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Abstract
The recent explosion of ‘big data’ has ushered in a new era of artificial intelligence (AI) algorithms in every sphere
of technological activity, including medicine, and in particular radiology. However, the recent success of AI in
certain flagship applications has, to some extent, masked decades-long advances in computational technology devel-
opment for medical image analysis. In this article, we provide an overview of the history of AI methods for
radiological image analysis in order to provide a context for the latest developments. We review the functioning,
strengths and limitations of more classical methods as well as of the more recent deep learning techniques. We
discuss the unique characteristics of medical data and medical science that set medicine apart from other techno-
logical domains in order to highlight not only the potential of AI in radiology but also the very real and often
overlooked constraints that may limit the applicability of certain AI methods. Finally, we provide a comprehensive
perspective on the potential impact of AI on radiology and on how to evaluate it not only from a technical point of
view but also from a clinical one, so that patients can ultimately benefit from it.
Key Points
• Artificial intelligence (AI) research in medical imaging has a long history
• The functioning, strengths and limitations of more classical AI methods is reviewed, together with that of more recent deep
learning methods.

• A perspective is provided on the potential impact of AI on radiology and on its evaluation from both technical and clinical
points of view.
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Abbreviations
AI Artificial intelligence
ANN Artificial neural network
LASSO Least absolute shrinkage and selection operator
PICO Patient/problem, intervention, comparison

intervention and outcomes
TB Tuberculosis

Introduction

Taking advantage of the increasingly large amount of labelled
digital information available in every area of technological
activity, artificial intelligence (AI), and in particular methods
such as deep learning, have recently achieved impressive
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results with ‘big data’ in many different domains [1]. The
healthcare sector, rich in complex data and processes, is also
being transformed, and radiology will be one of the first spe-
cialties to be affected. Despite some opinions voiced in the
public space, AI is unlikely to replace human radiology ex-
pertise. However, in the long term, AI may augment existing
computer-based tools or even partially replace human medical
expertise for certain specialised and/or repetitive tasks, such as
computing targets in radiotherapy, detecting disease indicators
in images or measuring longitudinal disease burden [2].

At the same time, technological solutions for domains
rich in labelled data do not necessarily translate easily to
the healthcare sector. In order to recognise general object
categories in images, popular internet platforms train deep
learning algorithms on hundreds of millions of labelled
data easily accessible in large image databases [e.g. the
ImageNet project, http://image-net.org]. These data sets
usually consist of 2D images with much fewer pixels
than typical 2D or 3D medical images. Furthermore,
such images do not come with regulatory or ethical
constraints, the correct solution to whether an image
shows (for instance) a cat, a dog or a car does not
require an expert’s annotation with strong inter-user agree-
ment, and the cost of failure is low. In contrast, creating a
gold standard of medical diagnosis is often challenging
and sometimes unclear. Medical data is subject to multiple
privacy and regulatory considerations and is not easily
accessible. These accessibility constraints can make it very
difficult to curate high-quality image data sets.

Methods such as deep learning, however, are only the latest
in a long history of AI-based approaches to medical image
analysis that span several decades. This effort has produced
advanced methods for the automation of many tasks in radio-
logical image processing [e.g. 3]. These tasks include organ
localisation; organ segmentation; the detection and segmenta-
tion of lesions within the organ; registration for the longitudi-
nal follow-up of disease progress, or for combining image
data of different modalities; and finally, the analysis of image
patterns within the organ and the tumour region, with the goal
of revealing associations with clinical outcome. We provide a
review on how the computational technology required to
achieve these objectives evolved during the past decades in
order to provide a context for the latest developments. We
review the functioning and limitations of these methods and
present a perspective on the relationship between AI and the
traditional discovery process in medicine.

Symbolic interpretation of medical images

The first attempts to develop automatic interpretation of med-
ical images were based on human decisional models,
performing high-level (i.e. symbolic) image interpretation. In

the 1980s, AI approaches to medical imaging relied on so-
called expert systems that performed logical inference based
on rules derived from a human approach to image processing
[e.g. 4]. In practice, this involved image processing operations
that would be considered simple by modern standards, for
instance binarising/thresholding an image and looking for
geometric structures such as lines, circles or trapezoids. A
set of logical rules would then deduce image content based
on the presence/absence of such structures [e.g. 5].

The main strength of such methods is their ability to pro-
vide solutions that are fully human interpretable and therefore
easily acceptable by physicians. In addition, these models
have excellent generalisation since decisions are taken on
the basis of human medical knowledge. On the negative side,
the mere encoding of human decisional processes did not
prove to add value to medical practice, especially given the
limited computational resources of that era. While expert sys-
tems were successful in some other domains, such as business
analysis or manufacturing, they did not produce a significant
impact in medicine. Table 1 provides a summary for this type
of approach as well as for the more recent classes of methods
discussed next.

Probabilistic interpretation of medical images

The second generation of algorithms was also inspired by the
human decisional chain, but instead of adopting a strongly
symbolic interpretation of observations, it moved towards a
statistical/probabilistic one. This category of methods is also
based on a model derived from human expertise; however, the
model’s parameters are computed from a labelled reference
data set using probabilistic methods that determine the most
likely solutions [e.g. 6–9]. In this manner, a statistical mod-
el—sometimes called an atlas—is created to represent the in-
herent signal variability in the reference population (Fig. 1).

Image/organ segmentation—one of the pillars of medical
imaging—is a classic example to demonstrate this concept. A
structure of interest in a new image can be described by
matching its appearance to the population atlas. If the atlas is
constructed from a healthy population of images, then lesions
in the new image can be modelled as abnormal outliers rela-
tive to the expected appearance of healthy tissues (Fig. 2).
This approach is commonly used in neuroimaging for model-
ling brain anatomical structure or for lesions arising from trau-
matic injuries, cancer, multiple sclerosis or other diseases [e.g.
10–12].

Such approaches inherit numerous strengths but also im-
portant limitations. On the positive side, these methods aggre-
gate information across populations and experts, couple them
with a human-understandable statistical model and therefore
are endowed with good acceptability and good generalisation
properties. However, the choice of the statistical model and its
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ability to cope with the observed anatomical variability play a
significant role in the overall performance. Furthermore, in
order to build an appropriate model and then successfully

apply it, all images need to be transformed to the same refer-
ence space via deformable registration, which is a highly chal-
lenging problem on its own [13].

Table 1 Summary of the different types of approaches to AI in medical imaging

Generation of
algorithms

Prominent
example

Popularity era Overall principle Example application:
segmentation

Strengths and weaknesses

Symbolic Expert
systems

1980s–1990s Encode human knowledge
as a set of rules

A set of heuristic rules
describe boundary detection
and region merging operations

• Fully human interpretable,
good generalisation

• Performs worse than
human expertise

Probabilistic Atlas-based
models

1990s–present A statistical model is designed
from human knowledge, but
its parameters are inferred
from data

Abnormal regions are modelled
as outliers relative to an atlas of
normal population variability.
See Figs. 1 and 2

•Combines human-understandable
model with information across
populations

•Not always clear what is the most
appropriate model for a given
problem

Model-free/
data-driven

Deep
learning

2010s–present Minimal human knowledge
involvement outside of
supervised training stage.
New knowledge is discovered
by automated data mining

A classification of pixels is
assigned on the basis of
training on large sets of
presegmented images

• Exceeds human performance
and that of other methods in
integrating information across
large data sets

• Requires large amounts of
processing power, typically does
not generalise well, and properly
qualified large databases are not
easily available

Fig. 1 An atlas encoding the variability of the appearance of healthy livers in a reference population can be created via deformable registration of
individual liver images into a common target space. In this example, the registration was obtained with the method of [28]
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Data-driven/model-free approaches
to automated knowledge discovery

A limitation of methods that rely on explicit expert knowledge
is that transforming human-level expertise into suitable com-
putational models can be challenging, especially when human
knowledge is incomplete. Therefore, there has recently been a
surge of interest in a different kind of approach—the ‘discov-
ery science’ approach, which emphasises the mining of large
amounts of data to discover new patterns and help formulate
new hypotheses [e.g. 14]. As such, these approaches are
model-free and purely data-driven. A currently popular appli-
cation of these methods is known as ‘texture analysis’ or

‘radiomics’, where features computed over a segmented tu-
mour region are used to classify different tumour types [15].

In the context of radiology, methods in this category learn a
characteristic representation of the appearance of organs and tis-
sues from a set of training images. This approach is referred to as
supervised learning when the training images have previously
been (manually) labelled. If there is no such labelling, methods
exist to automatically detect groupings in the data with what is
known as unsupervised learning. In both cases, learning is based
on a large set of basic image descriptors (features) that are auto-
matically extracted from the image. The goal is to use these
features to discover a separation between classes in high-
dimensional feature spaces; see Fig. 3 for a simple two-

Fig. 2 When an individual image containing a lesion is compared to a healthy population atlas, the lesion will appear as an abnormal outlier region. In
this manner, lesions can be detected and mapped without the need for explicit segmentation

Fig. 3 Example of two-
dimensional decision boundaries
between two groups of data
points, with increasing
complexity from a to b to c; a is
likely to be too simple, whereas c
is likely to be overfitted
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dimensional example. Different statistical and machine learning
techniques exist to do this, for instance logistic regression, sup-
port vector machines [16], decision trees [17] and many others.

However, when the number of features computed is much
larger than the number of samples in a typical data set, the risk
of overfitting is increased. Overfitting occurs when the system
learns idiosyncratic properties of the training data, i.e. proper-
ties that are too specific to the training data and do not gener-
alise well. This will prevent the system from reliably fitting
new data or predicting future observations in a reliable man-
ner. To reduce the risk of overfitting, one option is to perform
feature selection, i.e. reducing the number of features under
consideration by keeping only the most relevant features and
discarding the rest [e.g. 18, 19]. One popular feature selection
method is the least absolute shrinkage and selection operator
(LASSO) [20], which alters standard regression methods by
selecting only a subset of the available covariates, as opposed
to using all of them. In doing so, it removes predictor variables
that may contribute to overfitting. As another example of fea-
ture selection, in experimental paradigms that involve human
interaction, for instance the manual segmentation of lesions, it
is possible to determine the reproducibility of features across
different human operators and then discard those features that
are not reproducible.

As an example of potential overfitting, on a small training
set of images of different tumour grades, given a sufficiently
large number of features, one could in principle always find a
particular model that provides perfect classification of the
training images into different tumour grades. However, such

a model is not likely to have a practical value unless it is
validated on an independent data set. In fact, it is customary
in machine learning and statistical approaches to classification
to work with three separate data sets. The first is the training
set, used to optimise model parameters. The second data set—
the validation data set—is then used to assess the quality of the
training and the potential presence of overfitting. Finally, the
third data set, called the test data set, is used to provide a final,
unbiased report of the method’s performance.

Fig. 4 a Schematic representation
of a simple biological neural
network. b Analogous artificial
neural network. Adapted from
[21]

Fig. 5 Schematic representation of an artificial neural network with
backpropagation of error signals during the training process. At a very
abstract level, backpropagation is analogous to human training where
experiences improve a doctor’s skills and knowledge
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The advantage of data-driven approaches is that they do not
require expert modelling of the specific problem at hand. Instead,
the underlying assumption is that provided a large enough train-
ing set, themeaningful information and variability in the data can
be represented as a function of a large set of basic image features.
On the negative side, these methods are often myopic (decisions
are taken at a local scale where global context is ignored), not
modular (for each task, user-driven adjustment of the feature
space might be required) and their generalisation needs to be
verified with independent validation sets. In addition, methods
such as radiomics or texture analysis suffer from a lack of
standardisation, since many of the features they work with de-
pend on specific image acquisition parameters that can vary ac-
cording to scanner hardware and software.

Deep learning/sub-symbolic artificial intelligence

Typical data-driven approaches in radiology work with features
designed to reflect properties of the data seen as important from a
human radiologist’s point of view, such as density, heterogeneity
of tumours, tumour shape, etc. However, a class of machine
learning methods have recently gained popularity because they
can automatically discover the best features for a given task,
without requiring human ‘feature engineering’. This class of
methods is known as deep learning and can oftentimes exceed
human performance for specific tasks [1, 21].

Architecture

Deep learning systems are built upon an architecture of artifi-
cial neural networks (ANNs). Each ANN consists of an array
of processing units, known as artificial ‘neurons’ or nodes.
Each such node takes as input a set of feature values, multi-
plied by a corresponding weight. The node then sums up the
weighted evidence it receives as input, and then passes it
through a nonlinear activation function, which determines

the neuron’s output (Fig. 4). Essentially, each artificial neuron
makes a decision based on weighted evidence. This design is
intended to mimic, in a simplified manner, the behaviour of a
biological neuron, which integrates multiple inputs from syn-
apses on its dendrites and sends an output signal down its
axon, as input to another neuron.

Based on this paradigm, hierarchical networks of neurons
can be used to encode very complex nonlinear functions.
Deep learning systems implement this concept withmultilayer
hierarchies of ANNs. The first layer in the hierarchy contains
nodes that are directly sensitive to the input data, such as
individual pixel values in an image. The last layer represents
output values such as classification results. The intermediate
layers compute intermediate feature representations that be-
come more abstract as the information travels towards deeper
layers. Ultimately, the deep learning network is designed to
convert raw activation signals from the input layer to target
solution values determined from the activation pattern in the
last layer.

Training and learning

Deep learning networks in use today consist of thousands of
nodes and millions of connections, resulting in millions of
network parameters. For the network to be useful, all these
parameters need to be adjusted through a training process.
Each element of the training set (e.g. each image) is given as
input to the network, and the network’s response based on its
current configuration is recorded. Following this, the net-
work’s current output prediction is quantitatively compared
with the true prediction through an error function, termed a
‘loss function’. Through a process known as back-
propagation [1, 22], each parameter of the network is adjusted
by a small increment in a direction to minimise the network’s
loss function. This process is repeated iteratively, until the
network reaches a state minimising the loss function (Fig. 5).

Fig. 6 Schematic representation of the impact of data availability on the
performance of various machine learning methods. Traditional machine
learning methods, using human-crafted features, perform best when only
a small amount of data is available. Increasingly deeper neural networks

(i.e. with a larger number of layers) perform increasingly better as the
amount of available data is increased. Adapted from Easy Solutions Inc.
[http://blog.easysol.net/building-ai-applications/]
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This training process can be very computationally intense
for networks with a large number of layers and nodes, and this
is what has kept artificial neural networks in relative obscurity
for many decades. Research on neural networks in AI dates
back to the 1950s [23]. However, the modern resurgence in
neural networks owes much to two recent developments that
make training such networks practical and tractable: (1) the
arrival of inexpensive and powerful computing hardware and
memory, and (2) the availability of large quantities of labelled
digital data that can be used for the training process. These two
factors are crucial in the modern success of deep learning
algorithms.

Limitations of deep learning

Despite its success and popularity in a wide variety of tasks,
deep learning comes with several limitations.

Inefficient use of data and processing power

To learn a particular task, a deep learning algorithm requires
several orders of magnitude more data points than other types
of learning algorithms, let alone a human.When such amounts
of data are available, then deep learning can outperform any
other method. However, more traditional methods tend to per-
form significantly better with smaller amounts of data, as il-
lustrated schematically in Fig. 6. The deep learning commu-
nity has recognised this problem and is now turning towards
developing the next generation of algorithms, which will be
much more complex mathematically, but would present a
more efficient use of data; see, for instance, [24] for a layman’s
introduction to this topic.

Limited generalisation and model fragility

A given deep neural network can typically be applied only to a
single narrowly defined task, and its performance is tied to a
particular data set and label set. In the case of radiological
applications, if deep learning is to be used to classify tumour
images, different deep networks would need to be retrained
and relabelled for every type of organ, tumour, modality and
orientation. In adversarial situations, even minor changes to
the input data, often invisible to the human eye, can result in
dramatically different classifications [e.g. 25]. This is why,
even if deep learning were to be successfully integrated with
radiology, human verification will most likely be required.

A medical approach to AI research
in radiology

The current AI trends centred around deep learning have pro-
duced a pressure to shift from hypothesis-driven to data-Ta
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driven research. The data-driven approach can be powerful
and lead to novel insights; however, it cannot replace the cog-
nitive integration of complex information combining the
semeiological analysis of images features in a precise anatom-
ical and physiopathological context. These methodological
approaches have been refined over centuries of scientific and
medical thought, and they allow for solutions that are still
inaccessible to AI.

AI brings new opportunities, but the fundamental princi-
ples of clinical reality do not change. In order to effect real
impact on patient care, AI-based research in medical imaging
must adhere to first principles in medical science. Research
hypotheses, whether AI-based or not, must be clinically rele-
vant and answerable in the clinical domain. In Table 2 we have
adapted the classical PICO approach [26] to develop focused
clinical questions adapted to AI-based research in medical
Imaging. PICO is an acronym for patient/problem, interven-
tion, comparison intervention and outcomes.

Because of a certain invincible aura that AI has in popular
perception, a common mistake is to expect AI to find
analysable information in medical images even where none
exists or for which there is no biological plausibility. Akin to
perennial concerns in medical research of data dredging and p-
hacking [e.g. 27], improperly designed AI experiments could
misinform, mislead or without critical analysis could result in
patient harm.

In the current literature, AI-based methods are usually eval-
uated by comparison with expert individual or consensus ra-
diologist performance. However, the influence of clinical his-
tory and context, differences in population incidence, and the
inherent subjectivity of interpretations can make such experi-
mental paradigms unreliable. Rather, training labels where
possible should relate to meaningful patient outcomes and
gold standards that exist beyond radiology. At the same time,
it is important to compare human and AI performance in terms
of efficacy, reproducibility, turnaround time and cost. In that
sense, AI should be compared not only to the best experts in
the field but also to general practitioners, and possibly also to
healthcare systems with limited human resources, for instance
those in developing countries. In certain high-need settings,
AI may bring additional value, in particular as a screening
tool.

Conclusion

Novel computational tools derived from AI are likely to trans-
form radiological practice. The greatest challenge at this
time—and also the most exciting opportunity—lies in deter-
mining which particular clinical tasks in radiology are the
most and least likely to benefit from AI algorithms, given
the power but also the limitations of such algorithms. At the
same time, regardless of the technology used, it is important to

keep in mind that proper clinical hypotheses remain primor-
dial, and an appropriate validation of AI-based methods
against actual clinical outcome measures of patient well-
being remains the most important measure of success.
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