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Reduced lateral occipital gray matter volume is associated with physical
frailty and cognitive impairment in Parkinson’s disease
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Abstract
Introduction To investigate the structural changes of the brain that correlate with physical frailty and cognitive impairments in
Parkinson’s disease (PD) patients.
Methods Sixty-one PD patients and 59 age- and sex-matched healthy controls were enrolled. For each participant, a frailty
assessment using Fried’s criteria and comprehensive neuropsychological testing using the Wechsler Adult Intelligence Scale-III
and Cognitive Ability Screening Instrument were conducted, and structural brain MR images were acquired for voxel-based
morphometric analysis. The neuropsychological testing includes various tests in these five domains: attention, executive, mem-
ory, speech and language, and visuospatial functions. Exploratory group-wise comparisons of gray matter volume (GMV) in the
PD patients and controls were conducted. Voxel-wise multiple linear regression analyses were conducted for physical frailty–
related and cognitive impairment–related GMV changes in the PD patients. Voxel-wise multiple linear regressions were also
performed with the five cognitive domains separated using the same model.
Results The PD patients exhibited diffuse GMV reductions in comparison to the controls. In the PD patients, physical frailty–
related decreases in GMV were observed in the bilateral frontal and occipital cortices, while cognitive impairment–related
decreases in GMV were observed in the bilateral frontal, occipital, and temporal cortices. These regions overlap in the lateral
occipital cortex. After the five domains of cognitive functions were analyzed separately, physical frailty–related decreases in
GMV still overlap in lateral occipital cortices with every domain of cognitive impairment–related decreases in GMV.
Conclusion Reduced GMV in the lateral occipital cortex is associated with cognitive impairment and physical frailty in PD
patients.
Key Points
• Physical frailty in PDwas associated with decreased GMVin the frontal and occipital cortices, while cognitive impairment was
associated with decreased GMV in the frontal, temporal, and occipital cortices.

• Physical frailty and cognitive impairment were both associated with decreased GMV in the lateral occipital cortex, which is
part of the ventral object-based visual pathway.

• Decreased GMV in the lateral occipital cortex may serve as a potential imaging biomarker for physical frailty and cognitive
impairment in PD.
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Abbreviations
GMV Gray matter volume
MMSE Mini-Mental State Examination
PD Parkinson’s disease
TIV Total intracranial volume
UPDRS Unified Parkinson’s Disease Rating Scale

Introduction

Physical frailty describes a state of increased vulnerability to
stressors due to decreases in functions and reserve across mul-
tiple physiologic systems [1]. In a commonly used model
proposed by Fried et al in the cardiovascular health study,
frailty includes the following five domains: weight loss, ex-
haustion, slow walking speed, low physical activity, and low
grip strength [1]. The presence of frailty in the elderly has been
linked to increased mortality and other adverse outcomes [2].
Recent studies have also demonstrated that frailty or compo-
nents of frailty are associated with brain structural or function-
al alterations in elderly individuals [3–5]. Due to shared path-
ophysiologies such as systemic inflammation and increased
oxidative stress, physical frailty and cognitive impairment
are interrelated and can aggravate each other through an intri-
cate interplay that leads to a vicious cycle [6]. For example,
the presence of physical frailty can lead to decreased social
engagement and increased cardiovascular risk factors, which
then lead to cognitive decline and depression [6].
Subsequently, these conditions can cause chronic undernutri-
tion, oxidative stress, and systemic inflammation, which then
aggravate the physical frailty status [6, 7]. Recently, it was
proposed that the assessment of the frailty syndrome should
include an evaluation of cognitive impairment [8].

Parkinson’s disease (PD) patients are prone to develop cog-
nitive impairment with cognitive impairment–associated cor-
tical atrophy that progresses as the cognitive impairment
worsens [9]. However, while studies have demonstrated a link
between cognitive impairments and physical frailty in the nor-
mal aging population [10], the role of physical frailty in PD
patients and its association with cognitive impairments are
less well studied. It has been reported that PD patients have
a higher incidence of physical frailty than the normal aging
population while the progression of PD is different from the
development of physical frailty [11]. Moreover, a recent study
of community-dwelling older individuals found that cortical
atrophy was associated with frailty in said individuals [3].
However, the brain structural changes related to physical frail-
ty and cognitive impairment in PD patients have not yet been
reported.

In this study, we therefore aimed to investigate the struc-
tural changes in the brain that are correlated with physical
frailty and cognitive impairments in PD patients. Due to the
shared pathophysiology of physical frailty and cognitive

impairments [6], we hypothesized that there would be distinct
but overlapping patterns of physical frailty–associated and
cognitive impairment–associated structural changes in the
brains of PD patients. Identifying the presence of physical
frailty and cognitive impairments, as well as their relation-
ships with PD, might shed light on their possible underlying
mechanisms, which may guide clinicians in developing per-
sonalized treatments for PD patients in the future.

Materials and methods

Participants

Sixty-one patients (24 males and 37 females; mean age 62.61
± 8.59 years) diagnosed with idiopathic PD according to the
United Kingdom Brain Bank criteria [12] and without other
neurological disorders or psychiatric diseases were prospec-
tively enrolled in a single tertiary medical center. The Unified
Parkinson’s Disease Rating Scale (UPDRS), the modified
Hoehn and Yahr Staging Scale, and the Schwab and
England Activities of Daily Living Scale were utilized to as-
sess the functional status and disease severity of the patients
[13, 14]. Fifty-nine sex- and age-matched healthy subjects (22
males and 37 females; mean age 60.9 ± 6.3 years) with similar
education levels and without neurologic disease, psychiatric
illness, alcohol or substance abuse, or head injury were re-
cruited from the local community and family members of
patients as a control group. The hospital’s Institutional
Review Committee on Human Research approved the study
protocol, and all of the participants or their guardians provided
written informed consent.

Frailty assessment

For each PD patient, a frailty assessment based on Fried’s
criteria of weight loss, self-described exhaustion, low physical
activity, slowness, and weakness was conducted [1]. Weight
loss was defined as unintentional weight loss of more than
3 kg over the previous year. Self-described exhaustion was
defined as fatigue or exhaustion for more than 3 days in the
previous week. Physical activity was assessed by calorie con-
sumption using the Taiwan International Physical Activity
Questionnaire (Taiwanese version of the IPAQ) [15].
Slowness was measured based on the time it took to walk
5 m. Weakness was assessed by measuring the grip strength
of both hands with a hand-held dynamometer.

Neuropsychological testing

A clinical psychologist blinded to each participant’s status
performed the Mini-Mental State Examination (MMSE) and
a neuropsychological battery of tests focusing on the attention,
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executive, speech and language, memory, and visuospatial
functions. The Chinese versions of the Wechsler Adult
Intelligence Scale-III (WAIS-III) [16] and the Cognitive
Ability Screening Instrument (CASI) [17] were both used so
that there would be more than three tests for each of the five
cognitive domains. Attention functions were evaluated using
the digit span and letter number sequencing subtest scores for
the WAIS-III and by the scores for attention and orientation
from the CASI. Executive functions were evaluated using the
digit symbol coding, arithmetic, picture arrangement, and ma-
trix reasoning scores from the WAIS-III and by the abstract
thinking scores from the CASI.

Memory functions were evaluated using the short- and
long-term memory scores from the CASI and the information
scores from the WAIS-III. Speech and language ability were
evaluated using the vocabulary, comprehension, and similari-
ty scores from the WAIS-III and the language and semantic
fluency scores from the CASI. Visuospatial functions were
evaluated using the picture completion and block design
scores from the WAIS-III and the drawing scores from the
CASI.

Structural MR imaging

Image acquisition

The MR data were acquired using a 3.0T whole body GE
Signa MRI system (General Electric Healthcare). For each
subject, the subject’s headwas immobilized with foam pillows
inside the coil to diminish motion artifacts. The T1-weighted
structured images were acquired using a 3D-FSPGR sequence
(repetition time (TR) = 9.492ms, echo time (TE) = 3.888ms,
flip angle = 20°, field of view (FOV) = 24 × 24 cm, matrix
size = 512 × 512, 110 continuous slices with a slice thickness
of 1.3 mm and in-plane spatial resolution of 0.47 × 0.47 mm)
through the whole head parallel to the anterior-posterior com-
missure (AC-PC).

Imaging data pre-processing

All images were pre-processed using SPM12 (Statistical
Parametric Mapping; http://www.fil.ion.ucl.ac.uk/spm/;
University College London) running on Matlab R2012a
(Mathworks).

First, each T1-weighted structuralMR image was intensity-
bias corrected and tissue-segmented into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) compart-
ments. Then, these segmented compartments were rigid-
aligned (6 degrees of freedom (DOF)) to the MNI space tissue
templates. The Diffeomorphic Anatomical Registration
Through Exponentiated Lie Algebra (DARTEL) algorithm
was then used to generate study-specific tissue templates by
iteratively registering the rigid-aligned tissue segments of all

the participants and further warping the individual tissue seg-
ments to the constructed template. Afterwards, 12-parameter
affine transformation was conducted to transform the rigid-
aligned DARTEL space tissue templates to MNI space and
then to modulate the corresponding effects of the affine trans-
formation (global scaling of overall brain size) and the non-
linear warping effect (local volume change) for each individ-
ual. Finally, the GM probability values were smoothed using
an 8-mm full width at half-maximum Gaussian kernel, and a
probability threshold of 0.15 was used to remove voxels with
lower corresponding tissue probability from the analysis to
avoid a possible edge effect.

Total intracranial volumes (TIV) were calculated by adding
up the total voxels of GM, WM, and CSF in the native space
separately.

Statistical analysis

Analysis of demographic data

The demographic data, including the age and sex data, were
compared among the study groups using the two sample
Student’s t test and Pearson chi-square test, where appropriate,
and were reported as mean ± the standard deviation (SD). The
significance of differences in the MMSE, disease severity, and
neuropsychological test scores were analyzed by analysis of
covariance (ANCOVA), with the participant’s age, sex, and
education level as covariates. Statistical analysis was per-
formed using the Statistical Product and Service Solutions
software version 19 (IBM SPSS), and a p value < 0.05 was
considered significant.

Group comparison of gray matter volume (GMV)
between patients and controls

Voxel-wise group comparisons of GMV were conducted
using the SPM12 (Statistical Parametric Mapping; http://
www.fil.ion.ucl.ac.uk/spm/; University College London)
software package in Matlab R2012a (Mathworks). A full
factorial design was performed with age, sex, and TIV as
covariates to detect regional GMV differences between
the groups. Results were considered significant under
the criteria of family-wise-error (FWE)-corrected p value
< 0.05 based on the results of the Monte Carlo simulation
(3dClusterSim with the following parameters: single vox-
el p value < 0.005, FWHM = 8 mm with GM mask, and
10,000 simulations).

Effects of physical frailty and cognitive performance on GMV

Due to the different scoring systems and numbers of tests in
each domain of the neuropsychological testing, we construct-
ed a summarized cognitive score for each patient that put
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equal weights on each of the five domains. The test scores of
every neuropsychological assessment were normalized to
have group means equal to zero and standard deviations equal
to one. The normalized scores of every test within each cog-
nitive domain were then averaged to make a weighted domain
score. The five weighted domain scores were then summed up
to make a summarized cognitive performance score. A sum-
marized physical frailty score was also constructed in a similar
way. Higher summarized cognitive scores indicated better
cognitive performance, while higher summarized physical
frailty scores indicated increased physical frailty.

Voxel-wise multiple linear regressions were performed
on the warped GM segments of the PD patients with a
regression model including the summarized cognitive
score or frailty score, age, sex, and TIV to account for
the confounding effects of overall brain size caused by
age, sex, and TIV.

Voxel-wise multiple linear regressions were also performed
with the five cognitive domains separated using the same
model that included age, sex, and TIV as covariates.

A stepwise multiple regression was performed on the
GMV of the overlapping region between cognitive impair-
ment and physical frailty that included summarized physical
frailty score, summarized cognitive performance score, age,
sex, education level, UPDRS, and levodopa equivalent dose
as covariates.

Results

Baseline clinical characteristics of PD patients
and controls

The baseline clinical demographics and neuropsycholog-
ical assessment scores of all the subjects and the physical
frailty assessment sores of the PD patients are listed in
Table 1. Statistical analysis of the clinical demographics
showed a lower mean MMSE score in the PD group. The
patients with PD also performed significantly worse than
the controls on some of the neuropsychological assess-
ments of attention function (orientation), executive func-
tion (digit symbol coding and arithmetic), speech and
language function (vocabulary and comprehension), and
visuospatial function (block design).

Group comparison of regional GMV

Voxel-wise analysis results of the whole brain with full facto-
rial design are shown in Supplementary Table 1. Compared
with the control group, extensive decreases in the GMVof the
bilateral cerebellum were observed in the PD group. Scattered
regions of decreased GMV in the PD patients were also

present in the bilateral frontal, temporal, parietal, and occipital
lobes (Supplementary Fig. 1).

Effects of physical frailty on regional GMV in PD
patients

The results of a voxel-wise multiple linear regression to
determine the effects of physical frailty on GMV in PD
patients are shown in Supplementary Table 2A. Physical
frailty–related decreases in GMV of PD patients were
mostly observed in the bilateral frontal and occipital cor-
tices. After overlaying the regions of physical frailty–
related decreases in GMV over regions of the PD-related
decrease in GMV in the same template, overlapping re-
gions were observed in the bilateral frontal and left occip-
ital regions (Fig. 1).

Effects of cognitive impairments on regional GMV
in PD patients

The results of a voxel-wise multiple linear regression to deter-
mine the effects of cognitive impairments on the GMV in PD
patients are shown in Supplementary Table 2B. Cognitive
impairment–related decreases in GMV of PD patients were
mostly observed in the bilateral frontal, occipital, and tempo-
ral cortices. After overlaying the regions of cognitive
impairment–related decreases in GMV over regions of the
PD-related decrease in GMV in the same template, overlap-
ping regions were observed in the bilateral temporal, occipital,
and left frontal regions (Fig. 1).

Effects of physical frailty and cognitive impairments
on regional GMV in PD patients

The significant regions of decreased GMV due to physical
frailty and cognitive impairments were overlaid on the
significant regions of decreased GMV in PD patients, as
shown in Fig. 2. An overlapping region was observed in
the left lateral occipital cortex. Stepwise multiple regres-
sion showed that the physical frailty and cognitive perfor-
mance were optimal for the prediction of average GMV
level in the left lateral occipital cortex (F = 15.849, R2 =
0.353, adjusted R2 = 0.331, p < 0.001). The model ex-
plained 33% of the variance observed, and each predictor
significantly affected the GMV in left lateral occipital
cortex, as shown in Table 2.

Effects of physical frailty and different domains
of cognitive impairments on regional GMV in PD
patients

The significant regions of decreased GMV due to physical
frailty were overlaid on different domains of cognitive
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impairments associated decreased GMV separately in PD pa-
tients, as shown in Fig. 3. An overlapping region was ob-
served in the left lateral occipital cortex in every domain.
Additionally, an overlap over left calcarine cortex was ob-
served in attention function while superior frontal cortex was
observed in executive function.

Discussion

In this study, we found cognitive impairment–associated re-
duced GMV in bilateral frontal, occipital, and temporal corti-
ces; physical frailty was associated with reduced GMV in
bilateral frontal and occipital cortices. To the best of our

Table 1 Demographic data,
neuropsychological assessment,
and frailty assessment data of
patients with PD and normal
controls

PD (n = 61) Control (n = 59) p value

Clinical demographics
Age (year) 62.61 ± 8.59 60.9 ± 6.3 0.226
Sex (M, F) 24, 37 22, 37 0.817
Disease duration (year) 3.04 ± 2.97
UPDRS I 3.33 ± 2.63
UPDRS II 9.57 ± 6.26
UPDRS III 23.66 ± 13.97
UPDRS total 36.56 ± 21.07
Modified H & Y 1.95 ± 1.06
S & E 84.10 ± 17.07
MMSE 24.58 ± 4.50 27.31 ± 2.25 0.004*

Neuropsychological assessments
Attention function
Digit span 9.30 ± 3.20 10.81 ± 2.79 0.178
Attention 6.82 ± 1.28 7.36 ± 1.00 0.151
Orientation 16.62 ± 2.48 17.69 ± 0.75 0.015*
Letter number sequencing 8.02 ± 3.55 8.00 ± 4.40 0.232

Executive function
Digit symbol coding 7.21 ± 3.44 10.17 ± 3.27 < 0.001*
Arithmetic 8.15 ± 2.77 10.41 ± 3.23 0.002*
Picture arrangement 8.33 ± 2.70 9.75 ± 3.78 0.213
Matrix reasoning 8.33 ± 3.32 9.83 ± 3.31 0.244
Abstract thinking 8.30 ± 2.12 9.39 ± 1.84 0.102

Memory function
Short-term memory 8.33 ± 3.16 9.16 ± 1.91 0.843
Long-term memory 9.41 ± 1.48 9.90 ± 0.44 0.128
Information 8.72 ± 2.69 10.12 ± 3.15 0.163

Speech and language
Vocabulary 8.72 ± 3.62 10.92 ± 3.61 0.031*
Comprehension 8.30 ± 3.32 10.90 ± 3.72 0.002*
Language 9.23 ± 1.08 9.72 ± 0.98 0.110
Similarity 8.49 ± 3.19 10.20 ± 3.03 0.074
Semantic fluency 7.31 ± 2.22 7.41 ± 2.17 0.399

Visuospatial function
Picture completion 8.34 ± 3.03 9.86 ± 3.27 0.108
Block design 7.52 ± 3.04 9.88 ± 3.09 0.001*
Drawing 9.36 ± 1.21 9.75 ± 1.01 0.435

Physical frailty assessments
Weight loss (n (%)) 23 (37.7%)
Exhaustion (n (%)) 25 (41.0%)
Physical activity (kcal/week) 2973 (271.84)
Walking speed (s/5 m) 7.85 (0.53)
Grip strength (kg)
Right hand 20.87 (1.07)
Left hand 19.19 (0.95)

Age data were compared by independent t test. MMSE and neuropsychological assessment data were compared
by analysis of covariance (ANCOVA) after controlling for age, sex, and education. Sex data were compared by
Pearson chi-square test. Physical activity, walking speed, and grip strength scores are presented as mean (standard
error of the mean). The rest of the data are presented as mean ± standard deviation

UPDRS Unified Parkinson’s Disease Rating Scale, Modified H & Y Modified Hoehn and Yahr stages, S & E
Schwab and England activities of daily living scale, MMSEMini-Mental State Examination

*p < 0.05
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knowledge, we are the first to report physical frailty–
associated reduced GMV in PD patients. In clinical practice,
physical frailty is not routinely assessed in PD patients, while
cognitive impairments are often tested using simple measures
such as the MMSE. Comprehensive neuropsychological tests
are very time-consuming and may exhibit inter-rater variabil-
ity. By using voxel-based morphometry, we were able to as-
sess the brain correlates of physical frailty and cognitive im-
pairment in a quick and objective manner, and the results of
these assessments may provide further information regarding
the potential underlying pathophysiological mechanisms.

In this study, we found extensive cerebral and cerebellar
atrophy in the PD patients compared with the healthy controls,
findings which are consistent with those of previous studies
[9]. The brain degeneration in PD patients extends far beyond
the nigrostriatal system and causes additional maladies, such
as cognitive impairments, in addition to its well-known motor
symptoms [18]. Cognitive impairments in PD patients are
well-documented and range from mild cognitive impairment

to PD dementia [19, 20]. It is recommended that a cognitive
assessment of PD patients include these five domains: atten-
tion, executive, memory, speech and language, and visuospa-
tial domains [19]. Recent studies have shown that cognitive
impairments in PD patients are associated with diffuse cortical
atrophy and that more extensive cortical atrophy is seen in PD
patients with poorer cognitive status [9, 21]. Our results
showed that the cognitive impairments in PD patients are as-
sociated with atrophy of the frontal, temporal, and occipital
cortices.

PD patients have a 5-fold higher prevalence rate of physical
frailty than the normal aging population [11]. This may partly
be explained by the potential shared pathophysiologies of
physical frailty and PD, such as increased systemic inflamma-
tion [11]. The presence of frailty, however, is different from
the progression of PD [11]. In this study, the prediction model
for GMV in the lateral occipital cortex includes physical frail-
ty but not UPDRS score. This result supports the notion that
PD progression is different from physical frailty. Assessing

Fig. 1 Effects of physical frailty
and cognitive impairment on
regional GMV in PD patients.
Blue voxels indicate regions with
significantly lower GMVs in the
PD patients vs. the healthy
controls. Red voxels indicate
regions with significantly reduced
physical frailty–associated GMVs
in the PD patients. Green voxels
indicate regions with significantly
reduced cognitive impairment–
associated GMVs in the PD pa-
tients (FWE-corrected p < 0.05)
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the GMV changes in PD patients may aid in the identification
of frailty status, which is important because it is potentially
treatable [22, 23]. Treatments for physical frailty include nu-
tritional support, identifying and treating depressive status,
and increased exercise [22].

Physical frailty has recently been linked to brain architec-
tural changes in community-dwelling elderly individuals, sug-
gesting the role of the central nervous system in the patho-
physiology of physical frailty [3]. Chen et al reported that in
the community-dwelling elderly individuals, physical frailty
status is associated with decreased GMV in the cerebellum,
hippocampi, frontal, occipital, and parietal cortices [3].
Among these areas, the cerebellum showed the highest corre-
lation with physical frailty. Our results showed that physical
frailty is associated with decreased GMV in the frontal and
occipital regions in PD patients. Although cerebellum seemed
to be the most significant neural signature of physical frailty in

the community-dwelling elderly individuals [3], our results
did not show such an association. When the analysis of frailty
was separated into motor (slowness, weakness, grip strength)
and non-motor (weight loss, exhaustion) components, the re-
sults still showed no significant cluster in the cerebellum for
either the motor or non-motor components (results not
shown). These discrepancies may be explained by the differ-
ences in the study populations. In fact, PD-related cerebellar
degeneration is different from cerebellar degeneration in the
normal aging population [24, 25]. The cerebellum plays an
important role in both motor and cognitive symptoms in PD,
and the resulting effects may bemediated by both pathological
and compensatory effects [25, 26]. The pathological effects
result in progressive functional decline, while the compensa-
tory effects aid in maintaining functions at relatively early
stages of the disease but eventually fail as the disease pro-
gresses [25]. As our patients already showed significant cere-
bellar atrophy, the pathological effects and the failure in the
compensatory effects may explain why no association was
found between physical frailty and cerebellar GMV change
in these PD patients. As opposed to frailty in members of the
normal aging population, in which cerebellar atrophy may be
an important imaging biomarker [3], our results support the
notion that frailty syndrome in PD patients may be mediated
by other brain regions.

Stacking the regions of decreased GMV associated with
cognitive impairment and physical frailty together showed that
the cognitive impairment-related decreases in GMV involved
the occipital and inferior temporal lobes while the physical
frailty–related decreases in GMV involved the occipital lobe.
The overlapping region was in the lateral occipital cortex.
These regions are part of the ventral object-based visual path-
way, which starts from the visual cortex that propagates to the
inferior temporal lobe, processing object information [27]. We
also found that although distinct atrophy maps are present
among different cognitive domains, there is consistent overlap
over the lateral occipital cortex with the frailty associated GM
atrophy map. Additionally, there are overlaps in the primary
visual cortex between frailty and attention function and in the
superior frontal cortex between frailty and executive function.
The primary visual cortex is also part of the ventral object–
based visual pathway. Aside from receiving signals from the
retina, it is also involved in the attention and awareness [28].
The superior frontal cortex is involved in working memory and
executive function [29]. Currently, most studies addressing
physical frailty and cognitive function assess the cognitive
function using simple cognitive measurements such as
MMSE [10]. In contrast, our study used comprehensive neuro-
psychological battery of tests that include multiple tests among
different domains of cognitive function. To the best of our
knowledge, we are the first to evaluate the GM structural
changes between physical frailty and cognitive impairment in
PD patients. Although we found distinct atrophy maps among

Fig. 2 Effects of both physical frailty and cognitive impairment on
regional GMV in PD patients. Blue voxels indicate regions with
significantly lower GMVs in the PD patients vs. the healthy controls.
Red voxels indicate regions with significantly reduced physical frailty–
associated GMVs in the PD patients. Green voxels indicate regions with
significantly reduced cognitive impairment–associated GMVs in the PD
patients

Table 2 Stepwise multiple regression analysis for GMV in lateral
occipital cortex in patients with PD

Parameters of the estimated model

Beta SE p value

Constant 0.373 0.006 < 0.001*

Summarized cognitive score 0.007 0.002 < 0.001*

Summarized physical frailty score -0.007 0.003 0.008*

Controlled for age, sex, education level, UPDRS, and levodopa equiva-
lent dose

SE standard error, UPDRS Unified Parkinson’s Disease Rating Scale

*p < 0.05
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different domains of cognitive impairment in PD patients, fur-
ther conclusion cannot be drawn until future studies dedicated
specifically to each cognitive domain are done.

The ventral visual pathway is an occipitotemporal net-
work that processes the stable aspects of visual informa-
tion, such as shape, color, size, and brightness [30].
Damage to the ventral visual pathway can result in impair-
ment of object recognition [31], and studies have shown
that poor visual function is associated with frailty status,
poor physical outcomes, and cognitive impairments in the
normal population [32, 33]. In PD patients, decreased cor-
tical thickness involving the ventral visual pathway is as-
sociated with poor executive, visuospatial, and memory
function [34], which may be mediated by increased oxida-
tive stress [35]. The results of the current study support the
notion that physical frailty and cognitive impairments are
interrelated in the brain and suggest the role of the ventral
visual pathway, especially the lateral occipital cortex, as a
potential imaging biomarker for physical frailty and cog-
nitive impairment in PD patients. Although increased oxi-
dative stress is an important underlying mechanism for PD
[36] and is associated with physical frailty and cognitive
decline [6], future longitudinal studies are needed to delin-
eate their causal relationships and connections with the
structural changes of the brain. By combining other clinical

parameters, future longitudinal studies could also assess
the possibility of using this imaging biomarker as a poten-
tial predictor for the development of physical frailty and
cognitive impairment in PD.

Limitations

This study does have several limitations. First, the patients who
participated were recruited from a single tertiary center and so
may not be representative of all PD populations. Second, this
study was a cross-sectional study, such that readers should in-
terpret the results with caution. Further causal relationships
among GMV, cognitive impairment, and physical frailty may
thus need to be delineated by future longitudinal studies. Lastly,
the frailty status was not assessed in the normal control sub-
jects. Therefore, we could not assess the differences in frailty
between the PD patients and the normal controls.

Conclusion

Reduced GMVin the lateral occipital cortex is associated with
cognitive impairment and physical frailty in PD patients.

Fig. 3 Effects of physical frailty
and individual domains of
cognitive impairments. Red
voxels indicate regions with
significantly reduced physical
frailty–associated GMVs in the
PD patients. Green voxels indi-
cate regions with significantly re-
duced cognitive impairment–
associated GMVs of each domain
in the PD patients. Yellow voxels
indicate the regions of overlap
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Identification of structural changes to the lateral occipital cor-
tex may aid in detecting physical frailty and cognitive impair-
ments in PD patients.
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