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Abstract
Objectives Radiologists’ visual assessment of breast mammographic density (BMD) is subject to inter-observer variability. We
aimed to develop and validate a new automated software tool mimicking expert radiologists’ consensus assessments of 2DBMD,
as per BI-RADS V recommendations.
Methods The software algorithm was developed using a concept of Manhattan distance to compare a patient’s mammographic
image to reference mammograms with an assigned BMD category. Reference databases were built from a total of 2289 pairs
(cranio-caudal and medio-lateral oblique views) of 2D full-field digital mammography (FFDM). Each image was independently
assessed for BMD by a consensus of radiologists specialized in breast imaging. Avalidation set of additional 800 image pairs was
evaluated for BMD both by the software and seven blinded radiologists specialized in breast imaging. Themedian score was used
for consensus. Software reproducibility was assessed using FFDM image pairs from 214 patients in the validation set to compare
BMD assessment between left and right breasts.
Results The software showed a substantial agreement with the radiologists’ consensus (unweighted κ = 0.68, 95% CI 0.64–0.72)
when considering the four breast density categories, and an almost perfect agreement (unweighted κ = 0.84, 95% CI 0.80–0.88)
when considering clinically significant non-dense (A-B) and dense (C-D) categories. Correlation between left and right breasts
was high (rs = 0.87; 95% CI 0.84–0.90).
Conclusions BMD assessment by the software was strongly correlated to radiologists’ consensus assessments of BMD. Its
performance should be compared to other methods, and its clinical utility evaluated in a risk assessment model.
Key Points
• A new software tool assesses breast density in a standardized way.
• The tool mimics radiologists’ clinical assessment of breast density.
• It may be incorporated in a breast cancer risk assessment model.
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Abbreviations
BI-RADS Breast Imaging Reporting and Data System
BMD Breast mammographic density

CC Cranio-caudal
DBT Digital breast tomosynthesis
Md Manhattan distance
MLO Medio-lateral oblique
MQSA Mammography Quality Standards Act

Introduction

Breast mammographic density (BMD) refers to variations in
the radiological appearance of the breast tissue due to differ-
ences in tissue composition, namely the fibroglandular and
fatty tissues. BMD is associated with two risks: the risk of
delaying tumor detection due to tumor masking by dense
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tissue on mammograms and the increased risk of developing
breast cancer. Indeed, BMDhas been shown to be a strong risk
factor for breast cancer, women with very dense breasts being
as much as four to six times more likely to develop breast
cancer than those with low breast density [1–5]. In the USA,
breast density notification laws have been passed in more than
20 states, requiring physicians to inform patients of their
breast density following mammography and its implication
with regard to tumor detection and breast cancer risk, and to
discuss appropriate screening recommendations, such as sup-
plemental ultrasonography.

BMD is routinely assessed by radiologists and commonly
classified using the American College of Radiology’s Breast
Imaging Reporting and Data System (BI-RADS) breast den-
sity score. The new fifth edition recommendations focus on
the masking role of breast density on mammography by de-
fining the categories not by the percentage of dense tissue, but
by the dispersion of dense tissue throughout the breast, as
follows: (a) almost entirely fatty, (b) scattered fibroglandular
density, (c) heterogeneously dense, and (d) extremely dense
[6]. However, visual assessments have shown considerable
intra- and inter-observer variability that could lead to discor-
dant assessments of dense/non-dense status [7–9]. In order for
breast density to be a useful measure in clinical decision-making,
whether to identify mammograms that are likely to mask
tumors or to predict future risk of developing breast cancer,
an objective, reproducible method of BMD assessment
method is clearly needed [10]. Several computerized tools
have been developed to standardize BMD measurements
from mammographic images, including two-dimensional
area-based assessments and the more recent volumetric as-
sessments, which are considered to more accurately mea-
sure the volume of fibroglandular tissue by taking into
account breast thickness [11, 12]. Two automated volumet-
ric assessment software programs are commercially avail-
able: Quantra (Hologic) and Volpara (Volpara Solutions).
Previous studies on automated volumetric assessment tools
have shown variable results in predicting the risk of breast
cancer [13–18]. Whether they add value to or can reliably
replace clinical BI-RADS assessment has been the subject
of much investigation [13, 14].

In a recent study, a breast cancer risk assessment model
incorporating both continuous measures of breast density
using Volpara and BI-RADS clinical assessment was shown
to have improved discriminatory accuracy compared to
models with either measure alone, suggesting that different
aspects of BMD are measured by quantitative and qualitative
methods, all of which are relevant in assessing breast cancer
risk [17]. It is currently not known which method most accu-
rately measures BMD and should be used in clinical decision-
making [19]. Given the different aspects of BMD, we sought
to exploit and optimize what is captured by visual
assessment—the quantity as well as distribution of dense

tissue—in an automated, standardizedmanner, so that its main
shortcoming that is the variability would be minimized.

We describe here the development and validation of a new
automated method, DenSeeMammo, which mimics radiolo-
gists’ consensus assessments of BMD based on digital com-
parison and recognition ofmammographic images, combining
the advantages of both qualitative and quantitative methods.
We evaluated its performance and compared its measurements
to a consensus of radiologists’ visual assessment, considered
as the ground truth.

Materials and methods

Industry support

Predlife, which developed the DenSeeMammo algorithm, did
not support the study, but provided their software tool for the
study. Non-employee authors had complete control of the data
and information that might present a conflict of interest to the
authors who are employees of Predlife.

Description of the reference database

The reference database was built from consecutive pairs of
anonymized and processed Bfor presentation^ 2D full-field
digital mammography (FFDM) images from patients under-
going a mammography exam in 2016, either in a radiology
practice in Paris, France (1200 image pairs), performed with
Senographe Essential (GE Healthcare), or in a radiology de-
partment in Monaco (1089 image pairs), performed with
Selenia Dimensions (Hologic). Each pair of images consisted
of two views of the breast: cranio-caudal (CC) and medio-
lateral oblique (MLO). All types of exams were collected for
the reference database as long as the breast did not look altered
on the image (breast prosthesis, breast surgery, biopsy clips,
large microcalcifications were not included). The distribution
by age reflected what is expected in the screening population
in the USA and Europe (Fig. 1a, b). Patients’ characteristics
other than age were not known.

Processed images were independently assessed for BMD
specifically for this project according to BI-RADS V recom-
mendations [6] by three (GE database) or seven (Hologic data-
base)MammographyQuality Standards Act (MQSA)-qualified
radiologists from Brigham and Women’s Hospital (Boston,
USA): one with 3 years’ experience and two with more than
10 years’ experience assessing mammograms for GE database,
and two with 3 years’ experience and five with more than
10 years’ experience assessing mammograms for Hologic da-
tabase. The difference in the number of readers for each data-
base was directly related to the availability of readers at the time
each reference database was built. The median score was used
for consensus.
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Validation set

An additional 800 pairs (CC + MLO) of FFDM anonymized
and processed images were collected from patients under-
going a mammography exam in 2016, performed either in
a radiology practice in Paris, France, with Senographe
Essential (400 consecutive FFDM image pairs) or in a ra-
diology department in Monaco with Selenia Dimensions
(400 consecutive FFDM image pairs). The images were
independently assessed specifically for this project by sev-
en blinded radiologists, different from those who assessed
the images in the reference database: four MQSA-qualified
radiologists from Brigham and Women’s Hospital with
more than 10 years’ experience, and three radiologists spe-
cialized in breast imaging from Gustave Roussy cancer
center (Villejuif, France)—two with 3 years’ experience

and one with 6 years’ experience. The median score was
used for consensus.

To evaluate software reproducibility, image pairs (CC +
MLO) from 214 patients in the validation set were used to
compare the software’s BMD assessments between left and
right breasts.

Description of the DenSeeMammo algorithm

DenSeeMammo software (version 1.20, Predlife) was used
for automated breast density assessment. Image comparison
can only be performed for images with the same dimension
and resolution. To enable overlapping of mammograms, im-
ages were pre-processed and standardized in a completely
automatic manner to have the same orientation, dimension,
and resolution, as follows: breast margins were determined

Fig. 1 Age distribution of
reference images (% per age
category). a GE reference
database (n = 1200). b Hologic
reference database (n = 1089)
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(for MLO views, pectoral muscle was removed (see details in
Supplementary material)), images were cropped as close as
possible around breast margins and vertically divided into
two parts from the tip of the breast, each part was resized in
a square of 200 × 200 pixels for GE and 100 × 100 for
Hologic, and the two squares were placed side by side to
obtain an image of 200 × 400 pixels for GE and 100 × 200
for Hologic (Fig. 2a, b). When a new mammogram was per-
formed, typically four images (two views, two breasts) were
analyzed by DenSeeMammo. However, images could also be
analyzed when only a CC view and/or views from one breast
were available.

Image comparison is based on Manhattan distance (Md)
calculation, Md being the simple sum of components. To se-
lect the most similar images, first, the most different images
were eliminated from the reference database; then, pixel-to-
pixel image comparison was performed between the remain-
ing images. For the first step, values were calculated for
brightness (average of pixel values) and contrast (standard
deviation of pixel values), and the value of the image to be
analyzed was compared to that of the reference images. Using
Md, the size of the reference database was reduced by 5–15%

by eliminating the most different images with respect to these
image features. This step was performed with respect to
brightness and contrast for GE images, and with respect to
brightness (80th percentile, 40th percentile, then 90th percen-
tile) for Hologic images. Next, pixel-to-pixel image compari-
son was performed between the remaining images. As shown
in Fig. 3, in the DenSeeMammo algorithm, the concept of Md
is applied to compare a patient’s mammogram to reference
mammograms, based on the difference between image densi-
ties of the two mammograms. First, the differences between
the gray levels of each pixel having the same coordinates were
calculated for each view (CC or MLO). For each breast, Md
was then determined by summing the previously calculated
distances for each view, between the image to be analyzed and
each image in the reference database. The Md obtained there-
fore corresponds to the sum of absolute values of differences
between gray levels of a pair of images (CC + MLO views).
Finally, the algorithm retrieved the reference images with the
lowest Md (i.e., the most similar images).

The number of nearest neighboring images used by
DenSeeMammo was determined empirically by evaluating
the agreement between DenSeeMammo and consensus of

Fig. 2 Image adjustment and
standardization process using
DenSeeMammo software. a
Overall standardization process
for GE and Hologic images. b
Detailed standardization process
for each image
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radiologists in the reference database according to the number
of neighboring images, and the best kappa value was obtained
with the ten nearest neighbors for GE images and 14 for
Hologic images (data not shown). The average of the BMD
values was therefore calculated from the selected nearest
neighboring images, then a breast density category was
assigned (Fig. 4) according to the following thresholds: for
GE, < 1.5, category A; ≥ 1.5 and < 2.5, category B; ≥ 2.5
and < 3.5, category C; and ≥ 3.5, category D; for Hologic,
< 1.5, category A; ≥ 1.5 and < 2.6, category B; ≥ 2.6 and
< 3.3, category C; and ≥ 3.3, category D. These thresholds
gave the best agreement between DenSeeMammo and the
consensus of radiologists (unweighted kappa) in the reference
database (data not shown). The calculation of the average
BMD values was weighted according to distance (see details
in the Supplementary material).

In order to ensure the performance of the algorithm, a se-
curity check blocked density assessment in case an image was
distorted after pre-processing. However, this error did not oc-
cur when testing with 5600 images on a database (data not
shown). Furthermore, if breast overlapping was not complete,
the distances between images became too large for the non-
overlapping image to be considered as one of the nearest
images.

Statistical analysis

Unweighted Cohen’s kappa correlation for two raters [20] and
weighted Cohen’s kappa correlation for two raters [21] were
used to measure agreement between DenSeeMammo and vi-
sual assessment. Overall inter-observer kappa was calculated
as the mean of Cohen’s kappa obtained side by side for seven

Fig. 4 Software overall process
for BMD assessment. After the
ten nearest neighboring images
are selected from the reference
database (for GE images), the
average of the BMD values is
calculated, and a breast density
category is assigned

Fig. 3 Image comparison based
onManhattan distance calculation
for one breast (R = right): two
views (cranio-caudal (CC) and
medio-lateral oblique (MLO))
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raters. Spearman rank correlation coefficients were used for
reproducibility analysis. All analyses were performed using
Statistical Analysis System (SAS, version 9.3, SAS
Institute). Kappa values were interpreted as suggested by
Landis and Koch [22], as follows: a kappa value equal to or
less than 0.20 indicates slight agreement; 0.21–0.40, fair
agreement; 0.41–0.60, moderate agreement; 0.61–0.80, sub-
stantial agreement; and 0.81–1.00, almost perfect agreement.

Results

Consensus of radiologists’ visual assessment
for the reference database

Consensus of radiologists was used for the reference database
(consensus of three or seven radiologists, respectively, for GE
and Hologic images). The overall inter-observer agreement
(unweighted kappa) when considering the four breast density
categories for the GE and Hologic reference databases was,
respectively, 0.49 and 0.52. When considering clinically sig-
nificant non-dense (A-B) and dense (C-D) categories, the
inter-observer agreement was almost perfect (unweighted
κ = 0.86) for the GE database and substantial (unweighted
κ = 0.75) for the Hologic database. The distribution across
density categories in each reference database according to
the radiologists’ consensus assessments was in line with the
historical distribution of density categories in the screening
population [6], with 9% of images in category 1 (almost en-
tirely fat), 44% in category B (scattered fibroglandular densi-
ty), 38% in category C (heterogeneously dense), and 9% in
category D (extremely dense).

Breast density classification by DenSeeMammo
software and visual assessment

For 800 mammographic image pairs (CC + MLO) in the val-
idation set (GE and Hologic), the results of breast density

categories assigned by each of the seven observers and
DenSeeMammo are presented in Table 1. The overall un-
weighted kappa for the seven radiologists’ assessment of BI-
RADS density categories showed moderate agreement (un-
weighted κ = 0.55; weighted κ = 0.65). Nevertheless, when
BI-RADS categories were grouped into clinically significant
non-dense (A-B) and dense (C-D) categories, inter-observer
agreement was substantial (unweighted κ = 0.72).

Table 2 shows the BMD assessment by DenSeeMammo
with two views (CC + MLO) and consensus of radiologists
in the validation set.WhenBI-RADS categories were grouped
into non-dense (A-B) and dense (C-D) categories, 97% of the
non-dense category and 87% of the dense category assigned
by the software were assigned in the respective categories by
the consensus of radiologists (Table 2). When considering the
four breast density categories, the software showed a substan-
tial agreement with the radiologists’ consensus (unweighted
κ = 0.68, 95% CI 0.64–0.72, and weighted κ = 0.74, 95% CI
0.71–0.77). Furthermore, when considering non-dense (A-B)
and dense (C-D) categories, the software showed an almost
perfect agreement with the consensus of radiologists’ visual
assessment (unweighted κ = 0.84, 95% CI 0.80–0.88).

Table 3 shows the results obtained when only one view
(CC) was used for BMD assessment, from GE and Hologic
images. The results were comparable to those obtained with
two views, with a substantial agreement between the software
and the radiologists’ consensus (unweighted κ = 0.68, 95% CI
0.64–0.72, and weighted κ = 0.75, 95% CI 0.72–0.78).

Software compatibility and reproducibility

Table 4 shows that agreement (measured by unweighted kap-
pa) between the software and the consensus of radiologists is
equivalent, whatever the mammography equipment, either
with GE Senographe Essential or Hologic Selenia
Dimensions system. When assessing the breast density cate-
gory assigned by DenSeeMammo to the left and right breasts
of the same patient, a strong positive correlation was found

Table 1 Frequency of breast density categories assigned by each reader and DenSeeMammo in the validation set

Density No. (%) of mammographic examinations (n = 800)

Observers DSM

Observer α Observer β Observer γ Observer ∂ Observer X Observer Y Observer Z Consensus

A 53 (6.63) 133 (16.63) 105 (13.13) 118 (14.75) 37 (4.63) 86 (10.75) 38 (4.75) 79 (9.88) 74 (9.25)

B 375 (46.88) 298 (37.25) 461 (57.63) 311 (38.88) 318 (39.75) 268 (33.50) 450 (56.25) 349 (43.63) 311 (38.88)

C 251 (31.38) 271 (33.88) 224 (28.00) 298 (37.25) 388 (48.50) 352 (44.00) 270 (33.75) 308 (38.50) 357 (44.63)

D 121 (15.13) 98 (12.25) 10 (1.25) 73 (9.13) 57 (7.13) 94 (11.75) 42 (5.25) 64 (8.00) 58 (7.25)

Mammographic exams performed with either Senographe Essential (GE) or Selenia Dimensions (Hologic)

DSM DenSeeMammo
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(x = 0.87, 95 CI % 0.84–0.90), which was equivalent to the
correlation obtained with the radiologists’ consensus (x =
0.88, 95 CI % 0.85–0.91).

Discussion

In this study, we have developed a new automated tool based
on digital image comparison that mimics radiologists’ consen-
sus assessments of BMD according to BI-RADS V recom-
mendations. Our results showed substantial agreement with
visual assessment by a consensus of seven radiologists
(weighted κ = 0.74, 95% CI 0.71–0.77) in the validation set
of 800 pairs of mammographic examinations. Although the
difference in the classification standards (BI-RADS edition)
and the use of different sets of images preclude any direct
comparison between the methods, there was a higher degree
of agreement than that reported in recently published studies
on automated volumetric assessment methods [13, 23, 24].
Brandt et al reported a moderate agreement between BI-
RADS classification and Volpara (weighted κ = 0.57; 95%
CI 0.55–0.59) and Quantra (weighted κ = 0.46; 95% CI
0.44–0.47), respectively [13]. In Youk et al, the agreement
of density category with visual assessment ranged from mod-
erate to substantial in Quantra (weighted κ = 0.54–0.61) and
fair to moderate in Volpara (weighted κ = 0.32–0.43) [23]. In
Sartor et al, the agreement between BI-RADS scores and

volumetric breast density using Volpara was found to be mod-
erate (weighted κ = 0.55; 95% CI 0.53–0.56) [24].

The present method has a different approach from other
automated area-based or volumetric methods in that it is a
quantitative tool based on qualitative measures. By taking into
account the dispersion of fibroglandular tissue throughout the
breast and not the percentage of dense tissue within the breast,
this method is more in line with the BI-RADSV breast density
classification scheme than volumetric assessments of dense
tissue. Recent studies have shown that texture features may
be predictors of breast cancer risk independent of percent den-
sity, and automated tools for analyzing parenchymal texture
features are in development [25–27]. Future studies are need-
ed to compare the performance of DenSeeMammo with that
of currently available BMD assessment tools on the same set
of mammographic exams.

Accurate measurement of breast density, incorporated in a
risk assessment model, could contribute to stratified screening
based on individual risk. Indeed, while mammographic
screening has been shown to have contributed to reduce breast
cancer specific mortality by 20% in the invited population
[28], its potential harms, including false-positive recalls, un-
necessary biopsies, patient anxiety, overdiagnosis, and over-
treatment, plead for an improved balance of benefits and
harms at the individual level and implementation of a stratified
screening strategy based on individual risk [29]. The present
method may be a good candidate to be used for risk estimation

Table 2 Agreement matrix
between DenSeeMammo and
consensus of radiologists’ visual
assessment in the validation set
(no. (%) of mammographic
examinations (n = 800))

DSM Radiologists’ consensus

A B C D Total

A 52 (6.50) 22 (2.75) 0 0 74 (9.25)

B 27 (3.38) 273 (34.13) 11 (1.38) 0 311 (38.88)

C 0 54 (6.75) 274 (34.25) 29 (3.63) 357 (44.63)

D 0 0 23 (2.88) 35 (4.38) 58 (7.25)

Total (n = 602) 79 (9.88) 349 (43.63) 308 (38.50) 64 (8.00) 800 (100.0)

Note: Mammographic exams performed with either GE Senographe Essential or Selenia Dimensions (Hologic)

DSM DenSeeMammo

Table 3 Agreement matrix
between DenSeeMammo and
consensus of radiologists’ visual
assessment in the validation set
using only one view (CC) (no.
(%) of mammographic
examinations (n = 800))

DSM Radiologists’ consensus

A B C D Total

A 49 (6.13) 22 (2.75) 0 0 71 (8.88)

B 24 (3.00) 283 (35.38) 14 (1.75) 0 321 (40.13)

C 0 51 (6.38) 274 (34.25) 32 (4.00) 357 (44.63)

D 0 0 19 (2.38) 32 (4.00) 51 (6.38)

Total (n = 602) 73 (9.13) 356 (44.50) 307 (38.38) 64 (8.00) 800 (100.0)

Note: Mammographic exams performed with either Senographe Essential (GE) or Selenia Dimensions (Hologic)

DSM DenSeeMammo
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in screening programs. In a recent study, Kerlikowske et al
reported that the discriminatory accuracy of the Breast Cancer
Surveillance Consortium risk model was improved by com-
bining quantitative and qualitative measures of breast density,
and urged researchers to assess the combination of automated
measures of dense volume and texture features, with clinical
assessment [17]. In future work, the present tool could be
tested in a risk assessment model as a qualitative measure, in
combination with quantitative measures. The tool, which has
received FDA clearance in 2016, has been used as part of a
risk program management, in a pilot study assessing its inte-
gration in a radiology workflow [30].

Due to the limitations of breast density measurement
methods that are based on two-dimensional mammographic
projection images [31], other technologies are also under in-
vestigation, using magnetic resonance imaging (MRI), digital
breast tomosynthesis (DBT), computed tomography, optical
imaging, and ultrasound [12]. However, given the widespread
use of mammography for screening and the relatively high
cost of certain technologies such as MRI, it is relevant to
develop a robust and accurate breast density measurement
method based on mammographic images. Nevertheless,
DBT is increasingly used in screening facilities and will likely
replace 2D screening mammography [32]. With that perspec-
tive, work is currently ongoing to assess breast density using
this method in synthesized 2D mammograms from DBT data.

This study has several limitations. The study was designed
to compare the software tool’s assessment results with the
consensus of radiologists’ visual assessments. The large
inter-observer variability observed when considering the four
categories (unweighted κ = 0.49 for GE and 0.52 for Hologic),
comparable to published results [7, 33], can call into question
the use of consensus of radiologists’ assessments as Bgold
standard.^ Nevertheless, when BI-RADS categories were
grouped into clinically significant non-dense (A-B) and dense
(C-D) categories, the inter-observer agreement was almost
perfect (unweighted κ = 0.86) for GE database and substantial
(unweighted κ = 0.75) for Hologic database. For the valida-
tion set, the inter-observer agreement was also substantial (un-
weighted κ = 0.72) when considering the two categories. In
addition, the off-diagonal classification between categories B
and C was limited, with only 8.13% of cases. Furthermore, we

previously found that a consensus of at least three radiologists
specialized in breast imaging (with experience of 3 years or
more) allows overcoming the intra- and inter-observer vari-
ability issue of breast density assessment, and can be consid-
ered to represent the radiologist population’s assessment, es-
pecially considering the clinically meaningful categories of
dense/non-dense (data not shown). Although the present tool
cannot eliminate the variability that is inherent in visual as-
sessment, and we may find different results with different sets
of readers under different study conditions, the reference da-
tabase in this study, with its variability, represents the radiol-
ogists’ assessments that have been shown to have a strong
relationship with breast cancer risk [17, 18]. We therefore
deemed appropriate to use consensus assessments in this study
as the Bgold standard^ for the reference database. Another
limitation is the tool’s generalizability. The reference data-
bases and the validation set included mammograms generated
by GE and Hologic systems. The present results do not allow
us to affirm the generalizability of this method when using
images generated by other mammography systems. Further
research is needed to test the validity of this approach using
images generated by other mammography systems.

In summary, BMD assessment by the software was shown
to be strongly correlated to radiologists’ consensus assess-
ments of BMD. Future research is needed to compare this
method with other existing methods and evaluate its general-
izability as well as its clinical utility.
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