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Abstract
Purpose To evaluate the diagnostic performance of bone texture analysis (TA) combinedwith machine learning (ML) algorithms
in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures.
Materials and methods Standard CT scans of 58 patients with insufficiency fractures of the spine, performed between
2006 and 2013, were analyzed retrospectively. Every included patient had at least two CT scans. Intact vertebrae in a
first scan that either fractured (Bunstable^) or remained intact (Bstable^) in the consecutive scan were manually seg-
mented on mid-sagittal reformations. TA features for all vertebrae were extracted using open-source software (MaZda).
In a paired control study, all vertebrae of the study cohort Bcases^ and matched controls were classified using ROC
analysis of Hounsfield unit (HU) measurements and supervised ML techniques. In a within-subject vertebra comparison,
vertebrae of the cases were classified into Bunstable^ and Bstable^ using identical techniques.
Results One hundred twenty vertebrae were included. Classification of cases/controls using ROC analysis of HU mea-
surements showed an AUC of 0.83 (95% confidence interval [CI], 0.77–0.88), and ML-based classification showed an
AUC of 0.97 (CI, 0.97–0.98). Classification of unstable/stable vertebrae using ROC analysis showed an AUC of 0.52
(CI, 0.42–0.63), and ML-based classification showed an AUC of 0.64 (CI, 0.61–0.67).
Conclusion TA combined with ML allows to identifying patients who will suffer from vertebral insufficiency fractures in
standard CT scans with high accuracy. However, identification of single vertebra at risk remains challenging.
Key Points
• Bone texture analysis combined with machine learning allows to identify patients at risk for vertebral body insufficiency
fractures on standard CT scans with high accuracy.

• Compared to mere Hounsfield unit measurements on CT scans, application of bone texture analysis combined with machine
learning improve fracture risk prediction.

• This analysis has the potential to identify vertebrae at risk for insufficiency fracture and may thus increase diagnostic value of
standard CT scans.
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Abbreviations
ANN Artificial neural networks
BMD Bone mineral density
CCC Concordance correlation coefficient
DXA Dual-energy X-ray absorptiometry
FEA Finite element analysis
GLCM Gray-level co-occurrence matrix
GLRLM Gray-level run-length matrix
HR-pQCT High-resolution peripheral quantitative

computed tomography
IH Image histogram
ML Machine learning
MLP Multi-layer perceptron
RF Random forest
ROI Region of interest
SVM Support vector machine
TA Texture analysis
TLJ Thoracic-lumbar junction

Introduction

Vertebral compression fractures can have pathologic, traumat-
ic, or atraumatic causes. The latter may occur after low stress
due to bone mineralization loss leading to reduced mechanical
bone strength [1]. The most common underlying causes are
osteopenia and osteoporosis [2], two systematic skeletal dis-
orders affecting especially the elderly and chronically ill.
Osteopenia and osteoporosis are characterized by the loss of
bone tissue, skeletal fragility, and microarchitectural deterio-
ration [3].

Osteoporotic vertebral compression fractures affect many
patients worldwide, entailing significant morbidity and mor-
tality: In 2000, 1.4 million vertebral fractures were estimated
globally and approximately 214,000 occurred in the USAwith
patients at age 50 or older [4]. The lifetime risk of a vertebral
fracture at age 50 is 15.6% for women and 5% for men [5].

In general, the diagnosis of vertebral compression fractures
is based on X-ray examinations. However, a substantial
amount of cases may be overlooked [6]. CT or MR imaging
may be more appropriate to detect subtle cases.

In clinical practice, fracture risk is usually determined by
dual-energy X-ray absorptiometry (DXA) [1]. The trabecular
bone score based on gray-level textural metric can be extract-
ed from DXA images and improves the fracture risk assess-
ment [7]. Several studies demonstrate that automated bone
mineral densitometry based on Hounsfield unit (HU) on clin-
ical CT images is feasible [8], and that it correlates well with
DXA measurements [9]. Bone microstructure can be assessed
ex vivo with microcomputed tomography and in vivo with
high-resolution peripheral quantitative computed tomography
(HR-pQCT) at comparable resolution [10, 11]. Combination
of HR-pQCT and finite element analysis (FEA) determines

stresses in human bones, permits highly accurate estimation
of individual fracture risk, and predicts fracture sites [12].
Recent studies implemented FEA in clinical CT scans [13].
However, these techniques require dedicated hardware and
software which may hamper their application in clinical prac-
tice. Texture analysis (TA), on the other hand, is an objective
and quantitative method to analyze the distribution and rela-
tionship of pixel or voxel gray levels in an image or volume
[14], which can be applied retroactively to standard CT scans.
Feasibility of TA on bone structure has been demonstrated for
radiographs [7, 15–17] and CT scans [18, 19].

We hypothesize that TA and machine learning (ML) allow
to predicting vertebral insufficiency fracture in standard CT.
The goal of this retrospective case-control study is to evaluate
the diagnostic performance of bone TA combined with ML
algorithms in standard CT scans to identify patients with ver-
tebrae at risk for insufficiency fractures.

Materials and methods

Study approaches

In a paired control study (approach A), vertebrae from patients
developing vertebral fractures (cases) were compared to ver-
tebrae of matched controls with normal bone density. In a
within-subject study (approach B), it was investigated if it is
possible to predict whether or not vertebrae will fracture. In
both approaches, vertebrae were classified using ROC analy-
sis of HU measurements and supervised ML techniques.
Figure 1 depicts the two separate approaches, A and B.

Study population

The study received institutional review board and local
ethics committee approval. We identified 30,931 patients
above 45 years undergoing a clinical CT scan that covered
at least the thoracic or lumbar spine between January
2006 and December 2013 from the institutional PACS.
Six hundred seventy patients were selected that received
at least two CT scans within a year and a third scan at
least 5 months after the second scan. The third scan was
assessed for validation of the stable vertebra over a longer
period. Eventually, 58 patients remained after a review for
newly occurred osteoporotic vertebral compression frac-
tures of the thoracic and/or lumbar spine using established
criteria [20, 21] and excluding patients with traumatic
fractures and metastasis of the spine (Fig. 2). These pa-
tients had two consecutive scans, showing intact vertebrae
in the first scan that either fractured (Bunstable^ vertebra
n = 60) or remained intact (Bstable^ vertebra n = 60).

We divided the spine into the following regions: tho-
racic spine (Th1-Th10), thoracic-lumbar junction (TLJ,

2208 Eur Radiol (2019) 29:2207–2217



Th11-L1) and lumbar spine (L2-L5). Stable and unstable
vertebrae were selected from the same region. As a con-
trol set, images of 58 patients from a previous study with
patients presenting a normal bone mineral density (BMD)
with DXA were matched by age, sex, and region of the
spine [18]. The mean age was 70 ± 9 years (range 48–
90 years), including 26 women and 34 men in both the
patient and the control groups. In the female subgroup,
the mean age was 69 ± 10 years (range 48–89 years) and
71 ± 9 years (range 53–90 years) in the male subgroup.
The age difference between these subgroups is not signif-
icant (p = 0.519). A flowchart of the patient selection is
shown in Fig. 2.

CT data and post processing

Sagittal image stacks covering the spine were retrieved from
the PACS and saved in uncompressed DICOM format. The
images were acquired with different CT scanners: the
SOMATOM-Force, Definition, Definition Flash, Definition
AS and Sensation CT (all from Siemens). The collimation of
the scanners ranged from 0.6 to 1.2 mm. The image section
thickness of the sagittal images was 2.0 mm, and kilovoltage
peak (kVp) ranged from 90 to 140. All images had been re-
constructed using an edge-enhancing bone kernel and were
rescaled to the coarsest in-plane resolution of 0.5 mm. No
low-dose protocols were included.

Fig. 1 Schematic shows our classification approaches to our study
illustrated with an example. CT scan of a matched control (a.). Primary
CT scan of a 59-year-old female subject (b.). Secondary CT scan of the
same subject 4 months later with a newly occurred insufficiency fracture
of vertebra L4 (c.). Cropped images of vertebra L2 (d1.) and L4 (d2.) of
the matched control. Cropped image of vertebra L2 (e.) which remains

intact in the secondary scan and of vertebra L4 (f.) which is broken in the
secondary scan. Classification approach A is a paired control study com-
paring the study cohort (cases) with an external cohort presenting a nor-
mal BMD with DXA (controls). Approach B is a within-subject vertebra
comparison between unstable vertebrae and intact reference vertebrae of
the study cohort
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Image classification

One radiologist (UJM, with 2 years of experience in skel-
etal radiology) manually segmented trabecular bone of
stable and unstable vertebrae on single, mid-sagittal im-
ages of the primary scans, using freehand-drawn regions
of interest (ROIs). TA was performed using open-source
software (MaZda, version 4.6) [22] with the identical
technique as with the control subjects [18]. The TA soft-
ware calculated 305 features from 6 different statistical
image descriptors (Supplements Table 1) for each ROI.
Since ROI characteristics (e.g., location, size, shape) can
influence texture features, only reproducible features (i.e.,
features with excellent intra- and inter-reader agreement
(intraclass correlation coefficient (ICC) ≥ 0.81) that were
defined in a previous study [18] were included. Mean CT
HU values were obtained from the identical ROIs that
were used for TA feature extraction.

Human readout

Two radiologists (RG, 15 years and ASB, 3 years of ex-
perience in skeletal radiology) visually rated vertebral

trabecular bone texture with respect to number, length,
and thickness of bone trabeculae, using a 5-point Likert-
like scale (1, age-appropriate; 2, rather age-appropriate; 3,
unsure; 4, rather age-inappropriate; 5, age-inappropriate
bone texture) in approaches A and B, based on reported
correlations of structural trabecular bone appearance and
fracture risk [23–25]. In these vertebra-based analyses, the
cropped vertebral images showing only the spongiosa
were presented with identical windowing (HU width
1720, length 535) in random order as mid-sagittal refor-
mations on a standard reporting workstation in two sepa-
rate readout sessions for approaches A and B. Readers
were allowed to change the window settings and take
ROI measurements. Figure 1d–f shows examples of the
cropped images.

Statistical analysis

The statistical analysis was performed in R version 3.4.2
(R Foundation for Statistical Computing). The mean and
standard deviation of the mean, median, and interquartile
range and range were used for descriptive statistics of
continuous variables, where appropriate. The chi-square
test was used to compare ordinal and nominal protocol
parameters. The Mann-Whitney U test was used to in-
vestigate the influence of protocol settings on TA fea-
tures. Tenfold cross validation with stratified sampling
was used with 1/3 of the data as test set and 2/3 as
training set. The features and folds were consistent
across all classifiers. Data standardization using data
scaling and data centering and removal of redundant fea-
tures (Pearson correlation coefficient R ≥ 0.80) were used
as pre-processing. Selected features were compared by
using the Wilcoxon test and co-correlation was assessed
with Pearson correlation. For classification, the following
ML classifiers from the caret package version 6.0-77
[26] were used: multi-layer perceptron (MLP) with 3
hidden layers, artificial neural networks (ANN) with a
single hidden layer, random forest (RF), support vector
machine (SVM) with linear kernel and naïve Bayesian
classifier. Feature importance was calculated for ANN
using the method of Gevrey et al [27], for RF using
permutation, and for SVM ROC analysis. ROC analysis
was performed for ML classifiers and the human readers
for approaches A and B. Diagnostic accuracy was
expressed as the AUC. The nonparametric test by
DeLong et al was used to compare AUCs [28]. P < 0.05
was considered indicative for significant differences, with
Bonferroni correction for multiple comparisons where
appropriate. All tests were two-tailed. Inter-reader agree-
ment was assessed using the concordance correlation coeffi-
cient (CCC) [29].

Fig. 2 Flowchart of the patient selection process
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Results

Study population

Sixty stable and 60 unstable vertebrae of 58 patients were
included. Twenty-two vertebrae of the thoracic spine, 24 of
the TLJ, and 14 of the lumbar spine region were affected.
Reasons for referral for the primary CT scan were oncologic
diseases (n = 23), status after vascular repair (n = 22), acute
gastrointestinal problems (n = 7), non-oncologic diseases of
the lung (n = 5), and suspected fracture (n = 3). The mean time
difference between the primary and secondary scanwas 237 ±
117.5 days, between latter and third 548 ± 386 days.

CT data and post processing

We found no significant difference in contrast agent adminis-
tration among case and control cohort (p = 0.432). However,
there was a significant difference in tube voltage among case
and control cohort with higher tube voltage in the case cohort
(p = 0.019). Figure 3 depicts the used kVp in the study and
control cohort. Furthermore, we found no significant influ-
ence of the tube voltage on the selected features within the
study cohort (U ranged from 1968 to 3419, p ranged from
0.184 to 1) or the control cohort (U ranged from 5269 to
6667, p ranged from 0.120 to 1).

Image classification

After removal of 88/305 (28.9%) features with poor reproduc-
ibility and 188/217 (86.6%) redundant features, 29 features

were considered for classification in both approaches, A and
B. In approach A, 16/29 (55.2%) texture features showed a
significant difference between cases and controls after
Bonferroni correction. There were no significant differences
between selected texture features in approach B after correc-
tion. Table 1 depicts means and differences of all selected
features.

In approach A, ROC analysis using mean HU values
for classification yielded AUC of 0.83 (95% confidence
interval [CI], 0.77–0.88). All ML classifier yielded higher
accuracy (AUC ranging from 0.88 to 0.96, Table 2), and
the highest test accuracy was achieved using SVM with
AUC of 0.97 (CI, 0.96–0.98). There were no significant
differences between AUC of SVM and RF (p = 0.07).
AUC of SVM was significantly higher compared to
MLP, ANN, and naïve Bayesian classifier (p = 0.029,
p < 0.001, and p < 0.001, respectively). AUC using SVM
and texture features was significantly higher than ROC
analysis using mean HU values (p < 0.001). ROC curves
of ROC analysis and ML classification are shown in
Fig. 4. Figure 5 demonstrates estimated feature impor-
tance for the MLP, RF, and SVM classifiers. Of the com-
bined top 10 important features of all ML classifiers, 3/17
(17.6%) belong to the image histogram (IH)-, 2/17
(11.8%) to the gray-level run-length matrix (GLRLM)-,
4/17 (23.5%) to gray-level co-occurrence matrix
(GLCM)-, 3/17 (17.6%) to autoregressive model (AR)-,
and 5/17 (29.5%) to wavelet transformation-derived fea-
tures, respectively. Combined top 10 important features
showed low co-correlations as demonstrated in Fig. 6.

In approach B, ROC analysis using mean HU values for
classification yielded AUC of 0.52 (CI, 0.42–0.63). All ML
showed low accuracy (AUC ranging from 0.50 to 0.64), and
the highest test accuracy was achieved using SVM with AUC
of 0.64 (CI, 0.61–0.67). SVM classified stable and unstable
vertebra significantly better than mean HU values (p = 0.029).

Human readout

Diagnostic accuracy in approach A was low for both
readers with AUC of 0.57 (CI, 0.50–0.63) for reader 1
and 0.48 (CI, 0.41–0.55) for reader 2. However, reader
1 classified cases versus control images significantly
better than reader 2 (p = 0.03), but only slightly better
than chance. Both readers showed random within-
subject classification of stable versus unstable vertebrae
(reader 1 AUC 0.53, CI 0.44–0.62 and reader 2 AUC
0.49, CI 0.39–0.59), with no significant difference be-
tween the readers (p = 0.569). Inter-reader agreement
was low for both approaches A (CCC 0.12, CI 0.04–
0.21) and B (CCC 0.15, CI 0.05–0.25). Table 2 sum-
marizes test accuracy (AUC) of automated and human
reader image classification.

Fig. 3 Barplots show the distribution of applied kilovoltage peak (kVp)
in the case and control cohort
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Discussion

In this study, we investigated the use of TA combined
with ML in clinical CT scans for the differentiation of
patients as well as vertebrae at risk for fracture. We found
that an SVM classifier utilizing 29 texture features yielded
a high AUC of 0.97 for identifying patients at risk for
insufficiency fractures. Differentiation using mean CT
density measurements alone yielded an AUC of only
0.83 (p < 0.001). Given the same data, an experienced
radiologist reached a performance only slightly better than
chance (AUC = 0.57). However, neither TA/ML nor the
radiologists could reliably distinguish between the single
vertebral bones at risk for fracture and the neighboring
segments in the same individuals.

Table 2 Classification and human readout results

AUC approach A (CI) AUC approach B (CI)

ROC analysis
HU measurements 0.83 (0.77–0.88) 0.52 (0.42–0.63)

ML classification with texture features
RF 0.96 (0.96–0.97) 0.57 (0.55–0.59)
MLP 0.95 (0.94–0.97) 0.51 (0.46–0.57)
ANN 0.93 (0.93–0.94) 0.55 (0.53–0.57)
SVM 0.97 (0.97–0.98) 0.64 (0.61–0.67)
Naïve Bayesian 0.88 (0.86–0.90) 0.50 (0.46–0.54)

Human readout on images
Reader 1 0.57 (0.50–0.63) 0.53 (0.44–0.62)
Reader 2 0.48 (0.41–0.55) 0.49 (0.39–0.59)

CI 95% confidence interval, ML machine learning, RF random forest,
MLPmulti-layer perceptron, ANN artificial neural network, SVM support
vector machine, Naïve Bayesian naïve Bayesian classifier

Fig. 4 Upper row shows receiver operating characteristic performance
for classification in case/control (a) and stable/unstable (b) vertebrae
using Hounsfield units measurements solely. Lower row shows receiver

operating characteristic performance for classification in case/control (c)
and stable/unstable (d) vertebrae using 29 texture analysis features and 5
machine learning classifiers
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Increased computational power and the successful devel-
opment of new algorithms in the last decades have led to
promising approaches in various fields of radiology [14, 30]
and TA has been shown to be efficient in the differentiation of
osteoporotic and healthy subjects in HR-pQCT data [31].

In our study, the combination of ML and TA revealed sev-
eral important TA features when discriminating between

healthy and diseased bones. The mean signal intensity crys-
tallized is one of the most important factors in our analyses.
This is also consistent with the literature, reporting that bone
mineralization is an important factor for bone strength [1, 32].
However, as already previously suggested [15, 33, 34], the
increased performance of models including TA features, as
well as the missing correlation with the mean signal, supports

Fig. 5 Barplots show estimated texture feature importance for classification in case/control vertebrae for random forest classifier (a), artificial neural
network classifier (b), and support vector machine classifier (c)

Fig. 6 Heatmap shows the
combined top 10 important
features of all classifier for
controls (a) and cases
demonstrating low co-correlation
between features (b)
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the notion that these features are independent surrogate
markers for trabecular microarchitecture.

Particularly, complex TA features that showed a high
importance in our classification (see Fig. 5) could be linked
to known pathomorphological changes in the osteoporotic
bone: Some GLRLM features (e.g., dgr45ShrtREmp,
Table 1) that are defined over information of consecutive
pixels of the same value in a given direction are negatively
correlated with trabecular bone volume measured by
histomorphometric methods, which is increased in osteo-
porotic individuals [34, 35]. Moreover, some wavelet fea-
tures (e.g., WavEnHLs_2, Table 1) showed an important
role in our classification. Because of their filter function,
they can be considered as a breakdown of an image into a
set of spatially oriented frequency channels useful to detect
horizontal and vertical lines in images as well as crossings
and corners. Wavelet transformation-derived texture fea-
tures were previously reported to enhance the robustness
and accuracy in trabecular bone classification on radio-
graphs [17]. Moreover, they may aid detection of trabecu-
lar bone lesions in CT [36]. The GLCM feature entropy
(S05SumEntrp, Table 1) that is defined over the distribu-
tion of co-occurring pixel values at a given offset was also
of great importance in our classification. Entropy has been
suggested as impaired skeletal integrity [19]. Further TA
features, such as skewness (a measure of the asymmetry of
the image histogram) or kurtosis (a measure of the peaked-
ness of the image histogram), did not show a high impor-
tance in our classification.

In our study cohort, no reliable discrimination between
a vertebra that will fracture within the following 4–
12 months and a vertebra that will remain intact in the
same patient was possible applying TA and ML. Several
factors could have led to these non-significant results: For
example, the differences might be too small for the sam-
ple size of this study. Alternatively, external factors, such
as static or kinetic effects that have a determining influ-
ence on site of fracture [37] may not be contained in the
data. Furthermore, standard feature extraction used in this
paper could have limited discrimination of small differ-
ences. A recent study using deep features extracted from
convolution neural networks, for example, revealed im-
proved results in osteoporosis classification on X-ray im-
ages [38].

Our results from human reader analyses suggest that
healthy and osteoporotic trabecular bone shows little vi-
sual differences leading to a low accuracy regarding the
identification of osteoporotic bone as well as limited inter-
reader agreement. Similar results were reported for radio-
graphs [39]. However, in a real clinical setting, the accu-
racy of bone quality estimation is usually higher since
visual signs of osteoporosis, such as vertebral cortical

bone thinning and fractures of adjacent vertebrae in a
larger spine region, can be considered.

In this retrospective study, we consider the male predomi-
nance in the case group (26 women and 34 men) as a selection
bias since women have a higher prevalence and incidence of
osteoporotic vertebral fractures. Male predominance could
partially be explained by the inclusion criteria of 2 CT scans
within a year that lead to a high number of patients with
vascular repair (22/58).

There are several other limitations to our study. First, this
was a retrospective case-control study, using a relatively small
data set of 240 vertebrae of patients from a single academic
institution. Second, the included CT images in our studies
were acquired using various CT imaging protocols and differ-
ent CT scanners, which may introduce biases to the texture
features. Third, our analysis did not include other factors like
cortical thickness or vertebra size, which are reported to be
important in assessing bone quality. Fourth, TA features ex-
traction in our study were limited to the features available in
the MaZda software, and more recent methods for feature
extraction in bone TA were not included [40]. Lastly, pre-
built machine learningmodels in our study were not thorough-
ly and individually Bfine-tuned^with, e.g., a grid search, since
this was not necessary for our proof-of-principle study.

In conclusion, TA combined with ML allows to identifying
patients who will suffer from future vertebral insufficiency frac-
tures in standard CT scans with a high accuracy. However,
identification of single vertebra at risk remains challenging.
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