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Abstract
Objectives To investigate the structural connectivity of the motor subnetwork in multiple system atrophy with cerebellar features
(MSA-C), a distinct subtype of MSA, characterized by predominant cerebellar symptoms.
Methods Twenty-three patients with MSA-C and 25 age- and gender-matched healthy controls were recruited for the study.
Disease severity was quantified using the Unified Multiple System Atrophy Rating Scale (UMSARS). Diffusion MRI images
were acquired and used to compute the structural connectomes (SCs) using probabilistic fiber tracking. The motor network with
12 brain regions and 26 cerebellar regions was extracted and was compared between the groups using analysis of variance at a
global (network-wide), nodal (at each node), and edge (at each connection) levels, and was corrected for multiple comparisons. In
addition, the acquired connectivity measures were correlated with duration of illness, total Unified MSA Rating Scale
(UMSARS), and the motor component score.
Results Significantly lower global network metrics—global density, transitivity, clustering coefficient, and characteristic path
length—were observed in MSA-C (corrected p < 0.05). Reduced nodal strength was observed in the bilateral ventral dienceph-
alon, the left thalamus, and several cerebellar regions. Network-based statistics revealed significant abnormal edge-wise con-
nectivity in 40 connections (corrected p < 0.01), with majority of deficits observed in the cerebellum. Finally, significant negative
correlations were observed between UMSARS scores and thalamic and cerebellar connectivity (p < 0.05) as well as between
duration of illness and cerebellar connectivity.
Conclusions Abnormal connectivity of the basal ganglia and cerebellar network may be causally implicated for the motor
features observed in MSA-C.
Key Points
• Structural connectivity of the motor subnetwork was explored in patients with multiple system atrophy with cerebellar features
(MSA-C) using probabilistic tractography.

• The motor subnetwork in MSA-C has significant alterations in both basal ganglia and cerebellar connectivity, with a higher
extent of abnormality in the cerebellum.

• These findings may be causally implicated for the motor features of cerebellar dysfunction and parkinsonism observed in MSA-C.
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Abbreviations
DWI Diffusion-weighted imaging
FOV Field of view
GM Gray matter
HC Healthy controls
MCP Middle cerebellar peduncle
MRI Magnetic resonance imaging
MSA Multiple system atrophy
MSA-C Multiple system atrophy with predominant

cerebellar features
MSA-P Multiple system atrophy with

predominant parkinsonism
NBS Network-based statistics
ROI Region of interest
TE Echo time
TR Repetition time
UMSARS Unified Multiple System Atrophy Rating Scale
WM White matter

Introduction

Multiple system atrophy (MSA) is a sporadic, neurodegener-
ative disorder characterized by a variable combination of pro-
gressive autonomic dysfunction, parkinsonism, and cerebellar
and pyramidal features [1]. Based on the predominant motor
symptoms, MSA can be categorized into MSAwith predom-
inant parkinsonism (MSA-P) and MSAwith predominant cer-
ebellar dysfunction (MSA-C) [2]. The prevalence of these
subtypes shows significant variability in different populations.
In Europe and the USA, MSA-P accounts for 58–60% of all
cases with MSA [3, 4], whereas in Japan, MSA-C was ob-
served in 83.8% of cases with MSA [5].

MSA-C represents a distinct motor subtype of MSA and is
characterized by gait ataxia, limb ataxia, scanning dysarthria,
and cerebellar oculomotor dysfunction in addition to autonomic
dysfunction and parkinsonism [6]. Neuroimaging plays a critical
role in the diagnosis of MSA-C and several studies have report-
ed structural and functional changes associated with the cerebel-
lum in MSA-C [7, 8]. Conventional magnetic resonance imag-
ing (MRI) inMSA-C reveals pontine and cerebellar atrophy, the
Bhot cross bun sign^ observed in 81.4%of patients withMSA-C
[9], as well as middle cerebellar peduncle and cerebellar
hyperintensities [10]. Volumetric studies have reported reduced
striatal, brainstem, and cerebellar volumes [11]. Studies using
diffusion-weighted imaging (DWI) in MSA-C have observed
increased diffusivity of the pons and middle cerebellar peduncle
(MCP), and reduced fractional anisotropy in the MCP, inferior
cerebellar peduncle, basis pontis, and internal capsule [12–15].

Hypometabolism of the cerebellum and brainstem has been re-
ported in nuclear imaging studies [16].

Neuroimaging studies investigating the structural connec-
tivity are crucial to understand the interactions between vari-
ous regions of interest that cannot be ascertained through tech-
niques like voxel-based morphometry. A recent study by
Wang et al reported a significant reduction in cerebellar fiber
density, and impairment of frontal and occipital white matter
connectivity in MSA-C [17]. Lu et al reported altered small-
world architecture with reduced cerebellar network strength in
MSA-C [18]. However, these studies relied on diffusion im-
ages acquired on a 1.5-T MRI and employed deterministic
tractography which may be not be sensitive in detecting com-
plete fiber pathways.

This work focuses on the motor features of MSA-C and
hypothesizes that patients with MSA-C would demonstrate
significantly higher abnormality in the cerebellar network in
comparison to the basal ganglia network. In order to confirm
this hypothesis, we utilized probabilistic tractography to ex-
plore the structural connectivity of the motor subnetwork in
MSA-C. This subnetwork comprising the precentral cortex,
basal ganglia, thalamus, ventral diencephalon, and cerebellum
has been previously utilized in connectivity-based studies in
Parkinson’s disease [19, 20].

Methods

Subject recruitment and clinical evaluation

This study included 48 subjects, of which 23 were patients with
MSA-C and 25 were age- and gender-matched healthy controls
(HC). All patients were recruited from the general neurology
outpatient clinic and movement disorder clinic. The diagnosis
of MSA was based on the criteria by Gilman et al [2], as per
which patients were classified as MSA-C based on the predom-
inant motor symptom at evaluation. Demographic details such
as gender, age, age at onset, and duration of illness were record-
ed. Disease severity was quantified using the Unified Multiple
System Atrophy Rating Scale (UMSARS) [21]. This study was
approved by the Institutional Ethics Committee. All subjects
provided informed consent prior to recruitment.

Imaging protocol

All MRI scans were performed in a 3-T Philips Achieva MRI
scanner using a 32-channel head coil. 3D T1 images with high
resolution were obtained with the following parameters: echo
time (TE), 3.7 ms; repetition time (TR), 8.1 ms; field of view
(FOV), 256 × 256 × 155 mm; slice thickness, 1 mm; voxel
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size, 1 × 1 × 1mm; sense factor, 3.5; acquisitionmatrix, 256 ×
256; flip angle, 8°; 165 sagittal slices. DWIwas acquired using
a single-shot spin-echo, echo-planar sequence in axial sections
with the following parameters: TE, 62 ms; TR, 8783 ms; FOV,
224 × 224 mm; voxel size, 1.75 × 1.75 × 2 mm; diffusion
gradient directions, 15; b value, 1000 s/mm2; and a single
b = 0 s/mm2 image.

Image analysis

Image pre-processing

Pre-processing of diffusion MRI data was performed using
FSL 5.0.9 (https://fsl.fmrib.ox.ac.uk). The initial steps
involved correction for motion and distortions induced by
eddy current. This was performed using Beddy_correct^
which employs affine transformation of the DWI images to
the baseline b = 0 images using FSL [22]. Based on
appropriate reorientation, b-matrices were then adjusted to
match the transformed images. Subsequently, brain
extraction was performed using the brain extraction tool
[23]. Pre-processing of T1 images was performed using
Freesurfer 6.0 (http://surfer.nmr.mgh.harvard.edu). The steps
involved were removal of non-brain tissue, bias correction,
and segmentation into gray matter (GM), white matter
(WM), and cerebrospinal fluid.

Creating structural connectomes (Fig. 1)

The first step in obtaining the complete connectome involved
defining the nodes. In the present study, obtaining detailed
nodes of the cerebellum was important as determining con-
nectivity from various cerebellar nodes was crucial to investi-
gate our hypothesis. To achieve this, two atlases were fused to
define the nodes: the Desikan atlas from Freesurfer [24] which
accurately delineated the complete brain and the AAL atlas
which defined multiple regions of interest (ROIs) within the
cerebellum. Spherical registration using Freesurfer [25] was
performed to map the Desikan ROIs onto the T1 native space
and to obtained accurate GM and WM parcellations (which
included the cerebellum). Deformable registration via attribute
matching and mutual-saliency weighting (DRAMMS) [26]
was employed to match the AAL atlas to the native T1 space,
and to transfer the cerebellar parcellations. This relies on
multi-scale and multi-orientation Gabor attributes and
mutual-saliency in which it assigns higher weights to those
voxels which have higher ability of uniqueness.

A boundary between the GM and WM was obtained by
dilating the WM mask with a 2-mm radius sphere, obtained
from Freesurfer, and then intersecting it with the GM mask.
The labels of the Desikan atlas (84 regions) except the cere-
bellum were then mapped onto this boundary by multiplying
the label image with the boundary image. Similarly, the AAL

cerebellum labels (26 regions) were mapped onto the comput-
ed boundary and a total of 110 nodes were obtained.

Probabilistic tractography [27] was implemented to track
fibers from each node to every other node using the FSL
toolbox [22]. In the initial stage, construction of voxel-wise
distribution was carried out using a Markov chain Monte
Carlo sampling on principle diffusion direction. Probabilistic
fiber tracking was then run from each of the computed node
boundaries to every other region boundary, by repeatedly sam-
pling from the diffusion distributions at each seed voxel, cal-
culating the streamline such that each sample followed and
then using the results to create a distribution of possible tracks
weighted by their probability [27]. Fiber tracking was initiated
by using the default parameters of 5000 sample streamlines
for each voxel and two fibers per voxel in each seed region.
Here, a 110 × 110 matrix was created of conditional probabil-
ity values pij between the seed ROI, i, and the target ROI, j,
given by pij = Si→ j where Si→ j denotes the number of fibers
reaching the target region j from the seed region i and Si is the
number of streamlines seeded in i. The self-connections were
represented by zero, while the other connections pij ≈ pji,
which on averaging provided an undirected weighted connec-
tivitymatrix. Finally, based on our hypothesis of differences in
the motor subnetwork, we extracted 38 ROIs to create a 38*38
subnetwork as shown in Fig. 1. The ROIs selected included
the bilateral precentral cortex, basal ganglia, thalamus, ventral
diencephalon, and cerebellum.

Fig. 1 Node strength of patients with MSA-C versus healthy controls.
Reduced nodal strength was observed in the left thalamus, left ventral
diencephalon, right ventral diencephalon, left cerebellum crus 1,2, left
cerebellar lobule 4,5, right cerebellar lobule 4,5 left cerebellar lobule 6,
right cerebellar lobule 6, vermis 4,5, and vermis 7. Cereb, cerebellum; L,
left; R, right; Ventral DC, ventral diencephalon
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Connectome-based statistical analysis

Population analysis was performed only for the above de-
scribed motor subnetwork of the HC and MSA-C subjects at
various levels of granularity: the edge level, the node level
(local), and the entire subnetwork level (global). The brain
connectivity toolbox [28] was used for computing the stan-
dard topological features of the graph and SPSS version 16
was used for performing group-based statistics. The network-
based statistic (NBS) toolbox introduced by Zalesky et al [29]
was utilized for performing the edge-wise analysis.

Global measures

Global parameters were used to investigate the differences in
the entire motor subnetwork between the two groups. Density,
modularity, transitivity, global efficiency, characteristic path
length, clustering coefficient, and assortativity coefficient in
the motor subnetwork were computed. Definitions of these
measures are provided in the supplementary table. Details about
these network parameters have been explained elsewhere [28].

Nodal measures

In order to investigate the differences between the motor subnet-
work ofMSA-C andHC, several nodemeasureswere computed.
These included nodal degree, nodal strength, local efficiency,
betweenness centrality, and eigenvector centrality. Definitions
of these measures are provided in the supplementary table.

Statistical analyses

Global and nodal measures

To test our hypothesis, statistical analysis was performed be-
tween the two groups for each of the global and nodal mea-
sures described earlier. We used a multivariate analysis of
covariance model with group as the main factor and age, gen-
der, and normalized cerebellum volumes as covariates. False
discovery rate with a threshold of q value = 0.05 was
employed to constraint false positives when performing mul-
tiple comparisons in the global network–based and nodal
network–based analyses.

Edge-wise analyses

We performed edge-wise analyses using NBSwhich is a pow-
erful tool used to identify the alteration in the structural con-
nectivity between pairs of regions of the two groups [29]. We
tested for differences between MSA-C and HC for each of the
connections of the motor subnetwork with age, gender, and
normalized cerebellum volumes as nuisance variables. To cor-
rect for multiple comparisons, 10,000 permutations were

applied with a t value threshold of 2.5 and p value threshold
of 0.01. We performed these statistic tests on both the con-
trasts, i.e., HC > patients and patients > HC.

Correlations

The global, nodal, and edge strengths were correlated with the
duration of illness, total UMSARS score, and motor compo-
nent scores. All scores were adjusted for age, gender, and
normalized cerebellum volumes by linear regressions and
the resulting standard residuals were utilized in correlations.
Pearson’s r was computed, and the significance threshold of
the correlation was maintained at p value < 0.05.

Results

Demographic and clinical data

Forty-eight subjects were included in this study, of which 23
were MSA-C and 25 were HC. Demographic and clinical
details are provided in Table 1. There were no significant
differences between MSA-C and HC with respect to the age
or gender. The mean age at onset of MSA-C was 51.41 ±
6.06 years and mean duration of illness was 2.45 ± 1.18 years.
The total UMSARS (part I + II) score was 35.31 ± 17.30, and
the motor severity (part II) score was 18.63 ± 9.27. All patients
with MSA-C had poor response to levodopa and were on
amantadine and vitamin E.

Global measures

Significant decrease in density (corrected p value < 0.01),
transitivity (corrected p value < 0.01), characteristic path
length (corrected p value < 0.01), and clustering coefficient

Table 1 Demographic and clinical features of patients with multiple
system atrophy with cerebellar features

MSA-C Healthy controls

Gender (M:F) 15:08 19:06

Age (years) 53.86 ± 6.15 53.52 ± 8.24

Age at onset (years) 51.41 ± 6.06 –

Duration of illness 2.45 ± 1.18 –

UMSARS*

Total score (part I + II) 35.31 ± 17.30 –

Part I score (historical review) 16.68 ± 8.29 –

Part II score (motor examination) 18.63 ± 9.27 –

F female, M male, MSA-C multiple system atrophy with cerebellar fea-
tures, UMSARS Unified Multiple System Atrophy Rating Scale
*UMSARS of three subjects was not available
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(corrected p value < 0.01) was observed in motor subnetwork
of patients with MSA-C when compared to HC.

Nodal measures

Several regions with significantly reduced nodal strength
within the motor subnetwork were observed in patients with
MSA-C in comparison to HC (Table 2, Fig. 1). No significant
differences were observed in terms of nodal degree, local ef-
ficiency, betweenness centrality, and eigenvector centrality.

Edge-wise analysis

Edge-wise analysis revealed significantly lower connectivity
in patients with MSA-C involving 40 connections of the sub-
network (Table 3, Fig. 2).

Correlations

A significant negative correlation was observed between con-
nectivity of the thalamus and total UMSARS scores and
UMSARS-II score (Fig. 3). At the edge level, a few connec-
tions showed significant correlations with the total UMSARS
score, and motor severity score (part II). The connections in-
volved were between the left cerebellum 8 and vermis 7, be-
tween the left thalamus and left ventral diencephalon, between
the left cerebellum 10 and vermis 4,5, and between the left
cerebellum 8 and vermis 7. Duration of illness showed a neg-
ative correlation between the vermis 6 and vermis 7. Only one
connection from the left cerebellum 4,5 to right cerebellum 4,5
demonstrated a positive correlation with duration of illness.

Discussion

In this study, we focused on exploring the alterations in struc-
tural connectivity of the motor subnetwork in MSA-C using
probabilistic tractography. Themotor subnetwork investigated

Table 2 Regions with reduced nodal strength in patients with multiple
system atrophy—cerebellar type

Nodal measures Nodes T score p value q value

Node strength Left thalamus proper 18.31 < 0.01 0.018

Left ventral DC 19.47 < 0.01 0.012

Right ventral DC 20.53 < 0.01 0.008

Left verebellum crus 1 31.30 < 0.01 0.000

Left cerebellum crus 2 24.44 < 0.01 0.002

Left cerebellum 4,5 35.05 < 0.01 0.000

Right cerebellum 4,5 24.39 < 0.01 0.002

Left cerebellum 6 26.02 < 0.01 0.001

Right cerebellum 6 16.11 < 0.01 0.041

Vermis 4,5 26.44 < 0.01 0.001

Vermis7 20.22 < 0.01 0.009

DC diencephalon

Table 3 T statistics significant edges obtained from edge-wise analysis
using network-based statistics

Region ↔ Region T statistics

Cortex LH precentral ↔ Left thalamus proper 3.75

Cortex LH precentral ↔ Left ventral DC 3.84

Left thalamus proper ↔ Left ventral DC 5.74

Left thalamus proper ↔ Left cerebellum crus 2 3.11

Left ventral DC ↔ Right cerebellum crus 1 2.84

Left ventral DC ↔ Right cerebellum 9 2.8

Left cerebellum crus 1 ↔ Left cerebellum crus 2 6.86

Left cerebellum crus 1 ↔ Right cerebellum crus 2 2.98

Left cerebellum crus 1 ↔ Left cerebellum 6 3.99

Right cerebellum crus 1 ↔ Right cerebellum crus 2 3.15

Left cerebellum crus 2 ↔ Left cerebellum 7b 3.63

Right cerebellum crus 2 ↔ Right cerebellum 7b 3.45

Right cerebellum crus 2 ↔ Right cerebellum 8 2.95

Left cerebellum 3 ↔ Left cerebellum 4,5 3.83

Right cerebellum 3 ↔ Right cerebellum 4,5 4.59

Right cerebellum 3 ↔ Vermis 3 3.08

Left cerebellum 4,5 ↔ Right cerebellum 4,5 3.13

Left cerebellum 4,5 ↔ Left cerebellum 6 4.73

Left cerebellum 4,5 ↔ Vermis 4,5 4.82

Right cerebellum 4,5 ↔ Right cerebellum 6 3.42

Right cerebellum 4,5 ↔ Vermis 4,5 4.00

Left cerebellum 6 ↔ Vermis 4,5 3.06

Left cerebellum 6 ↔ Vermis 6 3.23

Right cerebellum 6 ↔ Vermis 6 4.30

Right cerebellum 6 ↔ Vermis 7 4.60

Left cerebellum 8 ↔ Left cerebellum 9 3.09

Left cerebellum 8 ↔ Vermis 7 3.02

Right cerebellum 8 ↔ Right cerebellum 7b 3.3

Right cerebellum 8 ↔ Right cerebellum 9 3.00

Right cerebellum 9 ↔ Right cerebellum 10 2.93

Left cerebellum 10 ↔ Left cerebellum 3 3.83

Left cerebellum 11 ↔ Right cerebellum 3 2.91

Left cerebellum 12 ↔ Right cerebellum 4,5 3.03

Left cerebellum 13 ↔ Left cerebellum 9 5.13

Left cerebellum 14 ↔ Vermis 1,2 3.83

Left cerebellum 15 ↔ Vermis 4,5 3.7

Vermis 1,2 ↔ Vermis 3 3.67

Vermis 1,2 ↔ Vermis 7 3.12

Vermis 6 ↔ Vermis 4,5 3.74

Vermis 6 ↔ Vermis 7 3.45

DC diencephalon, LH left hemisphere
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comprised of the precentral cortex, basal ganglia, thalamus,
and cerebellum. We observed significant widespread abnor-
malities at global, nodal, and edge levels. Our results provide
definitive evidence of damage to connections which may be
causally implicated in the motor features of cerebellar dys-
function and parkinsonism observed in MSA-C.

From a functional perspective, the cerebral cortex, basal
ganglia, thalamus, and cerebellum may be considered to be
highly segregated modules which are part of an integrated net-
work [30]. Within each module, there are nodes with distinct
functions and inter and intra modular integration. For instance,
the structures of the basal ganglia, i.e., the caudate, putamen,

pallidum, and ventral diencephalon, are known to functionally
interact with the thalamus and cerebellum, and with each other.
Similarly, the cerebellum is also functionally segregated into the
cerebello-cerebellum, the spino-cerebellum, and the vestibule-
cerebellum regions [31]. Although each region receives distinct
central or peripheral inputs, the outputs converge at similar
regions. Furthermore, there is an anatomical overlap between
these functionally distinct regions. Hence, abnormalities at any
one node, i.e., region within these functional modules, may
produce network-wide abnormalities.

We observed significantly abnormal global metrics of the
motor subnetwork in the MSA-C group in comparison to HC.

Fig. 2 Network-based statistics-based edge-wise analysis. Forty ab-
normal edge-wise connections were observed in patients with MSA-C
in comparison to healthy controls. Abnormalities were observed in
connections between the cortex and basal ganglia structures, between

the basal ganglia and thalamus, between the thalamus and cerebellum,
and within the cerebellum, i.e., lobules and the vermis. Cereb, cere-
bellum; L, left; R, right; Ventral DC, ventral diencephalon

Fig. 3 Correlation graphs for significant correlations between
connectivity metrics and total UMSARS score, motor component
score, and duration of illness. Graph (a) shows negative correlations
between the total UMSARS score and the left thalamus, and between
the total UMSARS score and edge connection between the left cere-
bellar lobule 8 and vermis 7, between the left thalamus proper and
ventral diencephalon, and between the left cerebellar lobule 10 and

vermis 4,5. Graph (b) shows negative correlations between the motor
component score and the left thalamus, and between the motor com-
ponent score and the edge connection between the left cerebellar lob-
ule 8 and vermis 7. Graph (c) shows a negative correlation between the
duration of illness and vermis 6 to 7, and positive correlation between
duration of illness and left cerebellar lobule 4,5 and right cerebellar
lobule 4,5
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These findings are suggestive of impairment in the structural
segregation, integration, and network resilience of the motor
subnetwork in MSA-C. A lower density indicates a reduction
in the mean network degree, i.e., a lower number of connec-
tions or links to structures in the motor subnetwork. Clustering
coefficient and transitivity are measures of functional segre-
gation, and the observed alterations indicate the decreased
ability for specialized processing to occur within the motor
subnetwork. Impairment in characteristic path length implies
a reduction in the structural integration of the motor network.
This indicates that the motor subnetwork in MSA-C is unable
to effectively combine specialized information from within
the subnetwork and from other areas of the brain. These re-
sults indicate significant impairment in both the basal ganglia
and cerebellum resulting in the symptoms observed in MSA-
C. However, these are global measures of the motor subnet-
work and do not indicate the extent of abnormality in the each
of the structures or connections in the motor subnetwork. This
information, which is obtained from nodal measures and
edge-wise analysis, is crucial to understand the basis for the
predominance of cerebellar symptoms observed in MSA-C.

At a nodal level, we observed significantly reduced nodal
strength in several regions, indicating poor connectivity with
other nodes. We observed 11 nodes with poor nodal strength
(Table 2, Fig. 1), of which 8 were cerebellar nodes. This find-
ing suggests a higher extent of abnormality within the cere-
bellum in MSA-C.

Edge-wise analysis revealed 40 edges with abnormal con-
nectivity in patients with MSA-C (Table 3, Fig. 2). A higher
proportion of abnormal connections involved nodes within the
cerebellum and this observation probably substantiates the
predominance of cerebellar dysfunction in MSA-C.

The observed negative correlation between the UMSARS
scores and thalamus connectivity suggests a definitive in-
volvement of the motor subnetwork in MSA-C. The negative
correlations observed between the UMSARS score and the
connections between the left cerebellum 8 and vermis 7, be-
tween the left thalamus and left ventral diencephalon, between
the left cerebellum 10 and vermis 4,5, and between the left
cerebellum 8 and vermis 7 imply a definitive role of both
cerebellar and extra-cerebellar networks in the disease pro-
cess. Further, negative correlation of duration of disease with
vermis 6 to 7 connection demonstrates that intra-cerebellar
connectivity worsens as the disease progresses. Only one cor-
relation demonstrated a positive correlation with duration of
illness. This was mainly driven by an outlier, and this corre-
lation became insignificant once the outlier was removed.

Our results observed at a micro-structural level concur
with the consistent macro-structural observations of cerebel-
lar atrophy in MSA-C [7, 8, 10, 11]. The results of the
present study provide substantial evidence to explain the
pattern of motor symptoms observed in MSA-C. Structural
connectivity in MSA-C has been previously explored by

Wang et al [17], using deterministic tractography. Although
the results reported by the above study are appropriate, the
data was acquired using a 1.5-T MRI scanner, which in
comparison to 3-T diffusion scans provides very low
signal-to-noise ratio and contrast [32]. Furthermore, tract
integrity at white matter crossings may not be appropriately
measured using deterministic tractography. Seeding of white
matter may underestimate small fibers and association fibers
and oversample the large fibers [33]. Our approach of prob-
abilistic tractography relied on Monte Carlo–based fiber
tracking, which is an improved model of white matter archi-
tecture. The fiber tracking in our study was performed di-
rectly from the gray matter-white matter boundary of the
nodal regions and paths of individual samples were tracked
to determine the connectivity between regions.

Our results of impaired structural connectivity contradict
the report of higher functional connectivity observed in the
cerebellum in MSA-C. Evaluation of resting state functional
MRI connectivity in MSA-C revealed higher connectivity in
the cerebellar tonsils within the ponto-cerebellar network as
compared to subjects with MSA-P and HC [34]. However,
as suggested by Rosskopf et al [34], it is plausible that the
functional hyper-connectivity observed in MSA might be an
adaptive response to progressive underlying structural
neuro-degeneration.

Even though probabilistic tractography was used in the
present study, white matter crossings may not have been
ideally measured due to the lower number of gradient direc-
tions, 15 in our case [35]. An appropriate sequence with
higher number of diffusion gradient directions and higher
order models should be employed to overcome this limita-
tion. However, recently, higher order models employed on
lower angular resolution diffusion data have also demon-
strated potential to delineate the white matter better than
the traditional models [36], which corroborates our analysis.
Further, acquisition of b = 0 image in the opposite phase-
encoding direction was not performed, which may be useful
in susceptibility-induced distortion correction. Our sample
size was small and future studies with a larger sample size
and high angular resolution diffusion imaging are necessary
to confirm our findings.

Conclusions

Significant alterations in the structural connectivity of the mo-
tor subnetwork at the global, nodal, and edge levels are ob-
served inMSA-C. The higher degree of abnormality observed
in inter- and intra-cerebellar connectivity corroborates with
the predominant motor symptom of cerebellar dysfunction.
Future studies exploring the structural connectivity of non-
motor subnetworks are crucial to aid in a better understanding
of the overall disease process in MSA-C.
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