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Abstract
Objective To investigate the value of machine learning (ML)-based high-dimensional quantitative texture analysis (qTA) on T2-
weighted magnetic resonance imaging (MRI) in predicting response to somatostatin analogues (SA) in acromegaly patients with
growth hormone (GH)-secreting pituitary macroadenoma, and to compare the qTAwith quantitative and qualitative T2-weighted
relative signal intensity (rSI) and immunohistochemical evaluation.
Methods Forty-seven patients (24 responsive; 23 resistant patients to SA) were eligible for this retrospective study. Coronal T2-
weighted images were used for qTA and rSI evaluation. The immunohistochemical evaluation was based on the granulation pattern of
the adenomas. Dimension reduction was carried out by reproducibility analysis and wrapper-based algorithm. ML classifiers were k-
nearest neighbours (k-NN) and C4.5 algorithm. The reference standard was the biochemical response status. Predictive performance of
qTAwas compared with those of the quantitative and qualitative rSI and immunohistochemical evaluation.
Results Five hundred thirty-five out of 828 texture features had excellent reproducibility. For the qTA, k-NN correctly classified
85.1% of the macroadenomas regarding response to SAs with an area under the receiver operating characteristic curve (AUC-ROC)
of 0.847. The accuracy and AUC-ROC ranges of the other methods were 57.4–70.2% and 0.575–0.704, respectively. Differences in
predictive performance between qTA-based classification and the other methods were significant (p < 0.05).
Conclusions The ML-based qTA of T2-weighted MRI is a potential non-invasive tool in predicting response to SAs in patients
with acromegaly and GH-secreting pituitary macroadenoma. The method performed better than the qualitative and quantitative
rSI and immunohistochemical evaluation.
Key Points
•Machine learning-based texture analysis of T2-weightedMRI can correctly classify response to somatostatin analogues in more
than four fifths of the patients.
• Machine learning-based texture analysis performs better than qualitative and quantitative evaluation of relative T2 signal
intensity and immunohistochemical evaluation.
• About one third of the texture features may not be excellently reproducible, indicating that a reliability analysis is necessary
before model development.
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Abbreviations
2D Two-dimensional
3D Three-dimensional
AUC-ROC Area under the receiver operating

characteristic curve
GH Growth hormone
ICC Intra-class correlation coefficient
IGF-1 Insulin-like growth factor-1
k-NN k-nearest neighbours
LoG Laplacian of Gaussian
ML Machine learning
MRI Magnetic resonance imaging
qTA Quantitative texture analysis
ROI Region of interest
rSI Relative signal intensity
SA Somatostatin analogue
SD Standard deviation
WEKA Waikato Environment for Knowledge

Analysis

Introduction

Somatostatin analogues (SA) are widely used in the med-
ical treatment of acromegaly patients with growth hor-
mone (GH)-secret ing pi tu i tary adenoma [1, 2] .
Nonetheless, they cannot ensure biochemical control of
the disease, improvement of clinical symptoms, and tu-
mour shrinkage in all patients [1]. Several predictors of
SA response including clinical, biochemical, radiological,
and histopathological features, and somatostatin receptors
have been described [1]. Prediction of response to SAs is
essential because of their high cost. Magnetic resonance
imaging (MRI) is the imaging method of pituitary adeno-
mas [3], and hypointensity on T2-weighted images may
signify a better response to SA treatment [4–7].

Quantitative texture analysis (qTA) evaluates lesion
patterns that may not be visually perceptible [8].
Machine learning (ML) covers of a broad range of ad-
vanced statistical algorithms used in building autono-
mous predictive models in response to training data.
One study has reported the qTA of GH-secreting pitui-
tary macroadenomas for predicting response to SA [9],
however with a first-order histogram analysis and no
validation.

The purpose of this study was to investigate the po-
tential value of ML-based high-dimensional qTA on T2-
weighted MRI in predicting the response of GH-secreting
pituitary macroadenomas to SAs, and to compare the
qTA with relative signal intensity (rSI) and immunohis-
tochemical granulation pattern evaluation that may be
related with response to SAs.

Materials and methods

Ethics

This retrospective study was approved by our institutional
review board. The requirement for informed consent was
waived.

Patients

We reviewed our institutional databases for acromegaly pa-
tients between January 2009 and December 2017. Our inclu-
sion criteria were as follows: (i) patients with biochemical
acromegaly diagnosis based on age-adjusted serum insulin-
like growth factor-1 (IGF-1) level and GH level (GH nadir
> 1 μg/L) following oral glucose tolerance test; (ii) patients
with no biochemical remission (GH level > 1 μg/L or elevated
age-adjusted IGF-1) 3 months after surgery; (iii) patients with
histopathologically confirmed GH-secreting macroadenoma
(≥ 10 mm); and (iv) patients with preoperative and pretreat-
ment (with SA) pituitary MRI including coronal T2-weighted
sequences performed in our institution. Our exclusion criteria
were as follows: (i) semi-solid macroadenomas with a solid
component having a maximum diameter less than 10 mm
(some texture features require a sufficient volume or area)
and (ii) patients with pituitary apoplexy (to avoid possible
distortion in texture feature parameters).

MRI technique

MRI was performed using a 1.5-T unit (Siemens,
MAGNETOM Avanto). We used only turbo spin-echo T2-
weighted coronal images which is a standard [5, 6, 9]. The
settings were as follows: TR, 2090 ms; TE, 104 ms; echo train
length or turbo factor, 24; slice thickness, 2.5 mm; slice spac-
ing, 2.8 mm; field of view, 180 × 180 mm; and matrix size,
224 × 320, allowing a pixel size from 0.5 to 0.8 mm.

Image processing

The most important steps of the ML-based qTA are
summarised in Fig. 1.

T2-weighted images underwent N4 bias field correction to
remove low-frequency intensity non-uniformity [10].

To minimise differences, all data sets were normalised by
centring the voxel image intensity values at the mean with the
standard deviation (SD), known as the ± 3 sigma technique
[11]. Image normalisation was done for all grey-level values
in the image, not just for the segmentation. Normalisation was
based on the formula:

f xð Þ ¼ x−μ xð Þ
σ xð Þ
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where f(x) is normalised image intensity, x is original image
intensity, μ(x) is mean image intensity value, and σ(x) is the
SD of the image intensity.

Pixel spaces in all image slices were rescaled to an in-plane
resolution of 1 × 1 mm2 because the comparison of texture
features necessitates identical spatial resolution [12]. Slice
thickness was not rescaled because it was homogeneous.

The grey-level discretisation was done in the matrix repre-
sentation of the grey levels in the segmentation, leaving the
voxels outside segmentation unchanged. The discretisation
was based on the following mathematical formula:

Xb; i ¼ Xgl; i

W

� �
−

min Xgl; ið Þ
W

� �
þ 1

where Xb,i is grey-level intensity after discretisation, Xgl,i is
grey-level intensity before discretisation, and W is the bin-
width value, which was 0.06 in this study, corresponding to
maximum 100 discrete grey-levels.

The N4 bias field correction, pixel resampling, normalisa-
tion, and discretisation were done with 3D data.

Except for the N4 bias field correction, all other processing
steps (normalisation, resampling, and discretisation) were

done before the texture feature extraction using the samemod-
ule of the software, not affecting the segmentation process
with changes such as blurring of the image.

Texture feature extraction

Texture features were extracted using ‘SlicerRadiomics’ ex-
tension (Revision 8e5f1e8) of 3D-Slicer software (version
4.8.1) based on the Python package named ‘PyRadiomics’
[13]. The macroadenomas were independently segmented
slice-by-slice (3D whole tumour segmentation) by two radiol-
ogists. To avoid partial volume effect, segmentation was per-
formed excluding the peripheral tumour tissue, 1 mm from the
visible lesion contour as well as the most anterior and poste-
rior slices that included the lesion (Fig. 2). Although the le-
sions were segmented slice-by-slice, we forced the software
package to perform the analysis only in the coronal plane
because of the anisotropy of the coronal T2-weighted images
(voxel size = 1 × 1 × 2.5 mm3; slice spacing = 2.8 mm). The
reason behind the slice-by-slice (3D) segmentation was to
provide enough two-dimensional (2D) texture data by increas-
ing the 2D segmentation area. 2D texture features using the
entire tumour volume were extracted from both the original,
filtered, and wavelet transformed images. Laplacian of
Gaussian (LoG) filter was used for image filtrationwith values
of 2 mm, 4 mm, and 6 mm (representing fine, medium, and
coarse patterns). Of note, the LoG filtering and wavelet trans-
formation were done to 3D volumetric data. The total number
of the features extracted was 828 per lesion. Detailed texture
feature groups are presented in Online Supplement Part E1.

Dimension reduction

Two radiologists, blinded to the response status, independent-
ly segmented tumours slice-by-slice (3D whole tumour seg-
mentation). Intra-class correlation coefficient (ICC) values
were calculated for each texture feature using SPSS version
20. The features with an ICC value of ≥ 0.8 indicating ‘excel-
lent’ reproducibility were included in the further analysis.

The wrapper-based classifier-specific feature selection and
model optimisation were performed using WEKA toolkit ver-
sion 3.8.2 (University of Waikato) [14, 15]. A nested cross-
validation method with 10-fold inner and 10-fold outer loops
was adopted (Fig. 3) [16, 17]. Details regarding the feature
selection are presented in Online Supplement Part E2.

Relative signal intensity evaluation

The rSI was evaluated qualitatively (visual) and quantitatively
(with 2D region of interest (ROI) and 3D whole tumour
segmentation).

The rSI of the adenoma was classified as follows: (i)
hypointense (equal or less than the white matter of the

Fig. 1 Simplified flowchart showing the machine learning-based
quantitative texture analysis pipeline. LoG, Laplacian of Gaussian;
GLDM, grey-level dependence matrix; GLCM, grey-level co-
occurrence matrix; GLRLM, grey-level run-length matrix; GLSZM,
grey-level size zone matrix; NGTDM, neighbouring grey-tone difference
matrix; CV, cross-validation
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temporal lobe); (ii) hyperintense (equal or higher than the grey
matter); and (iii) isointense (between white and grey matter)
[5]. They were further grouped as follows: (i) T2-hypointense
versus (ii) others for statistics.

For ROI-based quantitative rSI, the mean signal intensity
was measured on two consecutive coronal T2-weighted im-
ages from the largest solid portion of the adenoma, white and
grey matters of temporal lobe (Fig. 4) [5]. We also used the
same 3D segmentation data used in qTA for rSI evaluation to
allow comparison.

The qualitative (visual) rSI evaluation was done by two
radiologists. In case of disagreement, the final decision was
reached by consensus.

Immunohistochemical evaluation

Based on the staining characteristics using monoclonal
cytokeratin antibody, the macroadenomas were divided

into three groups as follows: (i) densely; (ii) transitional-
ly; and (iii) sparsely granulated [18]. Because sparsely
granulated adenomas are considered having a poor SA
response [1, 18], the final groups were (i) sparsely gran-
ulated and (ii) the others.

Response and resistance criteria

The reference standard was biochemical response to SA
treatment. Three months after surgery, SA treatment was
initiated for patients with a GH level > 1 μg/L or elevated
age-adjusted IGF-1. Patients were considered resistant if
GH or age-adjusted IGF-1 levels were still elevated after
6 months of therapy with octreotide (40 mg per 28 days)
or lanreotide (120 mg per 28 days).

Fig. 2 Three-dimensional (3D) whole tumour segmentation for
quantitative texture analysis and 3D segmentation-based quantitative
relative signal intensity evaluation. (a) A hyperintense macroadenoma

with small patchy hypointense foci in the coronal T2-weighted image.
(b, c) Slice-by-slice segmentation and 3D modelling of the
macroadenoma

Fig. 4 Region of interests (ROI) used in ROI-based quantitative relative
signal intensity evaluation. The ROIs are placed on the largest solid
portion of the adenoma (yellow), temporal white matter (green), and
temporal grey matter (blue). Please note that ROIs are drawn for two
consecutive slices

Fig. 3 Nested cross-validation with 10-fold inner loop and 10-fold outer
loop. For each outer fold, the inner loop runs 10-fold cross-validation.
The texture features having at least two cross-validations in the inner loop
move to the outer fold. The 10-fold in the outer loop corresponds to the
regular 10-fold cross-validation used in model development and valida-
tion. On the other hand, the 10-fold in the inner loop corresponds to the
actual feature selecting process. Hence, this process creates ten different
combinations of training and validation split. T, training; V, validation;
CV, cross-validation
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Statistical analysis

The ML-based classifications were performed using WEKA
toolkit version 3.8.2. The k-nearest neighbours (k-NN) classi-
fier (IBk in WEKA toolkit) was utilised in qTA-based classi-
fications [19]. The search algorithm for k-NN was linear with
a Euclidean distance function. To minimise potential over-
fitting, we created models with five-nearest neighbours (5-
NN). The C4.5 decision tree classifier was utilised in rSI-
based classifications. In the WEKA toolkit, the C4.5 algo-
rithm is represented with J48 [20]. The C4.5 (or the J48 in
WEKA) is a simple ML scheme. We used this classifier for a
binary classification problem (presence or absence of the re-
sponse to SAs). The primary purpose of using this algorithm
to obtain similar performance metrics from the software to
create comparable metrics for the k-NN.

For qTA, a 10-fold cross-validation procedure was adopted
for the validation of the model, calculating performance met-
rics by averaging these ten different validation performances.
On the other hand, the models for the other methods were
created on the whole data, resulting in a single performance
metric.

The main performance evaluation metric was the area under
the receiver operating characteristic curve (AUC-ROC) [21]. In
addition, sensitivity, specificity, precision (positive predictive val-
ue), recall, F-measure, the Matthews correlation coefficient, and
the area under the precision-recall curve were calculated as well.
Comparisons of the AUC-ROCs derived from the qTA (10-fold
cross-validated), qualitative and quantitative rSI, and immunohis-
tochemical evaluations (single AUC-ROC value for each meth-
od) were performed using the one-sample Wilcoxon signed-
ranks test [22].

Shapiro-Wilk test was used for the assessment of normal
distribution. The difference of the mean signal intensity be-
tween 2D ROI and 3D segmentation data was analysed using
the paired t test.

Cohen’s kappa (k) was run to determine the strength of
agreement between two observers’ judgments on qualitative
rSI evaluation. Interobserver agreement was judged as accord-
ing to the following rating: 0.00–0.20 = slight; 0.21–0.40 =
fair; 0.41–0.60 = moderate; 0.61–0.80 = substantial; and
0.81–1.00 = excellent.

Results

Patient demographics and characteristics

Forty-seven patients with acromegaly and histopathologically
proven GH-secreting macroadenoma were included in the
analysis. The patient demographics and characteristics are pre-
sented in Table 1.

3D segmentation and ROI characteristics

Mean (SD) of the 3D segmentation volume was
4734.1 mm3 (10880), of the maximum segmentation di-
ameter was 24.3 mm (12.2), and of the ROI area was
95.23 mm2 (114.02).

Mean (SD) signal intensity of the ROI-based was 271.85
(78.05) and of 3D segmentation-based was 191.02 (57.49).
They were statistically different (p < 0.05).

Table 1 Patient characteristics and demographics

Patient characteristics Value

Age

Mean ± SD 37.7 ± 9.9 years

Range 19–59 years

Gender

Female 28 patients

Male 19 patients

GH level

Mean ± SD 23.7 ± 23.2 μg/L

Median 14.3 μg/L

Interquartile range 29.2 μg/L

IGF-1 level

Mean ± SD 767.9 ± 287.8 mmol/L

Median 731.5 mmol/L

Interquartile range 336.2 mmol/L

Tumour volume*

Mean ± SD 4734.1 ± 10,880 mm3

Median 2057.8 mm3

Interquartile range 4038.3 mm3

Maximum tumour diameter

Mean ± SD 24.3 ± 12.2 mm

Median 21.8 mm

Interquartile range 13.1 mm

Preoperative SA treatment

Yes 13 patients

No 34 patients

Response to SA

Responsive 24 patients

Resistant 23 patients

Granulation pattern

Sparse 27 patients

Others** 20 patients

*Also represent the segmentation volume used for quantitative texture
analysis

**Dense or transitional

SD, standard deviation;GH, growth hormone; IGF-1, insulin-like growth
factor-1; SA, somatostatin analogue
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Reproducibility analysis

Following reproducibility analysis by two radiologists, 293
out of 828 features were excluded based on the predefined
ICC cutoff value (ICC < 0.8). The remaining 535 were includ-
ed in further analysis.

Wrapper-based feature selection

In the initial run, the wrapper-based classifier-specific feature
selection algorithm yielded 12 texture features. In the follow-
ing runs, the number of texture features decreased to four
(Online Supplement Part E3). Distributions of the selected
feature values between responsive and resistant groups are
presented in Figs. 5 and 6.

qTA-based classification

Using the selected features, the k-NN algorithm correctly clas-
sified 85.1% (40 out of 47) of the patients regarding response
status to SAs with an AUC-ROC value of 0.847. Each AUC-
ROC value in the 10-fold cross-validation is presented in
Table 2. For detecting the responsive group, the sensitivity,
specificity, and precision (or positive predictive value) were
87.5%, 82.6%, and 84%, respectively. For detecting the resis-
tant group, the sensitivity, specificity, and precision were
82.6%, 87.5%, and 86.4%.

Quantitative rSI-based classification

In the 2D ROI-based rSI evaluation of the macroadenomas
(10 macroadenomas T2-hypointense; 37 T2-isointense or

hyperintense), the C4.5 correctly classified 57.4% (27 out of
47) of the macroadenomas regarding response status with an
AUC-ROC of 0.581.

In the 3D segmentation-based rSI evaluation of the
macroadenomas (22 macroadenomas T2-hypointense; 25
T2-isointense or hyperintense), the C4.5 correctly classified
57.4% (27 out of 47) of the macroadenomas regarding re-
sponse status with an AUC-ROC of 0.575.

Qualitative (visual) rSI-based classification

Interobserver agreement between two observers was substan-
tial (kappa (k) coefficient = 0.651).

Using visual rSI method and consensus data (17
macroadenomas T2-hypointense; 30 T2-isointense or hyper-
intense), the C4.5 correctly classified 59.6% (28 out of 47) of
the macroadenomas regarding response status with an AUC-
ROC of 0.599.

Granulation pattern-based classification

Based on the immunohistochemical granulation pattern (27
macroadenomas sparsely granulated; 20 densely or transition-
ally granulated), the C4.5 correctly classified 70.2% (33 out of
47) of the macroadenomas regarding response status with an
AUC-ROC of 0.704.

qTA versus other methods

Considering the AUC-ROC performance metric (10-fold
cross-validation values for qTA; single value for the other
methods), there were significant differences between (i) qTA

Fig. 5 Smoothed heat map created using the selected subset of texture
features from all patients in the study. The map shows the distribution of
normalised (0 to 1) texture feature values between responsive and
resistant groups. Changes in colours and their shades indicate a
difference in texture feature values in and between groups. TexF1, grey-
level co-occurrence matrix (GLCM) Idn (inverse difference normalised)

in the image with a LoG filter of 2 mm; TexF2, the first-order maximum
in the image with a LoG filter of 6 mm; TexF3, the first-order median in
the image with wavelet energy in low/high-frequency bands; TexF4,
neighbouring grey-tone difference matrix (NGTDM) coarseness in the
original image
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and 2D ROI-based quantitative rSI evaluation (z = 2.8;
p < 0.05); (ii) qTA and 3D segmentation-based quantitative
rSI evaluation (z = 2.8; p < 0.05); (iii) qTA and qualitative
(visual) rSI evaluation (z = 2.8; p < 0.05); and (iv) qTA and
granulation pattern-based evaluation (z = 2.8; p < 0.05).

Table 3 presents the performance metrics of all the
methods.

Discussion

The most important finding was that the k-NN classifier cor-
rectly classified more than four fifths of the macroadenomas.
The predictive performance of the ML-based qTAwas better
than those of quantitative and qualitative rSI, and immunohis-
tochemical granulation pattern evaluation.

The literature suggests that preoperative SA treatment im-
proves the surgical outcomes [23–26]. Resistance to SA treat-
ment may delay surgery and deteriorate the surgical outcomes.
Hence, predicting response or resistance with preoperative
predictors or biomarkers is important. Non-invasive ML-
based qTA might be an interesting method.

There has been only one study of qTA against rSI in
predicting response to SA treatment [9]. The authors used
first-order histogram analysis with very few texture features
and reported that the overall diagnostic accuracy of the
histogram-based model was 82.4% for predicting good re-
sponse with an AUC-ROC value of 0.861. However, there
was no validation. Furthermore, they reported that the predic-
tive performance of the histogram-based method was not dif-
ferent from that of the visual T2-weighted intensity evalua-
tion. In our analysis, none of the first-order features obtained
from the original image was selected by the feature selection
algorithm. Conversely, some first-order features extracted
from filtered or transformed images were selected. Using a
higher number of features and internal validation, we found
that prediction by qTAwas superior to rSI evaluation.

Regarding the definition and interpretation of the selected
features for model development, TexF1 corresponds to local
homogeneity in finely filtered images. TexF2 corresponds to
the maximum signal intensity in coarsely filtered images.
TexF3 indicates median signal intensity in low- and high-
frequency decomposition images. TexF4 corresponds to spa-
tial intensity changes. According to TexF1 and TexF4, the
responsive macroadenomas to SAs were locally more homo-
geneous in finely filtered images and more non-uniform in the
original images.

Considering our small patient population, our classifier was
evaluated with a complex nested cross-validation approach

Fig. 6 (a) Deviation plot created with normalised values (0 to 1) of
texture features showing the degree of overlap between responsive and
resistant groups. Significant overlap is visually apparent in TexF2. Please
note that although TexF2 has significant overlap, it still makes a positive
contribution to the model’s predictive accuracy. (b) A three-dimensional
(3D) scatter plot created using least overlapping features with their nor-
malised values (0 to 1) shows the individual place of the features in 3D

space. Blue circles, responsive group; black circles, resistant group;
TexF1, grey-level co-occurrence matrix (GLCM) Idn (inverse difference
normalised) in the image with a LoG filter of 2 mm; TexF2, the first-order
maximum in the image with a LoG filter of 6 mm; TexF3, the first-order
median in the image with wavelet energy in low/high-frequency bands;
TexF4, neighbouring grey-tone difference matrix (NGTDM) coarseness
in the original image

Table 2 Each area under
the receiver operating
characteristic curve
(AUC-ROC) value in the
10-fold cross-validation
of the machine learning-
based quantitative tex-
ture analysis

Folds AUC-ROC

1 0.843

2 0.842

3 0.848

4 0.848

5 0.815

6 0.855

7 0.875

8 0.853

9 0.855

10 0.832

AUC-ROC, area under the receiver operat-
ing characteristic curve
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[27, 28]. It reduces the bias and gives a similar estimate of the
error to that of independent validation [28]. Whole data might
also be considered but might have led to bias due to the use of
the same data set for feature selection andmodel development,
also called ‘double-dipping phenomenon’ [16]. A random
split of the data, creating separate training and validation data
set, could mimic external validation but in such small data
sets, the chance factor can deeply affect the results.

Generalisation of these results is subject to several limita-
tions. The number of patients was small considering the nu-
merous texture features. We needed to exclude patients with
post-surgical biochemical remission as it could be related to
surgery. The risk of over-fitting is an important issue, however
the cross-validation technique intended to minimise it [16,
17]. In addition, we used five-nearest neighbours (5-NN) for
the same purpose. We could have used each 2D segmentation
in order to increase the number of labelled data. However,
considering the very small size of tumours, this might have
hampered texture analysis. In spite of a uniform imaging pro-
tocol, slight differences are unavoidable in a retrospective
study. We applied N4 bias field correction [10], normalisation
[11], discretisation [12], and pixel rescaling [12] to minimise
differences. Although one fourth of our patients had preoper-
ative SA treatment, which could be seen as a bias, we only
used preoperative and pretreatmentMRI studies. Themethods

shown here can only be applied to GH-secreting
macroadenomas and cannot be extrapolated to others.

Conclusions

The results suggest that ML-based qTA on T2-weighted MRI
has the potential to predict response to SAs in acromegaly
patients with a GH-secreting pituitary macroadenoma, and
performs better than quantitative and qualitative T2-
weighted rSI, or immunohistochemical granulation pattern
evaluation.
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Table 3 Performance of quantitative texture analysis, quantitative
relative signal intensity evaluation (ROI-based and 3D segmentation-
based), qualitative (visual) relative signal intensity evaluation, and

immunohistochemical granulation pattern-based evaluation in predicting
response to somatostatin analogues

Methods Sensitivity Specificity Precision Recall F-measure MCC AUC-ROC AUC-PRC Confusion matrix

N Y

Quantitative TA

Resistant 82.6% 87.5% 86.4% 82.6% 0.844 0.702 0.847 0.777 19 4 No

Responsive 87.5% 82.6% 84% 87.5% 0.857 0.828 3 21 Yes

ROI-based quantitative rSI

Resistant 87% 70.8% 54.1% 87% 0.667 0.197 0.581 0.534 20 3 No

Responsive 70.8% 87% 70% 29.2% 0.412 0.566 17 7 Yes

3D quantitative rSI

Resistant 60.9% 54.2% 56% 60.9% 0.583 0.151 0.575 0.532 14 9 No

Responsive 54.2% 60.9% 59.1% 54.2% 0.565 0.554 11 13 Yes

Qualitative (visual) rSI

Resistant 73.9% 45.8% 56.7% 73.9% 0.642 0.205 0.599 0.547 17 6 No

Responsive 45.8% 73.9% 64.7% 45.8% 0.537 0.573 13 11 Yes

Granulation pattern

Resistant 78.3% 62.5% 66.7% 78.3% 0.720 0.412 0.704 0.628 18 5 No

Responsive 62.5% 78.3% 75% 62.5% 0.682 0.660 9 15 Yes

N and Y indicate classification results. No and Yes indicate reference standard

TA, texture analysis; rSI, relative signal intensity evaluation; ROI, region of interest; 3D, three-dimensional; MCC, Matthews correlation coefficient;
AUC-ROC, area under the receiver operating characteristic curve; AUC-PRC, area under the precision-recall curve; N and No, resistant to somatostatin
analogues; Y and Yes, responsive to somatostatin analogues
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