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Abstract
Objectives To develop and validate a radiomics nomogram for preoperative prediction of microvascular invasion (MVI) in
patients with hepatocellular carcinoma (HCC).
Methods The study included 157 patients with histologically confirmed HCC with or without MVI, and 110 patients were
allocated to the training dataset and 47 to the validation dataset. Baseline clinical factor (CF) data were collected from our medical
records, and radiomics features were extracted from the artery phase (AP), portal venous phase (PVP) and delay phase (DP) of
preoperatively acquired CT in all patients. Radiomics analysis included tumour segmentation, feature extraction, model con-
struction and model evaluation. A final nomogram for predicting MVI of HCC was established. Nomogram performance was
assessed via both calibration and discrimination statistics.
Results Five AP features, seven PVP features and nine DP features were effective for MVI prediction in HCC radiomics
signatures. PVP radiomics signatures exhibited better performance than AP and DP radiomics signatures in the validation
datasets, with the AUC 0.793. In the clinical model, age, maximum tumour diameter, alpha-fetoprotein and hepatitis B antigen
were effective predictors. The final nomogram integrated the PVP radiomics signature and four CFs. Good calibration was
achieved for the nomogram in both the training and validated datasets, with respective C-indexes of 0.827 and 0.820. Decision
curve analysis suggested that the proposed nomogram was clinically useful, with a corresponding net benefit of 0.357.
Conclusions The above-described radiomics nomogram can preoperatively predict MVI in patients with HCC andmay constitute
a usefully clinical tool to guide subsequent personalised treatment.
Key Points
• No previously reported study has utilised radiomics nomograms to preoperatively predict the MVI of HCC using 3D
contrast-enhanced CT imaging.

• The combined radiomics clinical factor (CF) nomogram for predicting MVI achieved superior performance than either the
radiomics signature or the CF nomogram alone.

• Nomograms combing PVP radiomics and CF may be useful as an imaging marker for predicting MVI of HCC preoperatively
and could guide personalised treatment.
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Abbreviations
AFP Alpha-fetoprotein
AP Arterial phase
AUC Area under the curve
CECT Contrast-enhanced computed tomography
CF Clinical factor
CI Confidence interval
CT Computed tomography
DP Delay phase
HBsAg Hepatitis B surface antigen
HCC Hepatocellular carcinoma
ICC Intraclass correlation coefficient
LASSO Least absolute shrinkage and selection operator
LR Liver resection
MR Magnetic resonance
MTD Maximum tumour diameter
MVI Microvascular invasion
OR Odds ratio
PACS Picture archiving and communication system
PVP Portal venous phase
ROI Region of interest
RVI Radiogenomic venous invasion
SVM Support vector machine

Introduction

Hepatocellular carcinoma (HCC) is very common worldwide
and a major cause of mortality [1, 2]. Surgical resection is one
of the potentially curative treatments available for HCC, but
the recurrence rate remains high [3, 4]. The 5-year postopera-
tive recurrence rate of HCC is approximately 70% in cases
with liver resection (LR) and 25% in cases with liver trans-
plantation [4]. One of the key factors is microvascular inva-
sion (MVI). MVI is defined as microscopic tumour invasion
in smaller intrahepatic vessels, including microvessels of the
portal venous vein or hepatic artery and small lymphatic ves-
sels [5]. Several studies have reported that MVI is a validated,
independent predictor of early recurrence and poor survival
after LR [6–8]. In addition, an accurate preoperative estima-
tion of MVI presence may help surgeons to choose appropri-
ate surgical procedures for patients [9]. If LR is considered for
patients with a high risk of MVI, a procedure incorporating a
wide resection margin may be preferable [10]. Thus, it is im-
portant that the presence of MVI can be evaluated preopera-
tively. However, MVI is currently only diagnosed after surgi-
cal resection, via histopathologic evaluation. It is currently
difficult to diagnose MVI via preoperative examinations such
as computed tomography (CT), magnetic resonance (MR) im-
aging, serum markers and preoperative biopsy [10–13]. Thus,
there is an urgent need for a quantitative means of predicting
MVI preoperatively.

Recently, radiomics has become an evolving topic in con-
junction with hypotheses that medical imaging may provide
crucial information pertaining to tumour pathophysiology [14,
15]. Some studies have shown that radiomics features may
potentially be useful as diagnostic or prognostic imaging
markers for tumour lesion detection, subtype classification
and therapeutic response assessment [14, 16–22]. And, Lei
et al [9] showed that the nomogram, including diameter, num-
ber, status of capsule, boundary, location and typical dynamic
pattern of CT imaging, achieved an optimal preoperative pre-
diction of MVI in HBV-related HCC. However, no previously
reported study has utilised radiomics nomograms to preoper-
atively predict theMVI of HCC using CT imaging. Moreover,
our study was a direct extension of Lei et al’s work [9].

The aim of the current study was to develop and validate a
CT-based radiomics signature to predict MVI in HCC preop-
eratively with a graphical nomogram that is user-friendly for
clinicians, to assist in the determination of individual thera-
peutic strategies for patients with HCC.

Materials and methods

Patients

Ethical approval was obtained for this retrospective study, and
the requirement for informed consent was waived. The entire
cohort dataset was acquired from the January 2012 to
December 2016 records of the institutional picture archiving
and communication system (PACS; Toshiba), which was used
to identify patients who had histologically confirmed HCC
with MVI (MVI+) or without MVI (MVI−). Two pathologists
with over 5 years of working experience independently
reviewed all postoperative specimens histologically and
assessed the presence or absence of MVI. All patients
underwent contrast-enhanced CT (CECT) scans before LR.
Figure 1 shows the patient recruitment process and the inclu-
sion and exclusion criteria. A total of 157 patients conformed
to the criteria, 134 men and 23 women (median age 57 years,
age range 34–64 years), and were divided into two datasets at
a ratio of 2:1 according to the time of surgery. The training
dataset included 110 patients (93 men and 17 women, median
age 55 years, age range 46–64 years), and 47 patients were
allocated to the time-independent validation dataset (41 men
and 6 women, median age 56 years, age range 34–64 years)
(Table 1).

Baseline clinical-pathologic data were collected from our
PACS medical records. Clinical factors (CFs) included age,
gender, alpha-fetoprotein (AFP) level, tumour location (left,
right or caudate lobe), hepatitis B surface antigen (HBsAg)
status (positive or negative) and postoperative pathologic dif-
ferentiation (well, moderate or poor). The WHO histologic
grade system was used to determine the pathologic grade of
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hepatocellular carcinoma. Laboratory analysis consisted of
routine blood tests performed within 1 week before surgery.

CT technology and segmentation

All CT examinations were performed with 64-row spiral CT
scanners (Optima CT660 and Discovery 750 HD, GE
Healthcare). A 1.2–1.5 mL/kg body weight bolus of iohexol
(Omnipaque, GE Healthcare Co., Ltd.) was injected intrave-
nously at a flow rate of 2.5 mL/s, followed by a 20-mL saline
flush. Arterial phase (AP), portal venous phase (PVP) and
delay phase (DP) were obtained at 35 s, 65 s and 120 s, re-
spectively, after intravenous injection of contrast. The scan-
ning parameters were 120 kV, 280 mAs, 0.8 s rotation time,
5 mm slice thickness and a 5-mm interval. The protocol re-
quirements used for CECT imaging met the criteria recom-
mended by the LI-RADS guideline [23].

Workflow

Radiomics extracts high-throughput quantitative imaging fea-
tures to perform subsequent data analysis related to target
clinical outcome. The workflow of a typical radiomics process

consists of four steps: tumour segmentation, feature extrac-
tion, model construction and model evaluation.

Tumour segmentation

Three-dimensional manual segmentation was performed by a
radiologist with work experience of 8 years, using ITK-SNAP
software (http://www.radiantviewer.com). Regions of interest
(ROIs) were drawn on all AP, PVP and DP images slice-by-
slice for each patient, slightly along the visible borders of the
lesion to include the entire lesion’s volume approximated. In
the case of the blurred edges, we drew the maximum range of
the lesion. The final segmentation results were validated by a
senior radiologist with 15 years of work experience.

Feature extraction and selection

A set of 647 radiomics features that reflected the heterogeneity
of the tumour was extracted from the AP, PVP and DP images
for each patient.

The extracted radiomics features could be divided into two
kinds: non-textural features and textural features. Non-textural
features included shape and size features and intensity

Fig. 1 Flow chart of the enrolled patients in our study
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features. Shape and size features captured the direct-viewing
characteristics of the lesion, and intensity features depicted the
characteristics of the histogram of the lesion. Textural features
were extracted based on four textural matrixes: grey level co-
occurrence matrix (GLCM), grey level run-length matrix
(GLRLM), grey level size zone matrix (GLSZM) and neigh-
borhood grey-tone difference matrix (NGTDM). All the fea-
ture extraction was implemented using Matlab 2014a
(MathWorks). We applied a wavelet filter onto the original
image dataset in order to extract high-dimensional features
from different frequency scales. We finally obtained nine im-
age datasets including the original image dataset and eight
filtered image datasets in different frequencies. A detailed de-
scription of feature definition and extraction is provided in
Supplementary Appendix 1. All feature extraction was imple-
mented using Matlab (version 2014a) (MathWorks).

To verify the robustness of the radiomics features, we ran-
domly selected 20 patients for test and re-test analysis and
multiclinician segmentation. The intraclass correlation coeffi-
cient (ICC) and concordance correlation coefficient (CCC)
were calculated to determine the stability of the features.
Features with an ICC and CCC lower than 0.75 were excluded
from the final feature dataset (Supplement Fig. 1). For AP, 618

out of 647 features were retained; for PVP, 621 out of 647
features; and for DP, 563 out of 647 features.

We used the least absolute shrinkage and selection operator
(LASSO) method to reduce the redundancy and dimensional-
ity of the features in the training dataset. We chose the optimal
feature dataset with the least cross-validation binominal devi-
ance. Non-zero coefficients were defined as the weight for
each selected feature, which indicated the correlation between
the feature and MVI. The LASSO model was implemented
using the glmnet package [24].

Model construction

Three models were constructed to preoperatively predict MVI
status: a respective radiomics model, a clinical model and a
combined model. The radiomics signature was calculated
using support vector machine (SVM) with the LASSO-
selected features as the input factors. The formula of the
radiomics signature was as follows:

Rad score ¼ ∑
N

i¼1
Ci � svi � xð Þ−b

Table 1 Patient characteristics in the training and validation datasets

Characteristic Training dataset (N = 110) Validation dataset (N = 47) pInter

MVI+ (N = 37) MVI− (N = 73) pIntra MVI+ (N = 18) MVI− (N = 29) pIntra

Age (years), median (IQR) 53 (46–62) 58 (52–64) 0.008 55 (34–64) 59 (53–63) 0.035 0.760

Gender, no. (%)

Male 29 (78.4) 64 (87.7) 0.319 16 (88.9) 25 (86.2) 0.990 0.663
Female 8 (21.6) 9 (12.3) 2 (11.1) 4 (13.8)

MTD (cm), median (IQR) 4.9 (3.6–5.9) 3.7 (2.6–5.0) 0.013 4.8 (3.3–5.9) 3.2 (2.2–4.1) 0.009 0.272

AFP, median (IQR) 84.5 (7.3–1941.0) 7.2 (2.7–209.1) 0.046 17.8 (3.8–481.0) 12.2 (4.1–102.4) 0.865 0.575

Liver background, no. (%)

Non-cirrhosis 25 (67.6) 49 (67.1) 0.99 15 (83.3) 16 (55.2) 0.096 0.873
Cirrhosis 12 (32.4) 24 (32.9) 3 (16.7) 13 (44.8)

HBsAg, no. (%)

Negative 10 (27.0) 15 (20.5) 0.599 4 (22.2) 9 (31.0) 0.748 0.509
Positive 27 (73.0) 58 (79.5) 14 (77.8) 20 (69.0)

Pathologic grade, no. (%)

Well 3 (8.1) 11 (15.1) 0.056 0 (0) 6 (20.7) 0.523 0.306
Moderately 22 (59.5) 52 (71.2) 4 (22.2) 21 (72.4)

Poorly 12 (32.4) 10 (13.7) 14 (77.8) 2 (6.9)

Location, no. (%)

Left lobe 13 (35.1) 25 (34.2) 0.944 3 (16.7) 6 (20.7) 0.849 0.124
Right lobe 22 (59.5) 45 (61.6) 13 (72.2) 21 (72.4)

Caudate lobe 2 (5.4) 3 (4.1) 2 (11.1) 2 (6.9)

MVI+ represents patients with microvascular invasion, and MVI− represents patients without microvascular invasion. Using univariable association
analyses, pIntra is the result of univariate analyses between the MVI+ and MVI− groups while pInter represents whether a significant difference exists
between the training and validation datasets

MTD maximum tumour diameter, AFP alpha-fetoprotein, HBsAg hepatitis B surface antigen, IQR interquartile range
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where b is the intercept, N is the support vector number, svi is
the ith support vector, Ci is the coefficient of the ith support
vector and x is the new data consisting of the values of the
selected feature.

For the construction of the clinical model, we performed
multivariable logistic regression analysis of clinical parame-
ters including age, sex, maximum tumour diameter (MTD),
cirrhosis, AFP, HBsAg, pathologic grade and location.
Backward step-wise variable selection was implemented with
the Akaike information criterion. The clinical model was con-
structed by integrating the final selected clinical predictors
using logistic regression modelling.

The combinedmodels incorporated the radiomics signature
and the related clinical predictors together with a logistic re-
gression model, which predicted MVI status by synthesising
both the radiomics and clinical characteristics.

Model evaluation

Receiver operating characteristic (ROC) curve analysis was
utilised to illustrate the diagnostic performance of the three
models constructed. Delong validation was used to compare
the areas under the curve (AUCs) in different models and
determine whether they differed significantly. We also con-
structed a nomogram for the effective prediction model to
provide a more direct way for the clinician to assess the pos-
sibility of MVI. Calibration curves were adopted to analyse
the diagnostic performance of the nomogram in both the train-
ing and the validation datasets. Decision curve analysis was
conducted to determine the clinical usefulness of the nomo-
gram by quantifying the net benefits at different threshold
probabilities in the entire cohort.

Statistical analysis

All statistical analysis was performed using the PASW
Statistics 18.0.0 software package (SPSS). Categorical vari-
ables were expressed as numbers or percentages, and contin-
uous variables were expressed as mean ± SD, or median. The
two-sample t test was used to determine whether the values of
the demographic variables differed significantly between the
training and validation groups. Two-sided p values < 0.05
were considered statistically significant.

Results

Clinical characteristics

The clinical characteristics of the training and validation
datasets are summarised in Table 1. There were no significant
differences in age, gender, tumour location, MTD, AFP,

cirrhosis, HBsAg or histologic grade between the training
and validation cohorts (p = 0.124–0.873).

Based on the results of histopathology, the patients were
classified into two groups: the MVI+ group and the MVI−
group. There were no significant differences between the
MVI+ group and the MVI− group in the training and valida-
tion datasets in terms of gender, tumour location, cirrhosis,
HBsAg or pathologic grade. There were significant differ-
ences in age and MTD between the two groups in the training
and validation datasets (p < 0.05). AFP differed significantly
in the training dataset, but this was not confirmed in the val-
idation dataset (Table 1).

Clinical model construction

Multivariable analysis showed that age (odds ratio (OR) 0.94;
95% confidence interval (CI) 0.90–0.98), MTD (OR 1.37;
95% CI 1.07–1.77), AFP (OR 1.52; 95% CI 0.88–2.63) and
HBsAg (OR 0.43; 95% CI 0.14–1.31) were effective factors
for clinical model construction.

Radiomics signature calculation

We performed LASSO modelling on AP, PVP and DP feature
datasets in order to investigate the effectiveness of MVI dis-
crimination via CECT (Supplement Fig. 2). For AP, five fea-
tures were selected for radiomics signature construction. For
the tri-phasic CECT image, five, seven and nine features were
ultimately selected as putatively effective features for AP,
PVP and DP radiomics signature construction, respectively.
Details of the selected features are shown in Table 2.

Performance of the six proposed models

To evaluate the diagnostic performance of the developed mod-
el, we included a time-independent validation dataset with 47
patients. The PVP radiomics model exhibited better predictive
performance with regard to MVI in the validation datasets,
with the AUC of 0.793 compared with the AP radiomics
model (AUC 0.684) and DP radiomics model (AUC 0.490)
(Fig. 2). Separate bar charts of the PVP radiomics signatures
are shown in Supplement Fig. 3, and box plots are shown in
Fig. 3. The clinical model did not perform well in terms of
discrimination, with AUCs of 0.734 in the training dataset and
0.761 in the validation dataset. After combining the PVP
radiomics signature with the effective CF, the predictive per-
formance improved significantly, with AUCs of 0.835 in the
training dataset and 0.801 in the validation dataset. For AP
and DP, the performance of the combined model showed a
significant improvement in the training dataset than the single
clinical model (AUC 0.703 and 0.798 vs. 0.734); however, the
result was inverse in the validation dataset than with the clin-
ical model (AUC 0.684 and 0.490 vs. 0.761). The
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performance of the PVP radiomics signature combining with
the effective CFwas better than that of the tri-phasic radiomics
signature combining with the effective CF in the validation
dataset (AUC 0.801 vs. 0.680) (Table 3, Fig. 2). Comparison
was made between the best performed PVP plus CF model
and the single CF model. The Delong test manifested a sig-
nificant difference in the training dataset with a p value of
0.005. In the validation dataset, the p value was 0.281, but it
was a trend that when adding PVP signature, the performance
of the validation dataset was better than the single CF model
with higher AUC.

Nomogram construction and validation

As the combined model incorporating the PVP radiomics
signature and the effective CF had the best predictive
performance, we built a nomogram for the graphical rep-
resentation of predictive outcome (Fig. 4). Good calibra-
tion was observed with both the training and the validated
datasets, with respective C-indexes of 0.827 and 0.820
(Fig. 5). The Hosmer-Lemeshow test yielded no signifi-
cant difference between the predictive calibration curve
and the ideal curve for MVI prediction with both the

Table 2 Selected features for the arterial phase and portal venous phase

Phase of CT image

Arterial phase (N = 5) Portal venous phase (N = 7) Delay phase (N = 9)

Intercept − 0.69 – − 0.72 – 0.41 –

Feature − 0.12 Ori_fos_skewness − 0.29 Ori_fos_minimum − 0.30 Ori_fos_uniformity_p

0.13 Ori_glrlm_GLN − 0.02 Ori_glcm_cluster_shade − 0.39 Ori_glcm_homogeneity1

0.01 Coif5_fos_
maximum

0.17 Ori_glrlm_RLN − 0.10 Ori_ngtdm_contrast

0.01 Coif5_fos_range − 0.01 Coif3_fos_minimum − 0.11 Coif1_fos_krutosis

0.07 Coif6_fos_
maximum

0.17 Coif4_glszm_HGLZE 0.04 Coif2_fos_krutosis

− 0.06 Coif5_glcm_maximum_
probability

0.12 Coif2_fos_maximum

0.09 Coif8_fos_skewness − 0.01 Coif3_glcm_
autocorrelation

0.02 Coif4_glszm_HGLZE

0.27 Coif7_glszm_SZSE

Features and coefficients were selected by LASSOmodelling via leave-one-out cross-validation. A set of five, seven and nine features was selected in the
arterial phase, portal venous phase and delay phase, respectively

Fig. 2 a, b The receiving operating characteristics (ROC) curves of the radiomics signature-based model, the clinical model and the combined model on
the portal venous phase (PVP). CF, clinical factor
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training and the validation datasets (p = 0.371 and 0.094,
respectively). In the current study, the threshold probabil-
ity of the decision curve was 3% and the corresponding
net benefit was 0.357 (Fig. 6).

Discussion

We developed and validated a radiomics signature-based no-
mogram for preoperative and individualised prediction of
MVI in patients with HCC. In previous studies, some re-
searchers [9, 25] have analysed subjective imaging character-
istics determined by radiologists and combined clinical-
pathologic or gene expression factors to preoperatively predict
the MVI of HCC. However, in the current study, radiomics
analysis was applied to quantitatively extract CECT imaging
features to assess subtle textural variation within tumour le-
sions, which may contain holistic information related to tu-
mour physiology or microenvironment. Furthermore, we de-
veloped an easy-to-use nomogram integrating both proposed
PVP radiomics signature and CF to facilitate the preoperative

individualised prediction of MVI. The predictive calibration
curves of the training and validation datasets demonstrated
agreement with the ideal curve. Decision curve analysis
showed that the radiomics nomogram was clinically useful
in the current study.

Previous studies incorporating radiomics nomograms have
yielded many results pertaining to the predictive values of
tumour diagnoses and therapy effectiveness [26–29]. There
is also growing interest in multimarker analysis [26–29]. In
the current study, the combined radiomics-CF nomogram for
predicting MVI was superior to both the radiomics signature
and the CF nomogram alone, with a higher C-index and better
calibration. Furthermore, the results implied that the combined
PVP radiomics-CF nomogram was robust with regard to the
prediction of MVI in HCC. The results of the study
emphasised the great importance of the radiomics signature
developed for MVI prediction according to the weights of the
nomogram.

In the current study, PVP radiomics signature performed
better than AP, DP or any kind of the combined radiomics
signatures (Table 3). In a previous study, Banerjee et al [25]

Table 3 Predictive performance of the proposed models

Different models Training dataset (N = 110) Validation dataset (N = 47)

Accuracy Sensitivity Specificity AUC (95% CI) Accuracy Sensitivity Specificity AUC (95% CI)

CF 0.673 0.703 0.658 0.734 (0.636–0.832) 0.766 0.944 0.655 0.761 (0.608–0.913)

AP 0.718 0.622 0.767 0.703 (0.587–0.817) 0.681 0.611 0.724 0.684 (0.507–0.857)

PVP 0.727 0.740 0.703 0.783 (0.694–0.872) 0.766 0.656 0.944 0.793 (0.662–0.924)

DP 0.709 0.973 0.575 0.798 (0.717–0.879) 0.468 0.611 0.379 0.490 (0.312–0.669)

AP + DP + PVP 0.782 0.737 0.806 0.849 (0.777–0.921) 0.596 0.412 0.700 0.618 (0.445–0.790)

AP + CF 0.791 0.514 0.932 0.790 (0.699–0.882) 0.723 0.389 0.931 0.724 (0.564–0.884)

PVP + CF 0.755 0.865 0.700 0.835 (0.760–0.910) 0.809 0.889 0.759 0.801 (0.672–0.930)

DP + CF 0.782 0.730 0.808 0.837 (0.763–0.911) 0.596 0.444 0.690 0.581 (0.409–0.752)

AP + DP + PVP + CF 0.836 0.757 0.877 0.876 (0.810–0.941) 0.660 0.500 0.759 0.680 (0.518–0.843)

CF clinical factor, AP arterial phase, PVP portal venous phase, DP delay phase, AUC area under the curve

Fig. 3 a, b The boxplots for
radiomics signature in training
and validation datasets in the
portal venous phase, categorised
by MVI+ and MVI− groups
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reported that radiogenomic venous invasion (RVI), as a non-
invasive radiogenomic marker, could accurately and preoper-
atively predict MVI in HCC. In Banerjee et al’s [25] study, all
feature scoring was also based exclusively on PVP images.
But, what differs between Banerjee’s work and the current

study is that our CECT-based PVP radiomics features were
more objective than the PVP radiological characteristics
assessed by doctors [9, 30, 31]. Furthermore, the predictive
accuracy of our proposed model was higher than that of pre-
viously reported studies [9, 30–32]. In addition, according to

Fig. 4 The nomogram obtained by combining the effective clinical factor (CF) and PVP radiomics signature

Fig. 5 Calibration curves of the nomogram on the training (a) and validation (b) datasets. The y-axis represents the actual microvascular invasion (MVI)
rate, the x-axis represents the predicted MVI possibility and the diagonal dashed line indicates the ideal prediction by a perfect model
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the pathological definition of MVI [5], it is mainly detected in
the small branches of the portal vein and may also be found in
the small branches of the hepatic artery and/or within the small
lymphatic vessels of the liver [33]. This suggests another hy-
pothetical explanation as to why the PVP radiomics model
reflected MVI better than the AP or DP radiomics model. In
addition, the PVP radiomics signature was simpler than the
other eight radiomics signature. This approach could be easier
to operate in the clinical practice.

The proposed radiomics features are categorised into non-
textural and textural features, based on statistical methods
[34]. The final predictive model demonstrated that the non-
tex tura l rad iomics fea tures ‘ fos_skewness ’ and
‘fos_minimum’ of the PVP were significantly related to
MVI. The fos_skewness measures the asymmetry of the dis-
tribution of values about the mean grey value, and the
fos_minimum reflects the intensity of tumour region. The re-
sults showed that the fos_skewness was positively and the
fos_minimum was negatively associated with the occurrence
ofMVI. Other significant radiomics features of the PVP in the
current study were textural features. The textural radiomics
parameters could not be identified via visual inspection, but
these reflected heterogeneity in the tumour. Tumour heteroge-
neity may be difficult to identify and quantify via traditional
imaging tools, the subjective assessment of images or random
sampling biopsy [35], but which were approved to be signif-
icant with cancer pathophysiology. Although radiomics is not
a new tool, it may be a useful imaging marker that improves
the assessment and quantification of tumour spatial heteroge-
neity [36]. However, the radiomics features are extracted and
calculated by the computer. Explaining the associations

between the radiomics features—especially the higher-order
radiomics features—and pathological manifestations is very
challenging [37]. On the one hand, the pathophysiologic pro-
cesses involve multiple interacting components; on the other
hand, the maximised information obtained from computer-
based radiologic image analysis is far beyond that which is
attainable via visual inspection.

In the current study, we developed a clinical model incor-
porating preoperative age, MTD, HBsAg and AFP. The clin-
ical model exhibited good predictive efficiency for theMVI of
HCC, especially when combined with a PVP radiomics mod-
el. Furthermore, preoperative AFP and MTD were positively
correlated with MVI. AsMVI is a common event in advanced
HCC [33], an estimate during early T-stage HCC has specific
clinical significance. In addition, Lei et al [9] reported that
large tumour diameter was one of the preoperative factors
associated withMVI. Thus, we selected early T-stage tumours
with MTDs less than 6 cm. However, MTD was still one of
the key factors in the preoperative estimation of MVI. Some
previous studies have reported that AFP levels were signifi-
cantly higher in patients with MVI [9, 38]. It has also been
reported that AFP levels were positively associated with tu-
mour size [31, 39]. In addition, preoperative age and HBsAg
were correlated with the MVI of HCC. Fundamental research
has revealed that the HBV-initiated tumourigenic process can
play an important role in the development of MVI in HCC
[40]. Recently, Lei et al [9] and Wei et al [41] reported that
high HBV infection and active HBV replication were associ-
ated with the development of MVI in HCC patients. The re-
sults of the current study are consistent with those findings.
The age of the MVI+ group was significantly lower than that
of the MVI− group in both the training and the validation
datasets. The predictive value of age with regard to MVI of
HCC remains unknown and requires further investigation.

The limitations of the current study include the relatively
small sample size, the fact that it was entirely retrospective and
thus needs be validated via prospective studies and the lack of
multicentre validation. MVI grade was also not taken into
account in the MVI+ group, and the tumour signs of CECT
were not analysed. One hundred twenty seconds after the con-
trast injection may be too late as a delay phase.

In conclusion, the radiomics signature identified may be
useful as an imaging marker for predicting MVI of HCC pre-
operatively. Nomograms combining PVP radiomics and CF
may prove useful as a tool to guide personalised treatment,
although this would require further external validation prior to
widespread application in clinical practice.
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Fig. 6 Decision curve analysis for the combined nomogram in the
validation dataset. The y-axis represents the net benefit, and the x-axis
represents the threshold probability. In our study, the threshold probability
of the decision curve is 4% and the corresponding net benefit is 0.357. It
indicates that the nomogram improves the benefit compared with the
measures that treat all patients and treat none patient when threshold
probability is > 4%
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