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Abstract
Objectives Differentiation of glioblastomas (GBMs) and solitary brain metastases (SBMs) is an important clinical problem. The
aim of this study was to determine whether amide proton transfer–weighted (APTW) imaging is useful for distinguishing GBMs
from SBMs.
Methods We examined 31 patients with GBM and 17 with SBM. For each tumor, enhancing areas (EAs) and surrounding non-
enhancing areas with T2-prolongation (peritumoral high signal intensity areas, PHAs) were manually segmented using fusion
images of the post-contrast T1-weighted and T2-weighted images. The mean amide proton transfer signal intensities (APTSIs)
were compared among the EAs, PHAs, and contralateral normal appearing white matter (NAWM) within each tumor type.
Furthermore, we analyzed APTSI histograms to compare the EAs and PHAs of GBMs and SBMs.
Results In GBMs, the mean APTSI in EAs (2.92 ± 0.74%) was the highest, followed by that in PHAs (1.64 ± 0.83%, p < 0.001)
and NAWM (0.43 ± 0.83%, p < 0.001). In SBMs, the mean APTSI in EAs (1.85 ± 0.99%) and PHAs (1.42 ± 0.45%) were
significantly higher than that in NAWM (0.42 ± 0.30%, p < 0.001), whereas no significant difference was found between EAs
and PHAs. The mean and 10th, 25th, 50th, 75th, and 90th percentiles for APT in EAs of GBMs were significantly higher than
those of SBMs. However, no significant difference was found between GBMs and SBMs in any histogram parameters for PHA.
Conclusions APTSI in EAs, but not PHAs, is useful for differentiation between GBMs and SBMs.
Key Points
• Amide proton transfer–weighted imaging and histogram analysis in the enhancing tumor can provide useful information for
differentiation between glioblastomas and solitary brain metastasis.

• Amide proton transfer signal intensity histogram parameters from peritumoral areas showed no significant difference between
glioblastomas and solitary brain metastasis.

• Vasogenic edema alone can substantially increase amide proton transfer signal intensity which may mimic tumor invasion.
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Abbreviations
APTSI Amide proton transfer signal intensity
APTW Amide proton transfer–weighted
EA Enhancing area
GBM Glioblastoma
ICC Intraclass correlation coefficient
NAWM Normal appearing white matter
PHA Peritumoral high signal intensity area
SBM Solitary brain metastasis

Introduction

Glioblastoma (GBM) and brain metastasis are among the most
common malignant brain tumors. Their differentiation is an
important clinical problem because the treatment strategy can
substantially differ between the two [1, 2]. In some cases, a
clinical history of a malignant tumor and/or multiplicity of
enhancing brain lesions make the diagnosis of brain metastasis
relatively straightforward. However, solitary brain metastasis
(SBM) is not uncommon [3], and an SBM may be the first
manifestation of disease in 10 to 30% of patients with system-
ic cancer [4]. On conventional MRI, substantial overlap is
present between the findings of GBMs and SBMs. They
may show similar signal intensity features both in pre- and
post-contrast images. Hence, accurate distinction between
GBMs and SBMs can be challenging, often necessitating an
invasive surgical biopsy for a definitive diagnosis.
Researchers have previously investigated potential roles of
advanced MRI techniques such as diffusion-weighted imag-
ing and perfusion imaging for discriminating GBM from
SBM [5–7]. However, these methods are not yet established.

Amide proton transfer–weighted (APTW) imaging is a
type of endogenous chemical exchange saturation transfer im-
aging technique [8, 9] that exploits the exchange between
amide protons (-NH) in endogenous mobile proteins and
bulk-water protons [8]. The APT signal intensity (APTSI)
increases with increasing concentration of mobile proteins
and peptides in tissue [9–12], although APTSI can be affected
by other local factors including temperature and pH. Recent
clinical studies have shown that APTW imaging is useful for
various aspects of the management of brain tumors including
grading of gliomas [11, 13, 14], discriminating tumor recur-
rence from radiation necrosis [15], and differentiating primary
central nervous system lymphoma from glioma [16]. These
studies have suggested that APTW imaging can provide
unique molecular information that helps characterize brain
tumors. Nevertheless, the role of APTW imaging in
distinguishing metastatic brain tumors from GBMs has not
been established. Therefore, the purpose of this study was to
determinewhether APTW imaging is useful for distinguishing
GBMs from SBMs.

Materials and methods

Study population

The institutional review board of our hospital approved this
study, and the requirement for informed consent was waived.
From August 2016 to January 2018, 51 patients with patho-
logically proven GBMs or SBMs underwent MRI including
APTW imaging as part of routine pretreatment assessments.
Three patients were excluded because they underwent biopsy
before MRI. Therefore, 48 patients including 31 with GBM
(17 males, 14 females; age range, 11–84 years; mean age,
66.5 ± 14.0 years) and 17 with SBM (9 males, 8 females;
age range, 52–88 years; mean age, 65.8 ± 9.0 years) were
finally included. No patient underwent treatment, such as sur-
gery, chemotherapy, or radiotherapy, before MRI.
Histopathological confirmation was obtained by gross total
or partial surgical resection in 43 patients and by stereotactic
biopsy in five patients. Primary sites and pathologic diagnoses
of SBMs included the lung (n = 11; seven adenocarcinomas,
two squamous cell carcinomas, one non-small-cell lung carci-
noma, one large neuroendocrine carcinoma), colon (n = 3, ad-
enocarcinoma), stomach (n = 1, adenocarcinoma), kidney
(n = 1, clear cell carcinoma), and uterus (n = 1, endometrioid
adenocarcinoma).

MRI

All patients underwent MRI with a 3 T system (Ingenia,
Philips Medical Systems) and a 15-channel head coil. On a
single axial slice corresponding to the maximum cross-
sectional area of the tumor, two-dimensional APTW imaging
was performed using a two-channel parallel transmission
scheme with a saturation pulse with a duration of 2 s (40 ×
50 msec, sinc-gauss-shaped elements) and a saturation power
level of B1,rms = 2.0 μT [17, 18] at 25 saturation frequency
offsets ranging from -6 to + 6 ppm with a step of 0.5 ppm as
well as one far-off-resonant frequency (-1560 ppm) for signal
normalization.

The other imaging parameters were as follows: fast spin-
echo readout with driven equilibrium refocusing; echo train
length = 128; sensitivity encoding factor = 1; repetition time =
3600 msec; echo time = 4.8 msec; matrix = 128 × 128 (recon-
structed to 256 × 256); slice thickness = 5 mm, field-of-view =
230 × 230 mm; scan time = 2 min 20 s for one Z-spectrum. A
ΔB0 map for off-resonance correction was acquired separately
using a two-dimensional gradient-echo with identical spatial
resolution for a point-by-point ΔB0 correction [17, 18].

For reference, conventional images, including T1-weight-
ed, T2-weighted, fluid attenuation inversion recovery, and
contrast-enhanced T1-weighted images were acquired in the
axial plane (see Supplementary Table 1).

4134 Eur Radiol (2019) 29:4133–4140



APTW imaging processing

APTSI is defined as asymmetry of the magnetization transfer
ratio at saturation frequency offsets 3.5 ppm: MTRasym

(3.5 ppm) [9].

APTSI ¼ MTRasym 3:5 ppmð Þ
¼ Ssat �3:5 ppmð Þ � Ssat þ3:5 ppmð Þ½ �=S0 ð1Þ

where Ssat (-3.5 ppm), Ssat (+ 3.5 ppm), and S0 are the signal
intensities obtained at -3.5, + 3.5, and -1560 ppm, respective-
ly. All image data were analyzed with the software program
ImageJ (v1.47v). A plug-in was created to calculate the
MTRasym following correction for B0 inhomogeneity, using
interpolation among the Z-spectral image data.

Image analysis

The post-contrast T1-weighted and T2-weighted images of
each patient were co-registered to the source image of the

APTW image (an image obtained at 3.5 ppm) with affine
transformations using the Turboreg algorithm [19]. The image
co-registration was performed to minimize possible effects
from misalignment between scans with different dimensions
due to patient’s minimal head motion. On the fusion image of
the post-contrast T1-weighted and T2-weighted images, EA,
PHA, and NAWMwere manually segmented by two indepen-
dent neuroradiologists (observer 1 and observer 2 with 3 years
of experience each) using the software program ImageJ.
Macroscopic cysts and hemorrhagic components were exclud-
ed. The segmented regions were copied onto the APTWimage
(Fig. 1).

APTSI was measured in all pixels included in the segment-
ed region. The mean size of EA, PHA, and NAWMwere 637
± 364 pixels (range 10 to 1469 pixels), 761 ± 761 pixels
(range 52 to 3240 pixels), and 171 ± 97 pixels (range 64 to
453 pixels), respectively. Histogram analyses were performed
to measure the mean APTand 10th, 25th, 50th, 75th, and 90th
percentiles for APT (APT10, 25, 50, 75, and 90) for the EAs and
PHAs of each tumor.

Fig. 1 Segmented enhancing
areas and the peritumoral areas in
a 57-year-old male with a glio-
blastoma overlaid onto co-
registered post-contrast T1-
weighted (a), T2-weighted (b),
APT source (c), and APT-
weighted (d) images. The APT-
weighted image shows a marked
increase in APT signal in the en-
hancing area (mean = 3.53%, po-
lygonal ROI 1) and a mild in-
crease in the peritumoral area
(mean = 2.04%, polygonal ROI 2)
compared to the normal appearing
white matter (mean = 0.74%, cir-
cular ROI 3)
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Statistical analyses

The patients’ gender distribution was compared between
GBMs and SBMs using the chi-square test, and their mean
age was compared using the Mann-WhitneyU test. The inter-
observer agreement regarding the measurements by the two
observers was analyzed by calculating the intra-class correla-
tion coefficient (ICC). The measurements by the two ob-
servers for each patient were averaged for further analysis.
The mean APTSIs were compared among EAs, PHAs, and
NAWM within each tumor type using analysis of variance
followed by a Tukey Kramer post hoc test. The histogram
parameters were compared between the two tumor types for
EAs and PHAs using the Mann-Whitney U test.

ROC analyses were conducted to evaluate the diagnostic
performance of the parameters for differentiating GBMs from
SBMs. Statistical analyses were performed with commercially
available software packages (SPSS, IBM 19; GraphPad Prism
6, Version 6.07; and MedCalc, Version 15.10.0). P values
< 0.05 were considered significant.

Results

Comparisons of gender and age distribution

There was no significant difference between the GBMs and
SBMs in gender or age distribution (p = 0.752 and 0.862,
respectively).

Inter-observer agreement

The ICCs of the measurements by the two observers were
showed in Table 1. Excellent agreement (ICCs ranging from
0.933 to 0.978) was observed for the mean and APT10, 25, 50,

75, and 90 of the EAs and PHAs in GBMs and SBMs.

Comparisons of APTSI in the EAs, PHAs, and NAWM
within each tumor type

Figure 2 shows the comparisons of APTSI in the three
ROIs within each tumor type. In GBMs, the mean
APTSI in the EAs (2.92 ± 0.74%) was the highest,
followed by that in PHAs (1.64 ± 0.83%) and NAWM
(0.43 ± 0.83%). A significant difference was observed in
each pairwise comparison (p < 0.001 each). In SBMs,
the mean APTSI in the EAs (1.85 ± 0.99%) and PHAs
(1.42 ± 0.45%) was significantly higher than that in
NAWM (0.42 ± 0.30%, p < 0.001), whereas no signifi-
cant difference was found between EAs and PHAs
(p = 0.269).

Comparisons of histogram parameters between GBMs
and SBMs

Table 2 shows the comparisons of the APTSI histogram
parameters between GBMs and SBMs. The mean and
APT10, 25, 50, 75, and 90 in the EAs of GBMs were significantly
higher than those of SBMs (p < 0.001, < 0.001, < 0.001,
< 0.001, 0.004, 0.047, respectively). However, no significant

Table 1 Inter-observer agreement

ICC

EA

Mean 0.976

10th percentile 0.976

25th percentile 0.970

50th percentile 0.976

75th percentile 0.971

90th percentile 0.969

PHA

Mean 0.974

10th percentile 0.933

25th percentile 0.965

50th percentile 0.975

75th percentile 0.978

90th percentile 0.977

ICC intra-class correlation coefficient, EA enhancing area, PHA
peritumoral high signal intensity area

Fig. 2 Comparisons of the mean amide proton transfer–weighted signal
intensity (APTSI) measured in the enhancing area (EA), peritumoral high
signal intensity area (PHA), and normal appearing white matter (NAWM)
for GBMs and SBMs. In GBMs, the mean APTSI in the EAs is the highest,
followed by that in PHAs and NAWM, with a significant difference in each
pairwise comparison. In SBMs, the mean APTSI in the EAs and PHAs are
significantly higher than that in NAWM, whereas no significant difference is
shown between EAs and PHAs. The mean ± SD is shown above each plot.
*p < 0.001. MTRasym= asymmetry of the magnetization transfer ratio at
saturation frequency offsets 3.5 ppm. Each symbol is one patient
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difference was found between GBMs and SBMs in any histo-
gram parameters for PHAs.

Figure 3 demonstrates the histogram profiles over all pixels
in the patients as obtained by one of the two observers. Our
normalized histogram analysis of the APTSI over all pixels in
EA ROIs (GBM: 20,974 pixels, SBM: 9271 pixels) revealed

that the overall histogram profile shifted towards a higher
APTSI in the GBM group compared with the SBM group.
On the other hand, the overall histogram profile of PHA
ROIs (21,120 pixels) in the GBM group was similar to that
of the SBM group (15,077 pixels).

Diagnostic performance in differentiating GBMs
from SBMs

Table 3 summarizes the diagnostic performance of the param-
eters as determined by ROC analyses. Moderate to high diag-
nostic performance was achieved by the mean and
APT10, 25, 50, 75, and 90 in the EAs, with the area under the
curve ranging from 0.70 to 0.85. All parameters of APT his-
togram analyses of the PHAs resulted in low diagnostic
performance.

Figures 1 and 4 show representative cases of GBM and
SBM, respectively.

Discussion

The high APTSI in the tumor core of high grade gliomas is a
consistent finding among previous studies [11, 14, 20, 21] and
has been attributed to abundant mobile proteins and peptides
in the proliferating tumor cells. Our finding of increased
APTSI in PHAs in GBM relative to NAWM is consistent with
a report by Wen et al [11] PHAs in malignant gliomas may

Table 2 Measurements of APT signal histogram parameters in GBMs
and SBMs

GBM (n = 31) SBM (n = 17) p value

EA

Mean (%) 2.92 ± 0.74 1.58 ± 0.99 < 0.001

10th percentile (%) 1.77 ± 1.17 0.45 ± 1.07 < 0.001

25th percentile (%) 2.33 ± 0.84 1.11 ± 0.86 < 0.001

50th percentile (%) 2.95 ± 0.72 1.84 ± 0.88 < 0.001

75th percentile (%) 3.54 ± 0.94 2.59 ± 1.16 0.004

90th percentile (%) 4.07 ± 1.28 3.26 ± 1.40 0.047

PHA

Mean (%) 1.64 ± 0.83 1.42 ± 0.45 0.319

10th percentile (%) 0.79 ± 0.91 0.74 ± 0.37 0.819

25th percentile (%) 1.20 ± 0.77 1.09 ± 0.38 0.576

50th percentile (%) 1.62 ± 0.85 1.43 ± 0.46 0.400

75th percentile (%) 2.07 ± 0.97 1.79 ± 0.53 0.275

90th percentile (%) 2.52 ± 1.31 2.10 ± 0.58 0.222

APT amide proton transfer, GBMs glioblastomas, SBMs solitary brain
metastases, EA enhancing area, PHA peritumoral high signal intensity
area

Fig. 3 Histogram profiles over all
pixels in enhancing areas (EAs)
and peritumoral high signal in-
tensity areas (PHAs) in the pa-
tients with glioblastoma (GBM)
(a, EAs; b, PHAs) and those with
solitary brain metastasis (SBM)
(c, EAs; d, PHAs). Note that the
overall histogram profile for EAs
shifts towards the higher APT
signal in the GBM group (a)
compared with the SBM group
(c), whereas the histogram pro-
files for PHAs in GBM (b) and
SBM (d) are similar
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include both tumor infiltration and vasogenic edema. Proteins
and peptides associated with infiltrating tumor cells may have
contributed to the APTSI in PHAs. In SBMs, the mean APTSI
in the EAs and PHAs was significantly higher than that in
NAWM. Higher APTSI in PHAs relative to NAWM is con-
sistent with a previous report by Yu et al [22]. Because PHAs

in metastatic tumors usually include vasogenic edema without
tumor infiltration, these authors speculated that the increased
APTSI in PHAs reflects intravascular proteins penetrating into
the extravascular space through a leaky blood-brain barrier
[22]. In SBMs, unlike in GBMs, the mean APTSI in EAs
was not significantly higher than that in PHAs, although the

Table 3 ROC curve analysis for
differentiation of GBMs and
SBMs

AUC Cutoff value (%) Sensitivity (%) Specificity (%) Z-statistics p value

EA

Mean 0.81 2.17 26/31 (83.9) 13/17 (76.5) 4.15 < 0.0001

10th percentile 0.85 1.65 22/31 (71.0) 16/17 (94.1) 6.19 < 0.0001

25th percentile 0.85 1.80 25/31 (80.7) 14/17 (82.4) 6.30 < 0.0001

50th percentile 0.84 2.20 26/31 (83.9) 13/17 (76.5) 5.35 < 0.0001

75th percentile 0.76 2.80 25/31 (80.7) 12/17 (70.6) 3.20 0.0014

90th percentile 0.70 3.00 27/31 (87.1) 9/17 (52.9) 2.25 0.0246

PHA

Mean 0.59 1.52 18/31 (58.1) 12/17 (70.6) 1.11 0.2685

10th percentile 0.55 0.90 15/31 (48.4) 13/17 (76.5) 0.65 0.5152

25th percentile 0.55 1.50 10/31 (32.3) 15/17 (88.2) 0.57 0.5672

50th percentile 0.57 1.90 10/31 (32.3) 15/17 (88.2) 0.90 0.3742

75th percentile 0.60 2.50 10/31 (32.3) 16/17 (94.1) 1.21 0.2267

90th percentile 0.59 2.74 11/31 (35.5) 16/17 (94.1) 1.12 0.2616

AUC area under the curve, GBMs glioblastomas, SBMs solitary brain metastases, EA enhancing area, PHA
peritumoral high signal intensity area

Fig. 4 Images of a 62-year-old
female with a metastatic brain tu-
mor from the kidney (clear cell
carcinoma). The post-contrast T1-
weighted (a), T2-weighted (b),
and APT source (c) images show
an enhancing mass in the left pa-
rietal lobe with extensive
peritumoral edema. The APT-
weighted image (d) shows a mild
increase in the APT signal in the
enhancing tumor (mean = 1.73%)
and a relatively high APT signal
in the peritumoral area (mean =
2.08%), compared to the normal
appearing white matter (mean =
0.25%)
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mean value was slightly higher in EAs. This was unexpected,
but APTSI arising from mobile proteins and peptides in the
tumor cells of SBMs may not be high enough to dominate
mobile proteins and peptides in vasogenic edema.

All APTSI histogram parameters including the mean and
APT10, 25, 50, 75, and 90 in the EAs of GBMs were significantly
higher than those of SBMs. Moreover, our results suggested that
APTSI in EAs may be a promising imaging marker for
distinguishingGBMs fromSBMs, as demonstrated byROCanal-
yses. Themechanism for the increasedAPTSI inGBMcompared
to SBM is unknown. Because both tumor types can have high
cellular density, a difference in cellularity may not be the reason.
Additional contribution from protein-rich extracellular matrix fill-
ing the extracellular space may explain the high APTSI in GBM
[23]. Future comparative studies between imaging and histopath-
ological findings are needed to answer this question.

On the other hand, no significant difference was shown in
any of the APTSI histogram parameters obtained from PHAs
between GBMs and SBMs. As discussed earlier, PHAs in
SBMs likely represent vasogenic edema, whereas those in
GBMs may include non-enhancing tumor infiltration. This
pathological difference suggests that APTSI in PHAs of
GBMs may be higher than that of SBMs, which was not
supported by our results. As suggested by the results for
SBMs in the report by Yu et al [22] and ours, vasogenic edema
alone can substantially increase APTSI. We speculate that
APTSI related to edema obscures APTSI from an infiltrating
tumor. Our results suggest that APTSI in PHAs may not be an
efficient tool for differentiating between GBMs and SBMs.
This is in contrast with cerebral blood volume in PHAs de-
rived fromMR perfusion imaging, for which the usefulness in
discriminating the two tumor types has been demonstrated [6].

To our knowledge, only one previous APTW imaging study
has compared GBMs and SBMs. Yu et al [22] reported that
APTSI in the peritumoral brain zone of GBMs, which is equiv-
alent to PHAs in our study, was significantly higher than that of
SBMs, whereas no significant difference between the two tu-
mor types in APTSI in the enhancing tumor was observed. The
discrepant results may be related to different image analysis
methods in the two studies. In their study, APTSI wasmeasured
in five small (15 pixels) round ROIs placed by two neuroradi-
ologists in consensus. In our study, a histogram analysis was
performed by two independent neuroradiologists who traced
the contours of EAs and PHAs. Histogram analysis provides
higher inter-observer reproducibility than the conventional
ROI-based method [24, 25], as supported by the high agree-
ment we obtained. Another possibility is the difference in the
APTW imaging pulse sequence, especially in the saturation
pulse. Although the two studies share the same pulse strength
(2 μT), our study used a longer duration (2 s vs. 0.8 s) to
enhance the APT contrast [26]. The method of ATP signal
normalization was also different between the two studies. It is
possible to acquire S0 either via switching off radiofrequency

(RF) or by far detuning of RF saturation, which essentially
yields an unsaturated reference image in either case. In the
study by Yu et al [22], an image that did not exert a saturation
pulse was acquired for the signal normalization. We assumed
that it may be beneficial to use a far detuned RF pulse (-
1560 ppm), because the average RF power in the MRI system
remains constant during S0 acquisitions, which may add to the
stability of the measured signal. Finally, the heterogeneity of
SBM cases in origin, degree of differentiation, and other path-
ological features may have contributed to the discrepancies. It is
possible that discrepant results may be related to smaller sample
size in our study that may have led to sampling bias.

The present study has several limitations. First, the cohort
was relatively small. The sample size was not large enough to
evaluate APTSI of SBMs according to primary sites or patho-
logical types. It should be mentioned that current results, ob-
tained in a population biased towards the SBMs from lung
carcinomas, may change when the SBMs from tumors with
different pathological types are studied. Second, we did not
evaluate the O6-methylguanine-DNA methyltransferase
(MGMT) methylation status in our GBMs. The MGMT meth-
ylation status could be a strong predictive and prognostic factor
in GBMs [27, 28]. Recently, Jiang et al reported that MGMT
unmethylated GBMs had higher and more heterogeneous APT-
weighted values [29]. Inclusion of MGMT methylation status
in future studies would allow a more meaningful comparison.
Third, single-slice APTW imaging was employed due to the
limited acquisition time in the clinical setting. Use of a three-
dimensional sequence with larger coverage may lead to better
characterization of heterogeneous tumors and the surrounding
tissues. Finally, no histological data were available for PHAs.

In conclusion, APTSI histogram parameters from EAs
were significantly higher in GBMs than in SBMs, whereas
those from PHAs showed no significant difference between
the two tumor types. Our results suggest that APTSI in EAs,
but not in PHAs is a useful imaging marker for differentiation
between GBMs and SBMs.
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