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Preoperative prediction of microvascular invasion in hepatocellular
cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI
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Abstract
Objectives Preoperative prediction of microvascular invasion (MVI) in patients with hepatocellular cancer (HCC) is important
for surgery strategy making. We aimed to develop and validate a combined intratumoural and peritumoural radiomics model
based on gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for pre-
operative prediction of MVI in primary HCC patients.
Methods This study included a training cohort of 110 HCC patients and a validating cohort of 50 HCC patients. All the patients
underwent preoperative Gd-EOB-DTPA-enhanced MRI examination and curative hepatectomy. The volumes of interest (VOIs)
around the hepatic lesions including intratumoural and peritumoural regions were manually delineated in the hepatobiliary phase
of MRI images, from which quantitative features were extracted and analysed. In the training cohort, machine-learning method
was applied for dimensionality reduction and selection of the extracted features.
Results The proportion of MVI-positive patients was 38.2% and 40.0% in the training and validation cohort, respectively. Supervised
machine learning selected ten features to establish a predictive model for MVI. The area under the receiver operating characteristic
curve (AUC), sensitivity, specificity of the combined intratumoural and peritumoural radiomics model in the training and validation
cohort were 0.85 (95% confidence interval (CI), 0.77–0.93), 88.2%, 76.2%, and 0.83 (95%CI, 0.71–0.95), 90.0%, 75.0%, respectively.
Conclusions We evaluate quantitative Gd-EOB-DTPA-enhanced MRI image features of both intratumoural and peritumoural
regions and provide an effective radiomics-based model for the prediction of MVI in HCC patients, and may therefore help
clinicians make precise decisions regarding treatment before the surgery.
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Key Points
• An effective radiomics model for prediction of microvascular invasion in HCC patients is established.
• The radiomics model is superior to the radiologist in prediction of MVI.
• The radiomics model can help clinicians in pretreatment decision making.
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Abbreviations
3D VIBE Three-dimensional volume

interpolated breath-hold test
AFP Alpha-fetoprotein
AIC Akaike information criterion
ALT Alanine aminotransferase
AST Aspartate aminotransferase
AUC Area under receiver operating

characteristic curve
CI Confidence interval
CT Computed tomography
FLASH Fast low angle shot
FS Fat suppression
Gd-EOB-DTPA Gadolinium-ethoxybenzyl-diethylenetriamine
GGT Gamma-glutamyltransferase
HASTE Half-Fourier single-shot turbo

spin-echo
HBP Hepatobiliary phase
HCC Hepatocellular cancer
ICC Intra-class correlation

coefficient
KW Kruskal-Wallis
LASSO Least absolute shrinkage

and selection operator
MRI Magnetic resonance imaging
MVI Microvascular invasion
NPV Negative predictive value
PPV Positive predictive value
Rad score Radiomics score
RFS Recurrence-free survival
ROI Region of interest
TSE Turbo spin-echo
VOI Volume of interest

Introduction

Liver resection and transplantation are considered as first-line
curative treatments for hepatocellular cancer (HCC).
Unfortunately, approximately 50% of patients recur within
2 years after curative hepatectomy [1, 2]. Microvascular inva-
sion (MVI) is one of the well-known potential predictors for
early recurrence of HCC [3, 4]. MVI is defined as the invasion
of tumour cells within a vascular space lined by endothelium
that is visible only on microscopy without macroscopic

tumour invasion [5]. The presence of MVI indicates aggres-
sive behaviour of HCC and poor survival outcomes [3].

The diagnosis of MVI is crucial for decision of surgery
strategies. Absence of MVI is required for liver transplanta-
tion in HCC patients according to the newMilan criteria [6, 7].
If the presence of MVI can be accurately predicted preopera-
tively, anatomic resection with expanding resection margin
should be performed even for a small tumour, while tumour
resection might be enough for large tumours in cases with
absence of MVI [8]. Besides surgical decision making, for
patients diagnosed with MVI preoperatively, additional adju-
vant therapies after surgery are preferred [9]. Thus, an accurate
preoperative prediction of MVI plays an important role in
treatment strategy making of HCC.

Currently, the diagnosis of MVI is determined only on the
postoperative histologic examination. Due to high heterogene-
ity of HCC, no stable serological or genomic predictors of MVI
have been found so far [10]. In recent years, several studies
have found that some image features of computed tomography
(CT) and magnetic resonance imaging (MRI) were predictive
of MVI [11, 12]. Some studies showed that Gd-EOB-DTPA-
enhancedMRI has a high value in the prediction of presence of
MVI in HCC [11, 13]. In the study of Lee et al [11], three MR
imaging features, including arterial peritumoural enhancement,
non-smooth tumour margin, and peritumoural hypointensity on
hepatobiliary phase (HBP), were independently associated with
MVI [11]. However, in all these studies, imaging features were
extracted visually. Although visual images provide some valu-
able feature information, their limitation in visual image grey
scales restricts potential application in reflecting valuable mi-
crocosmic image features. Radiomics is a rapidly growing dis-
cipline based on quantitative image analysis to reflect image
textures and morphology of tumours by grey value. It can ob-
tain two-dimensional image features, as well as high-
dimensional image features by extracting quantitative image
features through a computer algorithm and thus can extract
far more features than manual extraction by experts [14].
Several studies on skin cancer, glioma, and breast cancer
showed that unviewable radiomics features were closely related
to pathological microscopic structures. These features include
texture features (a series of matrix transformations, such as
grey-level co-occurrence metrics, run-length metrics, to reflect
the high-order information of region of interest (ROI)), filter-
transformed features (be used to obtain a series of target fea-
tures, such as LOG transformation, Gaussian transformation),
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wavelet features (the characteristics of the ROI through differ-
ent resolution angles) [15–17].

Most previous radiomics studies highlighted the
intratumoural region whereas the proximal liver parenchyma
(distance from the tumour margin ≤ 2 cm) possessed main
valuable information to diagnoseMVI. Recently, a breast can-
cer radiomics study [17] tried to extract radiomics features
from the intratumoural and peritumoural region simultaneous-
ly, finding that a combined radiomics method could produce
generalisable and robust unsupervised clusters. This method
was better than the extraction from the intratumoural region
alone, suggesting that peritumoural radiomics added value in
predicting treatment efficacy in comparison to use of
intratumoural radiomics alone.

To the best of our knowledge, no literature has reported to
apply a combined intratumoural and peritumoural radiomics
technique to preoperative prediction of MVI of HCC.
Therefore, we developed and validated radiomics models
based on gadolinium-ethoxybenzyl-diethylenetriamine (Gd-
EOB-DTPA)-enhanced MRI for preoperative prediction of
MVI in patients with HCC through intratumoural radiomics
and the combined intratumoural and peritumoural radiomics
method, respectively.

Materials and methods

Patients

Patients who underwent Gd-EOB-DTPA-enhanced MRI exam-
ination before surgery between January 2013 and August 2017
were consecutively included in this study according to the inclu-
sion and exclusion criteria. Only the patients who met all the
following criteria were included: (1) resectable solitary HCC
lesion or multiple HCC lesions within one liver lobe; (2) no
macroscopic vascular invasion; (3) received Gd-EOB-DTPA-
enhanced MRI of the liver within 1 month before surgery; (4)
underwent curative hepatectomy; and (5) pathological confirma-
tion of primary HCC. Exclusion criteria included: (1) received
other anti-tumour therapies before surgery; (2) incomplete clini-
cal or pathological information. Patients were randomly allocated
to training and validation cohorts in a ratio of 7:3. Our
Institutional Ethic Review Board has approved the current study,
following the Declaration of Helsinki.

Pathological examination

Information about tumour size, number, colour, and capsule con-
dition were obtained grossly, and information about histological
type, differentiation grade, lymphocyte infiltration,MVI, satellite
nodules, and chronic liver disease were obtained under micro-
scope. MVI was defined as presence of tumour emboli in a
vascular space lined by endothelial cells on microscopy [5].

Two pathologists with more than 10 years of experience in
HCC pathology reviewed all the specimen slices independently,
without knowing the patient’s clinical data.

MR imaging acquisition

MRI examination was performed by using a 3.0-T system
(Siemens Healthineers) in all patients. Eight-channel phased
array coil was used, and the scanning scale covered from the
top to the lower edge of the liver. The MR scan sequence
included: half-Fourier single-shot turbo spin-echo (HASTE)
sequence, fast low angle shot (FLASH) T1WI in/out of phase
sequence imaging, FLASH T1WI fat suppression (FS) se-
quence axial imaging, and turbo spin-echo (TSE) T2WI nav-
igation trigger axial imaging. The images in arterial phase,
portal phase, and hepatic venous phase were obtained by
performing three-dimensional volume interpolated breath-
hold test (3D VIBE) T1WI (FS) sequence during suspended
respiration at 30–35 s, 65–70 s, and 100–120 s, respectively,
after as bolus injection of Gd-EOB-DTPA (Primovist®,
0.1 mL/kg body weight) with a flow rate of 1 mL/s.
Additional hepatobiliary phase images were obtained at
20 min after injection. The specific parameters of each scan
sequence are shown in Table 1.

Volume of interest identification and segmentation

The volumes of interest (VOIs) were delineated around the liver
lesions outline for 3D volume area as indicated in hepatobiliary
phase of MRI images by three independent radiologists with
more than 5 years of experience with ITK-Snap software (open
source software; www.itk-snap.org) (Supplementary Fig. 1) [18].
The reproducibility of the three radiologists to delineate VOIwas
assessed for further feature selection.

The intratumoural region was defined as the area within
radiologist-annotated tumour boundaries. Then, the annotated
intratumoural region was dilated at a radius of 1 cm by topol-
ogy algorithm, generating the combined intratumoural and
peritumoural region (dilated distance was analysed as dilated
pixel counts multiplied by pixel size).

Radiomics feature extraction

The MR image features of all patients were extracted and
analysed by the A.K. software version 2.0.0 (house-made soft-
ware; Analysis-Kit, GE Healthcare). A total of 1044 imaging
features were extracted, including four kinds of features
(Fig. 1): 42 grey-level histogram (concerned with properties of
individual pixels and they describe the distribution of voxel in-
tensities within the image through commonly used and basic
metrics), 972 transformed matrix texture (namely, texture fea-
tures), 15 wavelet transformed texture, and 15 filter transformed
texture.
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Statistical analysis

Independent sample t test orKruskal-Wallis (KW) nonparametric
rank sum test was used to compare clinical characteristics be-
tween MVI-positive and MVI-negative groups in the training
and validation cohort for continuous variables, while chi-square
test or Fisher exact test for categorical variables. The reproduc-
ibility of three radiologists to delineate VOI was assessed by the
intra-class correlation coefficient (ICC). ICC ≥ 0.8 indicated high
consistency, 0.5–0.79 middle, and < 0.5 low [19].

The predictive model was established by combining the
1044 extracted features with pathologically diagnosed MVI
outcomes through statistical methods of feature de-redundan-
cy, supervised feature dimensionality reduction, and machine-
learning-based classification. The least absolute shrinkage and
selection operator (LASSO) logistic regression model was
applied to dimensionality reduction through bootstrap. A 10-

fold cross validation was used to select the minimum value of
λ. Iteration was used, and frequencies of each features were
ranked decreasingly. In order to avoid overfitting, the top 50
features were selected to establish the initial model. Finally,
given collinearity of 50 features initially selected, logistic re-
gression analysis was performed. Optimal model was obtain-
ed through Akaike information criterion (AIC) and area under
the receiver operating characteristic curve (AUC). AUC and
the corresponding 95% confidence interval (CI) were obtained
from receiver operating characteristic curve (ROC) analysis,
as well as the sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) of the optimal
cutoff value.

To compare the diagnostic performance of experts and
radiomics model, univariable logistic regression models were
used to evaluate the relationship between three MRI features
extracted by Lee’s study [11]. The association between the

Fig. 1 Flow chart of the study. (a) Collecting HCC patients who met
inclusion and exclusion criteria; (b) Extracting radiomics features: (I)
obtaining Gd-EOB-DTPA-enhanced MRI images in the hepatobiliary
phase; (II) segmentation: The volume of interest was delineated by expe-
rienced radiologists and three-dimensional images were formed; (III)
extracting four kinds of quantitative features by software; (c) pathologic
examination: (I) obtaining gross specimens of tumour tissue; (II)

pathologic specimens; (III) pathologic diagnosis; (d) data cleaning and
dimensions reduction; (e) establishing the model for predicting microvas-
cular invasion by machine learning. Features through dimension reduc-
tion were applied to establish the model by machine learning and obtain
quantitative radiomics score to predict microvascular invasion. HBP,
hepatobiliary phase

Table 1 MRI scan sequence and parameters

Name Orientation Category TR (ms) TE (ms) FOV (mm) Matrix Reverse
angle

Band
width

Seam thickness
(mm)

Fat
saturation

Breath-
hold

T1WI IN/OUT
PHASE

TRA FLASH 200 2.2/1.1 328 × 350 192 × 256 65° 930/977 6 Yes/no Yes

T1WI-FS TRA FLASH 235 2.2 328 × 350 240 × 320 70° 822 6 Yes Yes

Contrast-enhanced

T1WI TRA VIBE 3.3 1.2 328 × 350 128 × 256 13° 501 2 Yes Yes

T2WI TRA TSE 2000 75 328 × 350 240 × 320 150° 672 6 Yes No

T1WI (HBP) TRA/COR VIBE 3.3 1.2 328 × 350 154 × 256 13° 501 2 Yes Yes

TRA, transverse axial; COR, coronal; SAG, sagittal; FLASH, fast low angle shot; VIBE, volume interpolated breath-hold test; TSE, turbo spin-echo; FS,
fat suppression; HBP, hepatobiliary phase
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clinical variables of the training cohort withMVIwas assessed
by univariable logistic regression analysis. And those vari-
ables with p value < 0.05 were included into the multivariable
logistic regression analysis along with Rad score to further
assess their independent association with MVI.

A heatmap analysis was performed to present associations
between radiomics features and histopathologic features. It
can visually represent data values in defined shades of colour.
The radiomics score (Rad score) of each patient was calculat-
ed from the linear combination of the selected features

multiplied by the coefficients estimated by the optimal logistic
model.

Spearman correlation analysis was used to evaluate the
associations between radiomics and histopathologic features.

The goodness of fit of the predictive model was evaluated
by Hosmer-Lemeshow Wald chi-square test.

All statistical analyses were performed by R software ver-
sion 3.2.3 (Bell Laboratories; https://cran.r-project.org/bin/
windows/base/old/3.2.3). A two-sided p value was considered
statistically significant if less than 0.05.

Table 2 Baseline clinical
characteristics of the training and
validation cohort

Total (n = 160) Training (n = 110) Validation (n = 50) p values

MVI (%) 62 (38.8) 42 (38.2) 20 (40.0) 0.827

Age (years), mean ± SD 54.8 ± 11.4 54.6 ± 11.2 55.3 ± 12.0 0.700

Gender 0.821

Male 146 (91.3) 100 (90.9) 46 (92.0)

Female 14 (8.8) 10 (9.1) 4 (8.0)

ALT, U/L 34.0 (21.5, 50.5) 34.0 (20.0, 53.0) 33.5 (24.0, 48.0) 0.668

AST, U/L 32.0 (25.0, 46.5) 31.5 (25.0, 48.0) 33.0 (26.0, 46.0) 0.714

GGT, U/L 58.0 (33.0, 118.5) 58.0 (33.0, 119.0) 59.0 (34.0, 108.0) 0.925

Platelet count (109/L),
mean ± SD

164.4 ± 66.9 162.0 ± 68.0 169.7 ± 64.7 0.501

AFP (μg/L) 25.6 (4.9, 235.8) 29.3 (5.8, 309.7) 18.5 (3.4, 185.8) 0.177

AFP group 0.613

≤ 20 μg/L 74 (46.3) 48 (43.6) 26 (52.0)

20–400 μg/L 51 (31.9) 37 (33.6) 14 (28.0)

> 400 μg/L 35 (21.9) 25 (22.7) 10 (20.0)

Tumour number 1.0 (1.0, 2.0) 1.0 (1.0, 2.0) 1.0 (1.0, 2.0) 0.812

Tumour number group 0.722

1 115 (71.9) 80 (72.7) 35 (70.0)

≥ 2 45 (28.1) 30 (27.3) 15 (30.0)

Tumour size (cm) 3.9 (2.7, 5.5) 3.8 (2.7, 5.0) 4.3 (2.7, 6.0) 0.528

Tumour size group 0.035

< 5 cm 111 (69.4) 82 (74.5) 29 (58.0)

≥ 5 cm 49 (30.6) 28 (25.5) 21 (42.0)

HBsAg 0.386

Negative 26 (16.3) 16 (14.5) 10 (20.0)

Positive 134 (83.8) 94 (85.5) 40 (80.0)

Child-Pugh class 0.553

A 157 (98.1) 107 (97.3) 50 (100.0)

B 3 (1.9) 3 (2.7) 0 (0.0)

BCLC stage 0.179

0 17 (10.6) 9 (8.2) 8 (16.0)

A 105 (65.6) 77 (70.0) 28 (56.0)

B 35 (21.9) 23 (20.9) 12 (24.0)

C 3 (1.9) 1 (0.9) 2 (4.0)

Continuous variables are presented as median (inter-quartile range, IQR) unless noted otherwise. Categorical
variables are presented as n (%)

SD, standard deviation;MVI, microvascular invasion; ALT, alanine aminotransferase; AST, aspartate aminotrans-
ferase; GGT, gamma-glutamyltransferase; AFP, alpha-fetoprotein; HBsAg, hepatitis B surface antigen; BCLC,
Barcelona Clinic Liver Cancer
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Results

Baseline characteristics

One hundred sixty patients were collected, including 110 pa-
tients in the training cohort and 50 in the validation cohort
(Supplementary Fig. 2). Among all 160 patients, MVI was
pathologically diagnosed in 62 patients (38.8%). The clinical
characteristics of both cohorts are listed in Table 2. Baseline
characteristics were not significantly different between both
cohorts (Supplementary Table 1). Larger tumour size was de-
tected in MVI-positive patients compared to that in MVI-
negative patients in the training cohort, while higher serum
AFP level and larger tumour size were found in MVI-
positive patients compared to those in MVI-negative patients
in the validation cohort. No significant differences were found
between MVI-positive and MVI-negative patients in both co-
horts in terms of other characteristics.

Interobserver and intraobserver reproducibility
of radiomics feature extraction

The interobserver ICC was ≥ 0.8, 0.5–0.79, < 0.5 for 82%,
10% and 8% of the features, respectively. The intraobserver
ICC was ≥ 0.8, 0.5–0.79, < 0.5 for 85%, 14% and 1% of the
features, respectively.

Radiomics model establishment

The heatmap was used to show the correlation coefficient matrix
among four kinds of features (Fig. 2a). To reduce dependency
and redundancy, we used LASSO in logistic regression model to
reduce dimensions of these 1044 features, and 50 features were
selected. Logistic model was used and, finally, ten features were
selected to establish the final model: kurtosis, percentile 10, per-
centile 75, percentile 80, ClusterShade_angle0_offset1
(ClusterShade), GLCMEntrophy_angle45_offset9
(GLCMEntrop), ShortRunEmphasis_AllDirection_offset2_SD
(SRE), ShortRunLowGreyLevelEmphasis_AllDirection_offset5
_SD (SRLGLE) , HighGreyLeve lRunEmphas i s_
A l l D i r e c t i o n _ o f f s e t 8 _ S D ( H G L R E ) , a n d
LongRunHighGreyLevelEmphasis_AllDirection_offset8_SD
(LRHGLE). Correlation coefficient matrix of these ten features
were mostly negative but with low correlation coefficients
(Fig. 2b), thus, were suitable for establishing a model for
predicting MVI.

Hosmer-Lemeshow test showed the model established by
these ten features was predictive in MVI (Hosmer-Lemeshow
Wald chi-square = 10.188, df= 8, p= 0.252). Rad score was de-
fined as a score resulted by the regression coefficients of these ten
features multiplied by the value of corresponding feature
(Formula see Supplementary Material). Each patient’s Rad score
in the training cohort was shown as bar chart in Fig. 3a,

suggesting that MVI-positive patients presented higher score
while MVI-negative patients presented lower score.

Validation of radiomics model

ROC curves of the training and validation cohorts were shown
in Fig. 4a and b, respectively. The AUC, sensitivity, and spec-
ificity of our model in predicting MVI were 0.850 (95% CI,

a

b

68

76

102

116

101

157

41

91

22

105

69

85

134

18

65

82

1

33

77

118

137

138

26

28

49

61

3

144

60

25

70

63

36

128

48

152

16

133

155

98

90

107

10

110

125

96

62

84

120

123

11

29

131

81

97

52

109

130

89

88

99

40

119

50

146

111

147

106

104

124

53

71

51

93

103

108

7

37

31

32

80

154

54

39

46

145

56

72

95

151

117

92

100

34

79

35

142

24

58

43

45

113

57

38

156

8

64

153

132

139

−2

−1

0

1

2

Fig. 2 Radiomics heatmaps. (a) Heatmap depicting correlation
coefficients matrix of 1044 features in the training cohort. Unsupervised
clustering analysis was used. Yellow was used to represent positive
correlation and blue to represent negative correlation. (b) Heatmap
depicting correlation coefficients matrix of ten selected features in the
training cohort. Unsupervised clustering analysis was used. Yellow was
used to represent positive correlation and blue to represent negative
correlation
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0.77–0.93), 76.2%, and 88.2%, respectively, in the training
cohort while 0.833 (95% CI, 0.71–0.95), 73.7%, and 90.0%,
respectively, in the validation cohort.

MVI-positive patients had significantly higher Rad score in the
training and validation cohorts (training cohort, 0.40 (− 0.04, 1.63)
in MVI-positive vs. − 1.53 (− 2.19, − 0.48) in MVI-negative,
p< 0.001; validation cohort, 0.96 (− 0.06, 3.39) vs. − 2.3 (− 4.3,
− 1.35), p< 0.001) (Table 3, Fig. 3a, b).

Association of radiomics features with clinical data

In the training cohort, there was statistical difference between
MVI-positive and MVI-negative group in terms of six of the
selected ten features in univariable logistic regression model
(Supplementary Table 2). Univariable analysis of the ten selected
features and other clinical characteristics (Fig. 5) showed that
eight features were associated with clinical characteristics listed

Fig. 4 Receiver operating characteristic curves (ROC) of the training and
validation cohort. AUC, area under the receiver operating characteristic
curve

Fig. 3 Rad scores for each patient in the training and validation cohort.
(a) Rad score for each patient in the training cohort. Light blue bars show
scores for MVI-negative patients. Dark blue bars show scores for MVI-
positive patients. (b) Rad score for each patient in the validation cohort.
Light Blue bars show scores for MVI-negative patients. Dark blue bars
show scores for MVI-positive patients. MVI, microvascular invasion;
Rad score, radiomics score
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in Table 1. Five features (percentile 10, ClusterShade, LRHGLE,
GLCMEntrophy, and percentile 75) were associated with BCLC
stage. Seven features (kurtosis, percentile 10, percentile 80,
ClusterShade, LRHGLE, GLCMEntrophy, and percentile 75)
were associated with tumour size. In addition, percentile 10,
percentile 75, percentile 80, and LRHGLE were associated with
several clinical characteristics.

Association of radiomics features
with histopathologic features

Three histopathologic features were analysed, including
Edmondson grade, satellite nodules, and lymphocyte infiltra-
tion. Heatmap results showed that kurtosis, GLCMEntropy,
and LRHGLE were associated with Edmondson grade
(p < 0.05). Only Kurtosis and SRE were associated with sat-
ellite lesions (p < 0.05), and GLCMEntropy and HGLRE
were associated with lymphocyte infiltration (p < 0.05). The
other radiomics features were not associated with three histo-
pathologic features (Fig. 6).

Comparison of diagnostic performance of experts
and radiomics model

An abdominal radiologist with 17 years of experience in ab-
dominal MR imaging performed image analysis according to
these three findings extracted from preoperative MRI and
established a model consists of these three features and MVI
in the way Lee’s [11] study adopted to predict MVI. Based on
160 patients in our study, when two of these three findings
were combined, AUC, sensitivity, specificity, and accuracy
were 0.57, 45.2%, 67.3%, and 58.8%, respectively. When
these three findings were combined, AUC, sensitivity, speci-
ficity, and accuracy were 0.47, 19.3%, 83.7%, and 58.8%,
respectively (Table 4). The radiomics model, of which AUC,
sensitivity, specificity, and accuracy were 0.83, 90.0%, 75.0%,
and 84.0%, respectively, seems superior to the radiologist in
predicting MVI (Table 4).

Decision curve analysis used to predict MVI by radiomics
model and experts was shown in Supplementary Fig. 3. It
showed that if the threshold probability is larger than 20%,

Table 3 Association between radiomics features with MVI from binary logistic regression analysis

Intercept and features Training Validation

Estimate OR (95% CI) p values Estimate OR (95% CI) p values

Multivariable analysis using selected features

Intercept − 0.64 0.53 (0.30, 0.88) 0.017* − 0.26 0.77 (0.33, 1.79) 0.534

Kurtosis 1.46 4.29 (1.51, 15.65) 0.014* 1.35 3.87 (1.38, 15.6) 0.026*

Percentile 10 − 2.43 0.09 (0.01, 0.38) 0.004* − 2.31 0.1 (0.02, 0.43) 0.006*

Percentile 75 21.30 1.79E + 09 (55.56, 5.18E + 18) 0.034* 10.10 2.43E + 05 (0.00, 1.03E + 16) 0.398

Percentile 80 − 19.83 0.00 (0.00, 0.03) 0.037* − 7.85 0.00 (0.00, 5.94E + 5) 0.491

ClusterShade 1.02 2.78 (0.99, 8.87) 0.064 0.74 2.09 (0.69, 10.88) 0.257

GLCMEntropy 0.67 1.96 (1.05, 3.89) 0.041* 0.03 1.03 (0.37, 2.89) 0.953

SRLGLE 0.82 2.27 (1.13, 5.22) 0.033* 0.32 1.37 (0.94, 2.06) 0.099

HGLRE − 0.48 0.62 (0.32, 1.09) 0.117 − 0.29 0.75 (0.26, 1.95) 0.557

LRHGLE − 0.52 0.59 (0.28,1.17) 0.148 0.06 1.07 (0.46,2.35) 0.875

SRE − 0.52 0.59 (0.32, 1.03) 0.079 − 0.08 0.92 (0.41, 2.00) 0.841

Radiomics score

1.00 2.72 (1.85, 4.37) < 0.001* 0.34 1.41 (1.15, 1.82) 0.003*

AUC

0.85 (0.77, 0.93) < 0.001# 0.83 (0.71, 0.95) < 0.001#

‘Kurtosis’ is a measure of the ‘peakedness’ of the distribution of values in the image ROI, which can be used to describe the concentration degree of
image brightness information. The percentile, p%, of a distribution is defined as that value of the brightness. Cluster shade is a measure of the skewness
and uniformity of theGLCM. SRE is ameasure of the distribution of short run lengths, with a greater value indicative of shorter run lengths andmore fine
textural textures. GLCMEntrop measures the average amount of information required to encode the image values. SRLGLE measures the joint
distribution of shorter run lengths with lower grey-level values. LRHGLRE measures the joint distribution of long run lengths with higher grey-level
values. HGLRE measures the distribution of the higher grey-level values, with a higher value indicating a greater proportion of higher grey-level values
and size zones in the image

OR, odds ratio; AUC, area under receiver operating characteristic curve; ClusterShade, ClusterShade_angle0_offset1; GLCMEntrop, GLCMEntrophy_
angle45_offset9; SRE, ShortRunEmphasis_AllDirection_offset2_SD; SRLGLE, ShortRunLowGreyLevelEmphasis_AllDirection_offset5_SD;HGLRE,
HighGreyLevelRunEmphasis_AllDirection_offset8_SD; LRHGLE, LongRunHighGreyLevelEmphasis_AllDirection_offset8_SD

*Statistically significant results from multivariate logistic regression analysis. # Statistically significant results from ROC analysis. Estimate is partial
regression coefficient in logistic model
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in other words, the estimated MVI-positive probability of a
patient > 20%, the radiomics model would make more pa-
tients benefit from accurately predicting MVI, compared with
the model based on imaging features extracted by experts.

Discussion

In this current study, we established a radiomicsmodel predicting
MVI preoperatively by extracting radiomics features from the
intratumoural and peritumoural regions of Gd-EOB-DTPA-
enhanced MRI. Our results showed that the AUC, sensitivity,
and specificity of the combined intratumoural and peritumoural
radiomics model were 0.83, 90%, and 75%, respectively. To the
best of our knowledge, this is the first study to establish an MRI
radiomics model for MVI prediction of HCC so far. The main
reasons that the sensitivity and specificity ofmore than 75%were
achieved in our model might be explained as follows. Firstly,
radiomics requires accurate discrimination of lesion boundaries,
and Gd-EOB-DTPA-enhanced MRI images were used in our
radiomics model. It is known that more than half of HCCs have
invaded capsule or completely lack them, and the infiltrative
growth of the tumour further enhances the difficulty of lesion
segmentation [20]. Gd-EOB-DTPA is a new hepatobiliary-
specific MRI contrast agent [21]. The difference in signal be-
tween tumour tissues and surrounding liver parenchyma is more
dominant in the hepatobiliary phase of Gd-EOB-DTPA-
enhancedMRI than conventional contrast agents [22–24], which
makes the boundaries of tumours clearer to delineate. Secondly,
radiomics has the advantages of stable calculation, high repeat-
ability, indefatigability, and no interference of human subjectivity
[25, 26]. When we validated the efficacy of the features reported
in the study of Lee et al [11] via visual inspection in our cohorts,
the accuracy and sensitivity were much lower than those of our
predictivemodel. This finding demonstrates the lower sensitivity,

higher discrepancy, and poorer generalisability of extracting im-
aging featuresmanually. Thirdly, the delineation of all the tumour
slices in hepatobiliary phase extracted almost the whole tumour
characteristics including the three-dimensional features (e.g.
shape and smoothness), making the features more stable and
representative than 2-dimensional regions of interest [27].

In our study, imaging features of intratumoural and
peritumoural region were extracted simultaneously to estab-
lish the model. A previous study [5] has shown that more than
85% of MVI was found in peritumoural region within 1-cm
distant from tumour boundaries. That was why the defined
peritumoural region in our study was obtained by dilating
the annotated intratumoural region at a radius of 1 cm. Lee
et al [11] found three imaging features in Gd-EOB-DTPA
highly suggestive of MVI. Among these features, arterial
peritumoural enhancement and peritumoural hypointensity
on hepatobiliary phase were both peritumoural features. The
former was probably due to the local haemodynamic change
of peritumoural region when MVI was present. The latter was
probably attributed to the decreased intake of Gd-EOB-DTPA
on hepatobiliary phase due to hepatic dysfunction induced by
ischaemia. In light of these research findings, it was reason-
able to come up with the idea that radiomics features of the
peritumoural region were of great importance for the preoper-
ative prediction of MVI. This is the first study to establish
combined intratumoural and peritumoural radiomics model
to predict MVI in HCC so far. Moreover, our study has

Fig. 5 Map of associations between ten features selected and clinical
characteristics. Blue was used to represent high p values and white to
represent low p values

Fig. 6 Heatmap of associations between ten radiomics features and
clinical characteristics. Red was used to represent low p values and
green to represent high p values
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demonstrated that the combined model was superior to
intratumoural radiomics model in preoperative prediction of
MVI in HCC.

Previous studies have found that radiomics features were
closely related to tumour microscopic structure and biological
behaviour [28–32]. Our study discovered ten radiomics quan-
titative features associated with MVI of HCC, which have not
been reported before. Texture features are important markers
of intratumoural homogeneity. Of the ten radiomics features
associated with MVI in our study, four were histogram-based
features (kurtosis, percentile 10, percentile 75, percentile 80)
and others were matrix-based features (ClusterShade,
GLCMEntrophy, SRE, SRLGLE, HGLRE, LRHGLE).
Histogram-based features were first-order statistic, which
mainly relied on the statistics of the intensity information (or
brightness information) of the intratumour and peritumour,
and then investigated the overall distribution of the intensity
information of the intratumour and peritumour. For example,
‘kurtosis’ is a measure of the ‘peakedness’ of the distribution
of values in the image ROI, which can be used to describe the
concentration degree of image brightness information. A

higher kurtosis implies that the mass of distribution is concen-
trated towards the tail(s) rather than towards the mean. The
percentile (%) of a distribution is defined as that value of the
brightness. Matrix-based features were second-order statistic,
which can be used to describe the complexity of the
intratumour and peritumour, changes in hierarchy, and the
degree of thickness of the texture. For example, cluster shade
is a measure of the skewness and uniformity of the GLCM. A
higher cluster shade implies greater asymmetry about the
mean. SRE is a measure of the distribution of short run
lengths, with a greater value indicative of shorter run lengths
and more finer textures. GLCMEntrop measures the average
amount of information required to encode the image values.
SRLGLEmeasures the joint distribution of shorter run lengths
with lower grey-level values. The larger the value, the more
complex the image, and the smaller the image grey value.
LRHGLE measures the joint distribution of long run lengths
with higher grey-level values. HGLRE measures the distribu-
tion of the higher grey-level values, with a higher value indi-
cating a greater proportion of higher grey-level values and size
zones in the image. On one hand, tumours with high-grade

Table 4 Comparison of diagnostic performance of three MRI imaging features and the radiomics model for MVI

MRI features Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%)

Study of Lee et al (n = 197)#

Arterial peritumoural enhancement 54.0 (34/63) 88.1 (118/134) 77.2 (152/197) 68.0 (34/50) 80.3 (118/147)

Non-smooth tumour margin 69.8 (44/63) 68.7 (92/134) 69.0 (136/197) 51.2 (44/86) 82.9 (92/111)

Peritumoural hypointensity on HBP 31.7 (20/63) 91.8 (123/134) 72.6 (143/197) 64.5 (20/31) 74.1 (123/166)

Combination of any two findings 52.4 (33/63) 92.5 (124/134) 79.7 (157/197) 76.7 (33/43) 80.5 (124/154)

Combination of all three findings 19.0 (12/63) 99.3 (133/134) 73.6 (145/197) 92.3 (12/13) 72.3 (133/184)

Our patients included with the same criteria as the study of Lee et al (n = 82)

Arterial peritumoural enhancement 21.4 (6/28) 81.5 (44/54) 61.0 (50/82) 37.5 (6/16) 66.7 (44/66)

Non-smooth tumour margin 67.9 (19/28) 37.0 (20/54) 47.6 (39/82) 35.8 (19/53) 69.0 (20/29)

Peritumoural hypointensity on HBP 14.3 (4/28) 85.2 (46/54) 61.0 (50/82) 33.3 (4/12) 65.7 (46/70)

Combination of any two findings 28.6 (8/28) 75.9 (41/54) 59.8 (49/82) 38.1 (8/21) 67.2 (41/61)

Combination of all three findings 7.1 (2/28) 90.7 (49/54) 62.2 (51/82) 28.6 (2/7) 65.3 (49/75)

All the patients in the present study (n = 160)

Arterial peritumoural enhancement 33.9 (21/62) 76.5 (75/98) 60.0 (96/160) 47.7 (21/44) 64.7 (75/116)

Non-smooth tumour margin 79.0 (49/62) 30.6 (30/98) 49.4 (79/160) 41.9 (49/117) 69.8 (30/43)

Peritumoural hypointensity on HBP 35.5 (22/62) 73.5 (72/98) 58.8 (94/160) 45.8 (22/48) 64.3 (72/112)

Combination of any two findings 45.2 (28/62) 67.3 (66/98) 58.8 (94/160) 46.7 (28/60) 66.0 (66/100)

Combination of all three findings 19.3 (12/62) 83.7 (82/98) 58.8 (94/160) 42.9 (12/28) 62.1 (82/132)

All thepatients in the present study (n=160)

Radiomics model (training, n = 110) 88.2 (60/68) 76.2 (32/42) 83.6 (92/110) 85.7 (60/70) 80.0 (32/40)

Radiomics model (validation, n = 50) 90.0 (27/30) 75.0 (15/20) 84.0 (42/50) 84.4 (27/32) 83.3 (15/18)

Sensitivity measures the proportion of true positives that are correctly identified. Specificity measures the proportion of true negatives that are correctly
identified. Accuracy is the proportion of true results (both true positives and true negatives) among the total number of cases examined. PPVandNPVare
the proportions of positive and negative results in statistics and diagnostic tests that are true positive and true negative results, respectively. # Data from
the paper of Lee et al

PPV, positive predictive value; NPV, negative predictive value
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malignancy may have greater heterogeneity and larger differ-
ence between cells, manifesting as grey-level nonuniformity
andmixed signals in intratumoural regions. On the other hand,
high-grade malignant tumours with faster growing speed
would be more prone to necrosis due to poorer intratumoural
blood supply, which leads to worse uniformity and more
mixed signals in intratumoural regions [33]. In addition,
high-grade malignant tumours would be more prone to invade
capsules, and infiltrate grow, which leads to less uniformity
and more mixed signals in peritumoural regions. As high-
grade tumour is tending to present MVI, the texture features
in MVI-positive HCC are less uniform than that of MVI-
negative HCC, and the histogram features in MVI-positive
HCC have more mixed signals than that of MVI-negative
HCC in intratumoural and peritumoural regions. Therefore,
the biological function similarity may influence microscopic
pathologic similarity and subsequent similarity in radiomics
features, which were identified in our study as valuable pre-
dictive features for MVI.

There are several limitations to this study. Firstly, the sam-
ple size is still limited compared with the relatively large num-
ber of variables. A large-scale clinical study enrolling more
patients would definitely help validate and improve its appli-
cability as an effective tool for predictingMVI in the decision-
making strategy of HCC management. Secondly, our valida-
tion cohort was from the same centre as the training cohort,
which restricted us to assess the generalisability of our find-
ings to other centres and settings. Thirdly, in our study, nor-
malisation of the signal intensities onMR images has not been
performed. MR signals are a relative value rather than an
absolute value, which may influence interpretation of signal
characteristics on MVI prediction. Fourthly, the correlation of
the actual site of MVI on histological specimen and VOI on
MRI has not been performed.

In conclusion, this model showed high accuracy and sen-
sitivity in both the training and validation cohorts, indicating
its good representativeness and stability. Thus, it may be use-
ful in preoperative individual prediction of MVI and assist
clinicians in pretreatment decision making.
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