots for values of ADC (a), V80 (b), V312 (c), and V296 (d)
among low-risk thymoma (LRT), high-risk thymoma (HRT), and thymic
carcinoma (TC). ADC, apparent diffusion coefficients; V80, Cluster

Shade_angle90_offset1; V296, Cluster Shade_AllDirection_offset6_SD;
V312, Cluster Shade_angle45_offset6

Table 4 ADC and DWI texture
parameter comparisons between
early and advanced stages of
thymic epithelial tumors

Parameters Early stage (n = 32) Advanced stage (n = 25) t p

ADC (×10−3 mm2/s) 1.48 ± 0.59 1.00 ± 0.36 3.797 < 0.001

Texture analysis

V57 (×10
7) 2.56 ± 2.51 1.39 ± 0.96 2.408 0.021

V204 9.38 ± 1.30 10.27 ± 1.06 2.795 0.007

V278 (×10
−4) 1.50 ± 1.69 2.40 ± 1.51 2.094 0.041

V296 (×10
5) 2.06 ± 1.81 1.18 ± 1.11 2.273 0.027

V735 (×10
−3) 5.59 ± 3.37 3.66 ± 2.35 2.428 0.018

V920 13.00 ± 11.29 19.64 ± 11.49 2.190 0.033

V1025 0.56 ± 0.06 0.52 ± 0.07 2.575 0.013

V1030 30.62 ± 14.42 39.06 ± 10.02 2.491 0.016

V1033 1.79 ± 0.19 1.95 ± 0.26 2.618 0.011

*p values were calculated by the independent samples t test

ADC, apparent diffusion coefficients; V57, Cluster Prominence_AllDirection_offset1_SD; V204, GLCM Entropy_
angle0_offset4; V278, Correlation_angle135_offset5; V296, Cluster Shade_AllDirection_offset6_SD; V735, Short
Run Emphasis_AllDirection_offset5_SD; V920, High Gray-Level Run Emphasis_AllDirection_offset8_SD;
V1025, sphericity; V1030, maximum 3D diameter; V1033, spherical disproportion
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showed that several DWI texture parameters were signif-
icantly different among various subtypes or stages of
TETs. Both V80 and V312 of cluster shade parameters

measured the skewness and uniformity of the GLCM
(gray-level co-occurrence matrix); a higher cluster shade
implied greater tumor asymmetry or less homogeneity.

Fig. 4 Box plots for values of ADC (a), V204 (b), V1030 (c), and V296 (d) between early and advanced stages of thymic epithelial tumors. ADC, apparent
diffusion coefficients; V204, GLCM Entropy_angle0_offset4; V296, Cluster Shade_AllDirection_offset6_SD; V1030, maximum 3D diameter

Table 5 Diagnostic efficacy
comparisons of ADC and DWI
texture parameters in
differentiating the defined groups
of thymic epithelial tumors
(TETs) based on the WHO clas-
sification and Masaoka–Koga
stage

Parameters AUC Sensitivity (%) Specificity (%) Cutoff value p

LRT vs. HRT+TC

ADC (×10−3 mm2/s) 0.746 50.0 90.5 1.86 0.01

V80 (×10
6) 0.862 75.0 88.1 1.29 < 0.001

V312 (×10
5) 0.875 75.0 90.5 5.00 < 0.001

Logistic (V80, V312)
# 0.877 90.5 83.3 0.71 < 0.001

Logistic (ADC, V312)
# 0.933 95.2 91.7 0.65 < 0.001

Early vs. advanced stage

ADC (×10−3 mm2/s) 0.755 68.8 76.0 1.18 0.001

V204 0.720 68.0 75.0 10.18 0.005

V1030 0.726 92.0 56.3 27.66 0.004

Logistic (ADC, V1030)
# 0.772 84.0 65.6 0.40 < 0.001

*p values were calculated by the receiver operating characteristic (ROC) curve analyses using SPSS software.
# The results of logistic (value 1, value 2) were acquired by using the group as dependent variable and using value
1 and value 2 as covariates to make a binary logistic regression and then acquired each patient’s p value, and this p
value will be analyzed by ROC analysis

AUC, area under curve; LRT, low-risk thymoma;HRT, high-risk thymoma; TC, thymic carcinoma;ADC, apparent
diffusion coefficients; V80, Cluster Shade_angle90_offset1; V204, GLCM Entropy_angle0_offset4; V312, Cluster
Shade_angle45_offset6; V1030, maximum 3D diameter
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Interestingly, according to our results, V80 and V312

values were significantly higher in LRT than those in
HRT or TC, indicating lower tumor homogeneity in
LRT, which was out of our expectation. In most cases,
malignant tumors have higher tumor heterogeneity due
to more necrotic and heterogeneous growth than benign
or low-grade malignancies. However, macroscopic ap-
pearance of multiple nodules separated by fibrous bands
was demonstrated in LRT especially in over 77% of type
AB thymomas, and the typical growth pattern is less in
HRT and none in TC [11], which might explain why the
significant higher V80 and V312 values exist in LRT. In
addition, V1030 (maximum 3D diameter) values were sig-
nificantly lower in LRT than those in HRT or TC in the
current study, which were consistent with previous results
of longer diameter in advanced stages of TETs than in
LRT or early stages [19].

Furthermore, we evaluated the diagnostic efficacy of ADC
values and DWI texture parameters in differentiating the TET
types and stages. The results showed that V80 and V312

achieve relatively good performance, and the binary logistic
regression analysis with combination of ADC and V312 re-
vealed the highest efficacy, with an AUC of 0.933, in differ-
entiating the LRT from the HRTor TC. Interestingly, the com-
bination of two texture parameters did not improve the differ-
entiating efficacy, and the reason for such a result could be that
V80 and V312 belong to a category of cluster shade feature.
Chiefly, combining ADC and V312 could potentially be useful
as a predicting biomarker of TET subtypes.

As in the previous studies with various imaging modalities
[9, 14, 19, 20], in this study, both the ADC value and DWI
texture parameters did not obtain excellent differentiating abil-
ity for different stages of TETs. Indeed, there was no unequiv-
ocal correlation between pathological subtypes and stages
[19]; all of the types of TETs can follow an aggressive clinical
course [2], which might explain in part relatively low perfor-
mance in predicting the stages of TETs [9].

In addition, significant differences were found in form
factor parameters of V1025, V1030, and V1033 between
early- and advanced-stage TETs. These features descript
the three-dimensional size and shape of the tumor region,
mainly decided by the volume and the surface area of the
VOI according to the formula. In this study, the VOI was
maintained at a distance of 1–2 mm away from the tumor
margin to avoid the effects of edge noise and partial vol-
ume phenomenon [37], which could potentially affect the
volume and surface area of the VOI and therefore affect
the form factor parameters. Although segmentation is of
critical importance, as there is no defined ground truth,
reproducibility of segmentation becomes an important is-
sue [38]. Therefore, further research may be warranted to
clarify this problem.

There are several limitations of this study. Firstly, although
this was the largest series of TETs evaluated with DWI, the
sample size was relatively small, mainly because of the low
clinical incidence of thymic tumors. Secondly, we calculated
the ADC value by drawing ROIs of focal tumor areas by one
reader. Further histogram analysis based on the whole tumor

Fig. 5 Receiver operating characteristic curves for the differentiating
performance of the ADC and DWI texture parameters among the
defined groups of thymic epithelial tumors based on the WHO
classification and Masaoka stage. a LRT vs. HRT and TC with the
ADC, V80 and V312 value. b Early vs. advanced stage with the ADC,

V204 and V1030 value. LRT, low-risk thymoma; HRT, high-risk thymoma;
TC, thymic carcinoma; ADC, apparent diffusion coefficient; V80, Cluster
Shade_angle90_offset1; V312, Cluster Shade_angle45_offset6; V204,
GLCM Entropy_angle0_offset4; V1030, maximum 3D diameter
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and the calculation of inter-class correlation coefficient might
be needed to reduce sampling bias and assess inter-observer
repeatability of the measurements. In addition, we used the b0
image and b1000 image to obtain the ADC values in the
monoexponential model of DWI, which could be
overestimated due to the perfusion bias, and the use of
perfusion-free ADC measurements by minimum b value of
100–150 s/mm2 instead of 0 s/mm2 might avoid this problem
properly [39, 40]. Thirdly, ten advanced-stage TET patients
did not undergo surgery owing to the widespread invasion or
metastasis, which was proved by puncture biopsy and staged
by imaging, and thereby might cause a study bias. Finally, as a
preliminary study to explore the possibility of using DWI
texture analysis for obtaining quantitative biomarkers of
TETs, further radiomics study with bigger samples is needed
to clarify this issue.

In conclusion, several parameters derived from DWI
texture analysis could be useful in distinguishing patho-
logical subtypes or stages of TETs, and combination of
ADC and texture indices improved the differentiating di-
agnosis efficacy.
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