
NEURO

Texture analysis on conventional MRI images accurately predicts early
malignant transformation of low-grade gliomas
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Abstract
Objectives Texture analysis performed onMRI images can provide additional quantitative information that is invisible to human
assessment. This study aimed to evaluate the feasibility of texture analysis on preoperative conventional MRI images in
predicting early malignant transformation from low- to high-grade glioma and compare its utility to histogram analysis alone.
Methods A total of 68 patients with low-grade glioma (LGG) were included in this study, 15 of which showed malignant
transformation. Patients were randomly divided into training (60%) and testing (40%) sets. Texture analyses were performed
to obtain the most discriminant factor (MDF) values for both training and testing data. Receiver operating characteristic (ROC)
curve analyses were performed on MDF values and 9 histogram parameters in the training data to obtain cutoff values for
determining the correct rates of discrimination between two groups in the testing data.
Results The ROC analyses on MDF values resulted in an area under the curve (AUC) of 0.90 (sensitivity 85%, specificity 84%)
for T2w FLAIR, 0.92 (86%, 94%) for ADC, 0.96 (97%, 84%) for T1w, and 0.82 (78%, 75%) for T1w + Gd and correctly
discriminated between the two groups in 93%, 100%, 93%, and 92% of cases in testing data, respectively. In the astrocytoma
subgroup, AUCs were 0.92 (88%, 83%) for T2w FLAIR and 0.90 (92%, 74%) for T1w + Gd and correctly discriminated two
groups in 100% and 92% of cases. The MDF outperformed all 9 of the histogram parameters.
Conclusion Texture analysis on conventional preoperative MRI images can accurately predict early malignant transformation of
LGGs, which may guide therapeutic planning.
Key Points
• Texture analysis performed on MRI images can provide additional quantitative information that is invisible to human
assessment.

• Texture analysis based on conventional preoperative MR images can accurately predict early malignant transformation from
low- to high-grade glioma.

• Texture analysis is a clinically feasible technique that may provide an alternative and effective way of determining the likelihood
of early malignant transformation and help guide therapeutic decisions.
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Abbreviations
AUC Area under the curve
LDA Linear discriminant analysis
LGG Low-grade glioma
MDF Most discriminant factor
ROC Receiver operating characteristic

Introduction

Glioma can be classified as low (LGG, WHO grades I–II) or
high (HGG, WHO grade III/IV) grade [1], with low-grade
gliomas typically having a longer survival time. The median
survival of patients with low-grade gliomas (WHO grade II)
can range between 2 and 20 years, depending on the presence
or absence of a 1p19q co-deletion and isocitrate dehydroge-
nase (IDH) mutational status [2–5]. However, even within
1p19q and IDH mutational subgroups, the prognosis is highly
variable, with some growing slowly for years, while others
progress rapidly to high-grade (grade III/IV) gliomas. The
time of malignant transformation differs among patients, with
a 5-year malignancy-free survival rate of 30 to 70% [6, 7].
Advances inMRI and PET techniques have improved grading
of preoperative gliomas [8–10], which is important in guiding
treatment and predicting prognosis, but predicting early ma-
lignant transformation of LGG still remains a challenge and is
important for clinical management.

Standard-of-care neuroradiological monitoring of LGG re-
lies on visual inspection onMRI images, which can vary based
on radiologists’ training, experience, and expertise. Employing
a machine-learning operator-independent algorithm, such as
the basic texture analysis, may identify unique MRI features
that reflect the underlying pathophysiology of LGGs that even-
tually undergo malignant transformation. In recent years, tex-
ture analysis has gained increasing interest in clinical studies,
as it enables quantification of spatial variations in the gray-
level patterns, pixel interrelationships, and spectral properties
of an image [11]. Although some characteristics can be ob-
served qualitatively, many features remain imperceptible to
the human eye. Texture features also account for a large and
important part of radiomics analysis, which allows for more
power in facilitating better clinical decision-making in the care
of patients with cancer [12]. Texture analysis has been per-
formed on MRI images to grade brain glioma [13–16], differ-
entiate among brain metastases [17, 18], and predict glioma
phenotype and overall survival [19], with promising results.
Textural parameters consist of various statistical classes, in-
cluding histogram analysis, gray-level co-occurrence matrices
(GLCM), and run-length matrices (RLM) [20]. Histogram
analysis alone can represent a gray-level distribution without
spatial information and is increasingly used in quantitative
analysis of gliomas in clinical studies [21, 22]. It is considered
preferable to operator-dependent ROI analysis in describing

tumor heterogeneity and may guide tumor classification and
assessment of progression. We hypothesize that textural pa-
rameters of various statistical classes, some of which are invis-
ible to the human eye, can predict malignant transformation of
LGG based on conventional MR images.

The purpose of this study was to evaluate the feasibility of a
clinically implementable texture analysis package, based on
conventional preoperative MRI images (T2w FLAIR, ADC,
T1w, and post-Gadolinium T1w (T1w + Gd)), in predicting
early malignant transformation from low- to high-grade glio-
ma, and compare its utility to histogram analysis alone.

Materials and methods

Patient selection

This retrospective study was approved by our local institution-
al review board, which waived written informed consent.
Ninety-five consecutive patients who underwent MR imaging
in our institution for low-grade glioma between June 2000 and
December 2017 were identified. Of these patients, 68 met the
following inclusion criteria: (1) pathologically proven (after
resection or biopsy) grade II tumor according to the WHO
Classification of Tumors of the Central Nervous System [1,
23]; (2) follow-up until pathologically provenmalignant trans-
formation to high-grade glioma or at least 2 years of clinical/
radiological follow-up demonstrating tumor stability; (3) a
preoperative MRI scan that included T2w FLAIR, ADC,
T1w, or T1w + Gd sequences.

MRI protocol

All brain MRIs were performed on our clinical scanners (GE
Signa HDxt 1.5 T and 3.0 T, GE SIGNA EXCITE 1.5 T).
Parameters for T2w FLAIR are as follows: field of view =
24 cm, TR = 8802–10,000 ms, TE = 113–321 ms, TI =
1660–2300 ms, flip angle = 90–111°, slice thickness = 3–
5 mm, matrix = (256–352) × (192–160), pixel bandwidth =
75–893. ADC maps were reconstructed from the DWI se-
quence, whose parameters are as follows: field of view =
24 cm, TR = 4500–10,500 ms, TE = 62–121 ms, flip angle =
90–180°, slice thickness = 3–5 mm, matrix = 128 × 128, pixel
bandwidth = 484–1421, b-values = 0, 1000 s/mm2. Image pa-
rameters for T1w and T1w +Gd are as follows: field of view =
24 cm, TR = 367–450 ms, TE = 7–18 ms, flip angle = 90–
130°, slice thickness = 3–5 mm, matrix = (256–320) × (192–
224), pixel bandwidth = 61.

Texture analysis

Texture analysis was performed using open-source MaZda
software (version 4.6.0, Institute of Electronics, Technical
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University of Lodz) [24, 25]. Training (using 60% of the data)
and testing sets (40%) were randomly generated, both includ-
ing astrocytomas and oligodendrogliomas that did or did not
undergo early malignant transformation. MRI images were
loaded into the MaZda software; then, the tumors were man-
ually segmented on each image slice of the entire abnormal
area on T2w FLAIR images by a neuroradiologist (6 years of
experience) and reassessed by another senior neuroradiologist
(20 years of experience). The segmented tumor was then over-
laid onto other co-registered images (ADC, T1w, and T1w +
Gd), which were further edited using the add/erase tool to
better match the lesion geometry when necessary. Any cystic
components of the tumor with similar signal intensity to CSF
on T2w and T2w FLAIR images were excluded. No evidence
of necrosis or hemorrhage was found in our patient cohort, as
expected in grade II tumors. All the image analyses were
performed slice per slice on each individual preoperative
MRI image, and the outcome of each image slice was classi-
fied as the same as the patient’s outcome. The number of
image slices within the tumor ranged from 2 to 14 (mean
7.7). In order to evaluate reproducibility, we randomly select-
ed 10 cases (57 image slices) for repeat segmentation, more
than 3 months after the initial analysis. The tumoral area cal-
culated from the repeat image analysis was compared to the
initial area using linear regression and Bland-Altman analysis.

Since there were a limited number of oligodendroglioma
and astrocytoma studies that did not include ADC and T1w
images (Table 1), subgroup texture analysis was performed
only on astrocytomas with T2w FLAIR and T1w + Gd
images.

A flowchart of the patient groups and texture analysis pro-
cedure is shown in Fig. S1. The average time for lesion seg-
mentation is approximately 10 min for each case, and the
MaZda software took less than 5 min to perform the texture
analysis.

Training data set

All segmented tumors for each image slice on T2w FLAIR,
ADC, T1w, and T1w + Gd images were loaded into the
MaZda package to perform texture analysis; as many as
279 features were generated within each ROI. These tex-
ture features were derived from 6 different statistical image
descriptors: histogram features, gradient features, run-
length matrix (RLM), co-occurrence matrix (COM),
autoregressive model (AR), and wavelet transform. A de-
tailed description of these textural features can be found in
previous literature [25]. Before texture analysis, image in-
tensities were normalized between μ ± 3σ (μ indicates the
mean value of the gray levels within the ROI; σ the stan-
dard deviation); the range obtained was quantized to 6
bits/pixel. This procedure, used by previous studies
[26–28], reduces brightness and contrast variations and

minimizes the influence of interscanner as well as field
strength differences, in order to generate ideal classifica-
tions. Since analyses on all 279 texture features are clini-
cally impractical, the MaZda software provides three fea-
ture reduction algorithms: mutual information (MI), Fisher
coefficient (F), and classification error probability and av-
erage correlation coefficients (POE + ACC, PA). Each al-
gorithm determines the 10 best distinguishable texture fea-
tures resulting in a combined total of up to 30 top-ranked
features for further analysis. These 30 features were then
loaded into the statistical B11 texture analysis package; a
linear discriminant analysis (LDA) model with the lowest
misclassification rate was selected to obtain the most dis-
criminant factor (MDF) values [29], which served as a
comprehensive variable for discrimination. MDF defines
which feature contributes the most significant amount of
prediction to help separating the groups. The values of the
9 histogram parameters (mean, variance, skewness, kurto-
sis, percent 1%, percent 10%, percent 50%, percent 90%,
and percent 99%) were separately saved from the previous-
ly described histogram features (one of 6 different statisti-
cal image descriptors used for texture analysis), in order to
compare with texture analysis.

Receiver operating characteristic (ROC) curves were per-
formed on the generated MDF values and 9 histogram param-
eters for each image slice using SPSS for Windows (version
19.0). The area under the curve (AUC) and the optimal cutoff
values from the maximum Youden index, as well as the cor-
responding sensitivity and specificity for discriminating be-
tween LGGs that had early malignant transformation and
those that did not, were obtained from ROC curve analysis.
The MDF values of the two groups were compared using
independent sample t test, where p < 0.05 indicates statistical
significance.

Testing data set

ROIs for T2w FLAIR, ADC, T1w, and T1w + Gd images
in the testing data were loaded into the MaZda software
and processed in the same way as the training data in order
to generate the 279 features. None of the training data were
used in the analysis of the testing data. The same 30 fea-
tures as in the training data were selected and loaded into
the B11 analysis package; the same LDA model was used
to generate the MDF values for each image slice. The MDF
values and 9 histogram parameters were used to classify
the testing samples into either an early malignant transfor-
mation group or without malignant transformation group
based on the optimal cutoff value predefined in the training
data. A correct rate of discriminating the two groups was
consequently determined. The equation below, as did in a
previous study [29], was used to calculate the weighted
MDF values and histogram parameters on multiple image
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slices for each tumor. They were also tested on the
predefined cutoff value to define a percent accuracy of
discriminating between two groups.

x ¼ w1x1 þ w2x2 þ…þ wnxn
w1 þ w2 þ…þ wn

where x is the overall weighted mean value for each pa-
rameter, w1 is the area of the first ROI, x1 is the mean value
of the first ROI, w2 is the area of the second ROI, x2 is the
mean value of the second ROI, and so forth.

Results

Patient characteristics

Out of a total of 95 subjects, 68 LGG patients (31 males, 37
females) that met the inclusion criteria were included in this
study: 15 (22%) showed malignant transformation to higher
grade (8 transformed to grade III and 7 transformed to grade
IV) after 1 to 13 years of follow-up (mean 4.18 years, median
3.29 years) (Fig. 1). Fifty-three of them (78%) did not show
malignant transformation after 2–12 years of follow-up (mean
4.82 years, median 4.32 years). Twenty-seven patients were
excluded either because of short follow-up time (less than
2 years, n = 10) or lack of available MRI images (n = 17).
Patient details are listed in Table 1.

Reproducibility analysis

Tumor segmentation was repeated in 10 randomly se-
lected cases (57 image slices); there was a strong cor-
relation between two times area measurements (R2 =
0.982). Bland-Altman analysis revealed a small bias of
12.5 mm2 and 95% limits of agreement of [− 25.7, 50.6]
mm2 (Fig. S2).

Training data set

Detailed group information for T2w FLAIR, ADC, T1w,
and T1w + Gd in the training data is shown in the flow-
chart in Fig. S1. The MDF values generated from the
LDA model when performing B11 analysis were signifi-
cantly different between the two groups (all p < 0.001).
ROC analyses on these MDF values resulted in an AUC
of 0.90 (95% CI, 0.86–0.95) for T2w FLAIR, 0.92 (95%
CI, 0.87–0.97) for ADC, 0.96 (95% CI, 0.93–0.99) for
T1w, and 0.82 (95% CI, 0.77–0.87) for T1w + Gd
(Figs. 2 and 3). Cutoff values of 0.01 (T2w FLAIR),
− 0.015 (ADC), 0.0025 (T1w), and 0.02 (T1w + Gd) with
corresponding high sensitivities and specificities (T2w
FLAIR 77%, 93%; ADC 86%, 94%; T1w 97%, 84%;
T1w + Gd 75%, 77%) were obtained. The MDF from
texture analysis outperformed all the other histogram pa-
rameters, which had lower AUC (T2w FLAIR range

Table 1 Patient characteristics
and demographics Early malignant

transformation
Without malignant
transformation

p valuea

Number of subjects with each sequence (T2w
FLAIR/ADC/T1w/T1w + Gd)*

15 (15/7/7/15) 53 (53/31/27/51) N/A

MRI scanner field strength (1.5 T/3.0 T)b 8/7 20/33 0.279

Gender (M/F)b 6/9 25/28 0.623

Age (years, mean ± SD)c 35.27 ± 15.09 40.28 ± 14.01 0.233

Follow-up time (years, mean ± SD)c 4.18 ± 3.24 4.82 ± 2.74 0.445

Tumor volume (mm3, mean ± SD)c 56.31 ± 43.78 33.27 ± 31.75 0.068

IDH mutation (yes/no/unknown) 10/3/2 23/5/25 N/A

1p19q co-deletion (yes/no/unknown) 4/1/10 21/4/28 N/A

Pathology type (astrocytoma/oligodendroglioma) 11/4 21/32d N/A

Treatments (only radiotherapy/only chemotherapy/both
of them/none of them)

3/3/2/7 4/5/17/27 N/A

N/A, not applicable; SD, standard deviation
a p value for comparison between patients that have early malignant transformation and those that did not
b Data were tested using chi-square test
c Data were tested using t test
d Nine of oligodendrogliomas were histopathologically diagnosed as oligoastrocytoma without having definite 1p
19q co-deletion status

*ADC was available for 4/13 astrocytomas and 3/18 oligodendrogliomas, T1w was available for 4/10 astrocyto-
mas and 3/17 oligodendrogliomas, and T1w + Gd was available for 11/20 astrocytomas and 4/31
oligodendrogliomas
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0.51–0.72, ADC 0.55–0.71, T1w 0.51–0.68, T1w + Gd
0.51–0.63), sensitivities, and specificities (Tables S1–S4).

For the astrocytoma subgroup analysis using T2w
FLAIR and T1w + Gd images, the MDF values were sig-
nificantly different between the two groups (all p < 0.001).
ROC analyses on these MDF values resulted in an AUC of
0.92 (95% CI, 0.88–0.97) for T2w FLAIR and 0.89 (95%
CI, 0.84–0.95) for T1w + Gd (Fig. S3). Cutoff values of
0.001 (T2w FLAIR) and − 0.008 (T1w + Gd), with corre-
sponding high sensitivities and specificities (T2w FLAIR
90%, 83%; T1w + Gd 78%, 90%), were obtained. The
MDF from texture analysis outperformed all the other his-
togram parameters, which had lower AUC (T2w FLAIR
range 0.53–0.68, T1w + Gd 0.51–0.54), sensitivities, and
specificities (Tables S5 and S6).

Testing data set

The same cutoff MDF value generated in the training data
set was used to define the early transformation status in the
testing data. Percent accuracies of 80% (157/196) for T2w
FLAIR, 85% (103/121) for ADC, 89% (89/100) for T1w,
and 93% (172/185) for T1w + Gd were obtained when
evaluated on each image slice. The weighted MDF value
on all image slices for each tumor resulted in percent ac-
curacies of 89% (24/27) for T2w FLAIR, 100% (15/15) for
ADC, 93% (13/14) for T1w, and 93% (24/26) for T1w +
Gd. The MDF values from texture analysis had a higher
percent accuracy over histogram parameters when evaluat-
ed on individual image slices (T2w FLAIR range 29–68%,
57–134/196; ADC range 41–82%, 49–99/121; T1w range

Fig. 1 Representative low-grade glioma which underwent malignant
transformation. On the preoperative images, the tumor is in the right
frontal lobe and genu of the corpus callosum. The pathological diagnosis
was oligodendroglioma (WHO grade II). The red color indicates the ROIs

segmented on each individual image. Four months after resection, no
obvious residual/recurrent tumor was found. Four years later, recurrent
tumor was confirmed on biopsy to be an anaplastic oligodendroglioma
(WHO grade III)
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49–74%, 49–74/100; T1w + Gd range 28–57%, 52–106/
185) or on weighted values for each tumor (T2w FLAIR
range 22–78%, 6–21/27; ADC range 33–80%, 5–12/15;
T1w range 43–79%, 6–11/14; T1w + Gd range 23–69%,
6–18/26) (Tables S1–S4, Figs. 2 and 3).

For the astrocytoma subgroup analysis using T2w
FLAIR and T1w + Gd images, percent accuracies of
90% (69/77) for T2w FLAIR and 96% (70/73) for T1w
+ Gd were obtained when evaluated on each image slice.
The weighted MDF value on all image slices for each
tumor resulted in percent accuracies of 100% (12/12) for
T2w FLAIR and 100% (12/12) for T1w + Gd. The MDF
values from texture analysis had a higher percent accu-
racy over histogram parameters when evaluated on indi-
vidual image slices (T2w FLAIR range 44–61%, 34–47/
77; T1w + Gd range 47–71%, 34–52/73) or on weighted
values for each tumor (T2w FLAIR range 33–75%, 4–9/
12; T1w + Gd range 50–67%, 6–8/12) (Tables S5 and
S6, Fig. S3).

Discussion

Our study shows that texture analysis on conventional preop-
erative MRI images has high sensitivity, specificity, and accu-
racy in discriminating between low-grade gliomas that subse-
quently underwent early malignant transformation and those
that did not. Texture analysis outperformed all histogram pa-
rameters and may provide additional information that could
guide clinical management decisions.

Texture analysis on MRI images can provide quantitative
information to help characterize tumor heterogeneity and
serve as a potential prognosticator for tumor malignancy in a
wide range of tumor types [18, 30, 31]. In this study, we used
the MaZda open-source software [29, 32] to obtain high sen-
sitivity, specificity, and accuracy in predicting LGGs that
would undergo early malignant transformation in each con-
ventional MRI sequence. By analyzing the top 30 selected
features, the texture analysis package generated an overall
discriminator MDF, which can perform better than individual

Fig. 2 Texture analysis results on individual T2w FLAIR and ADC
image slices and tested on the testing data set. a, d Output of B11
analysis using the linear discriminant analysis (LDA) model performed
on all image slices from training data. The misclassification rates of T2w
FLAIR and ADC were 17% and 18%, respectively. The most discrimi-
nant factor (MDF) is shown for two groups, where the red 1 label repre-
sents early malignant transformation and the green 2 label indicates with-
out early malignant transformation. b, e Receiver operating characteristic
(ROC) curve performed on MDF and 9 histogram parameters to discrim-
inate between the two groups, where the red solid line indicates MDF

obtained from texture analysis and dotted lines represent the 9 histogram
parameters. The area under the curve (AUC) of the texture-based MDF
value outperformed the 9 other parameters. c, f The MDF cutoff value
obtained from ROC analysis on the training data was used to test the
weighed value within each tumor in the testing data set. For T2w
FLAIR, 3 in 27 cases (shown in red) were misclassified when differenti-
ating two groups using the same training set cutoff value of 0.01 (c), and
for ADC, there were no misclassifications when using the cutoff value of
− 0.015 (f)
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features for identifying early malignant transformation in
LGGs.

T2w FLAIR is the most commonly used sequence to eval-
uate brain pathology [33] and shows the extent of infiltrative
tumor. ADC maps, obtained from DWI, demonstrate
Brownian motion of water molecules and are an efficient tool
in discriminating between low- and high-grade gliomas [9,
34]. T1w and T1w + Gd can provide anatomic information,
with tissue enhancement reflecting an increase in blood-brain
barrier permeability. But, the primary purpose of these ana-
tomical sequences is to identify a lesion as well as its location
and potential for surgical intervention. Serial imaging can
identify new areas of contrast enhancement or a significant
change in tumor size, which may signify transformation to a
higher grade. However, this approach might cause a delay for
necessary treatment changes as multiple scans must be done.

Texture features can provide quantitative information in
addition to the qualitative information identified through neu-
roradiological assessment from conventional MR images. Of
note, texture analysis based on T1w images demonstrated a
relative higher AUC than the other three sequences. One

explanation for this might be that T1 relaxation times have
the largest range in different tissue types when compared with
T2 relaxation times. Since T1w images are the best for
obtaining contrast between tissue types, it was anticipated to
have more informative data for extraction using texture anal-
ysis. Surprisingly, we also found that T1w + Gd, which is
useful for visual evaluation of tumor, had the lowest AUC of
all the MRI sequences. Overall, texture analysis provided us
with useful and valuable information for predicting which
LGGs would have early malignant transformation and should
be closely followed and aggressively treated.

Furthermore, MaZda software can be easily implemented
in the clinic without additional professional technical input,
allowing it to serve as an alternative method in routine clinical
surveillance of LGGs. Our texture analysis results also form
the basis for further radiomics analyses, which extract innu-
merable quantitative features from various kinds of digital
images, and are a rapidly expanding research area [35, 36].
Radiogenomics, which correlates image features with under-
lying genetic data such as 1p19q co-deletion and IDH muta-
tion, has proved to be useful in providing surrogate

Fig. 3 Texture analysis results on individual T1w and T1w + Gd image
slices and tested on the testing data set. a, d Output of B11 analysis using
the linear discriminant analysis (LDA) model performed on all image
slices from training data. The misclassification rates of T1w and T1w +
Gd were 12% and 31%, respectively. The most discriminant factor
(MDF) is shown for two groups, where the red 1 label represents early
malignant transformation and the green 2 label indicates without early
malignant transformation. b, e Receiver operating characteristic (ROC)
curve performed on MDF and 9 histogram parameters to discriminate

between two groups, where the red solid line indicates MDF obtained
from texture analysis and dotted lines represent the 9 histogram parame-
ters. The area under the curve (AUC) of texture-based MDF value
outperformed the 9 other parameters. c, f The results of usingMDF cutoff
value obtained from ROC analysis on training data to test the weighed
value within each tumor in testing data set. For T1w, 1 in 14 cases (shown
in red) was misclassified using the cutoff value of 0.0025 for differenti-
ating two groups (c), and for ADC, 2 in 26 cases were misclassified using
the same cutoff value of 0.02 (f)
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biomarkers for predicting tumor biology and therapy re-
sponse, making it an important tool in advancing personalized
treatment of glioma [37, 38]. Future studies using texture
analysis to differentiate astrocytoma from oligodendroglioma
and correlating results with genotypic information may have
clinical implications in treatment.

Histogram parameters have been investigated to evaluate
tumor heterogeneity, glioma grading, and prediction of malig-
nant transformation [21, 39]. However, in this texture analy-
sis, we combined three levels of statistical methods; the tex-
ture analysis–based MDF outperformed each individual his-
togram parameter in discriminating LGGs that underwent ear-
ly malignant transformation from those that did not. This sug-
gests that texture analysis can provide a more comprehensive
evaluation of clinical MR images and is better than histogram
analysis alone.

There are several limitations in our study: First, the
sample size of the early malignant transformation group
was small due to the low incidence of LGG malignant
transformation in this cohort. In addition, subgroup analy-
sis of oligodendrogliomas and astrocytomas with available
ADC and T1w images could not be performed as a result of
having limited numbers of cases in the malignant transfor-
mation group. We believe that having an increased number
of malignant transformation cases would enhance the ac-
curacy of texture analysis in future studies. Second, we
performed texture analysis on individual image slices of
each tumor instead of a volumetric analysis, again due to
small sample size. We believe that further studies based on
a volumetric analysis will make texture analysis more reli-
able. Third, given the fact that some inherent process of
texture analysis remains unknown, there may exist some
unexpected outlier correlations driving the good outcome,
and normalization of image intensities in order to minimize
interscanner differences might be seen as a potential source
of bias, so our results should be further validated using
other independent data. Fourth, the diffusion model in
our study is based on only two b-values, but having mul-
tiple b-values [40] for ADC maps, might increase accuracy
of texture analysis. Another concern is the treatment het-
erogeneity: LGG patients received radiotherapy and/or
chemotherapy or no additional therapy after initial resec-
tion; these treatments may influence malignant transforma-
tion. Finally, the status of 1p19q deletions and IDH muta-
tions was not available for all tumors in our study, which is
a part of the 2016 WHO tumor classification [1]. So for
these, we had to use the old WHO classification [23].

In conclusion, texture analysis based on conventional pre-
operative MR images can accurately predict early malignant
transformation of LGGs. Texture analysis is a clinically feasi-
ble technique that may provide an alternative and effective
way of determining the likelihood of early malignant transfor-
mation and help guide therapeutic decisions.
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