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Abstract
Objectives To investigate whether radiomics on iodine overlay maps from dual-energy computed tomography (DECT) can
predict survival outcomes in patients with resectable lung cancer.
Methods Ninety-three lung cancer patients eligible for curative surgery were examined with DECTat the time of diagnosis. The
median follow-up was 60.4 months. Radiomic features of the entire primary tumour were extracted from iodine overlay maps
generated by DECT. A Cox proportional hazards regression model was used to determine independent predictors of overall
survival (OS) and disease-free survival (DFS), respectively.
Results Forty-two patients (45.2%) had disease recurrence and 39 patients (41.9%) died during the follow-up period. The mean
DFSwas 49.8months and OSwas 55.2months. Univariate analysis revealed that significant predictors of both OS and DFSwere
stage and radiomic parameters, including histogram energy, histogram entropy, grey-level co-occurrence matrix (GLCM) angular
second moment, GLCM entropy and homogeneity. The multivariate analysis identified stage and entropy as independent risk
factors predicting both OS (stage, hazard ratio (HR) = 2.020 [95% CI 1.014–4.026], p = 0.046; entropy, HR = 1.543 [95% CI
1.069–2.228], p = 0.021) and DFS (stage, HR = 2.132 [95% CI 1.060–4.287], p = 0.034; entropy, HR = 1.497 [95% CI 1.031–
2.173], p = 0.034). The C-index showed that adding entropy improved prediction of OS compared to stage only (0.720 and 0.667,
respectively; p = 0.048).
Conclusions Radiomic features extracted from iodine overlay map reflecting heterogeneity of tumour perfusion can add prog-
nostic information for patients with resectable lung cancer.
Key Points
• Radiomic feature (histogram entropy) from DECT iodine overlay maps was an independent risk factor predicting both overall
survival and disease-free survival.

• Adding histogram entropy to clinical stage improved prediction of overall survival compared to stage only (0.720 and 0.667,
respectively; p = 0.048).

• DECT can be a good option for comprehensive pre-operative evaluation in cases of resectable lung cancer.
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Abbreviations
ASM Angular second moment
CT Computed tomography
DECT Dual-energy computed tomography
GLCM Grey level co-occurrence matrix
GRAD Absolute gradient
HIST Histogram analysis
ICC Interclass correlation coefficient.
OS Overall survival
PET Positron emission tomography
RL Run-length encoding
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ROC Receiver operating characteristic
SUVmax Maximal standard uptake values

Introduction

Lung cancer is the leading cause of cancer-related death [1].
At present, surgical resection offers the best opportunity for
long-term survival and cure in patients with lung cancer [2].
However, even after curative resection, 30–55% of patients
with lung cancer develop recurrence and die of the disease
[3]. The prognosis of patients with lung cancer is predicted
largely based on pathological stage. Although pathological
staging is simple and easy to use, there are limitations to strat-
ifying patients precisely. Patients at the same stage can exhibit
wide variations in their incidence of recurrence and survival
after curative resection. For guidance of adjuvant therapies,
there is a need to find complementary parameters that can help
to predict the prognosis more accurately in patients with re-
sectable disease [4].

Radiomics has attracted attention as a promising prognostic
tool for the prediction of patient survival [5–7]. Radiomics
extracts and uses large numbers of quantitative imaging fea-
tures, with high-throughput. Recently Aerts et al showed that
radiomics has prognostic power by capturing intratumour het-
erogeneity in lung cancer, and is associated with underlying
gene-expression patterns [8]. However, as radiomic ap-
proaches are performed using routine CT scans such as non-
contrast or contrast-enhanced images, tumour perfusion and
angiogenesis, which are known to be prognostic factors
[9–11], cannot be assessed properly.

In this context, dual-energy CT (DECT) enables selective
visualisation and quantification of iodine enhancement at cer-
tain time points during data acquisition, which can provide
additional information on tumour perfusion. Because an io-
dine map portraying the distribution of iodine in the tissue
correlates strongly with blood volume and vascular density
of a lesion, DECT can be used as an imaging surrogate for
the assessment of tumour angiogenesis [12–14]. Kim et al
demonstrated that DECT is practically useful for evaluating
the net iodine enhancement of tumours and for evaluating
tumour responses to anti-angiogenic treatment, which are
reflected by perfusion decreases [13]. Furthermore, according
to Bae et al’s study, quantitative radiomic values derived from
DECT, including uniformity and 97.5th percentile attenuation,
showed potential for prediction of pathological invasiveness
and prognosis in adenocarcinoma of the lung [14].

We hypothesised that radiomics based on the iodine over-
lay map could provide additional prognostic information for
better stratification of resectable lung cancer. Thus, we per-
formed this study to investigate whether radiomics on iodine
overlay maps from DECT can predict survival outcome in
patients with resectable lung cancer.

Materials and methods

Study population

Our institutional review board approved this retrospective co-
hort study, and informed consent was waived. Retrospective
review of a database at our institution identified 131 consec-
utive patients who underwent DECT scans for staging
workups of lung cancer at the time of diagnosis, from
October 2010 to December 2012. As our study targeted pa-
tients with resectable lung cancer, 38 out of 131 patients were
excluded from the study for the following reasons: 14 patients
had ground-glass nodules, nine patients had stage IV disease
(pleural seeding, n = 6; bone and dural metastasis, n = 1; lung
metastasis, n = 1; and lung and adrenal metastasis, n =1), 11
patients underwent stereotactic body radiation therapy rather
than surgery, two patients were lost to follow-up before treat-
ment, and two patients had double primary cancers that could
have affected overall survival (Fig. 1).

A total of 93 patients were finally included in the study
(M:F = 66:27, mean age 64.7 ± 9.0 years, range 37–84). In
each patient, the primary tumour was visible on the staging
CT, with distinguishable tumour margin and histopathological
type of tumour, and pathological staging was confirmed
through surgery (Table 1).

The overall tumour stage of each patient was derived from
pathological staging (local-regional) confirmed by surgery,
CT and positron emission tomography (PET)/CT, based on
the 7th lung cancer TNM classification and staging system
of the American Joint Committee on Cancer [15]. In addition
to pre-operative CT imaging, maximal standard uptake values
(SUVmax) from PET were also collected for the patients for
whom it was available (n = 84).

The primary outcomes were disease-free survival (DFS)
and overall survival (OS). DFS was defined as the time from
the date of surgery until either the date of relapse (event),
which refers to local tumour recurrence or distant metastasis,
or death, or until the date that the patient was last known to be
free of relapse (censored). OS was calculated from the date of
surgery until either death from any cause (event) or until the
date that the patient was last known to be alive (censored). The
survival state of the patients and the date of death were ob-
tained from the Korean national demographic database. The
median follow-up was 60.4 months (range 0.7–76.5).

Imaging acquisition – dual-energy perfusion
computed tomography

The initial CT scans were obtained within 6 weeks prior to the
surgery (interval between perfusion CTand operation: median
12 days, range 0–42). All patients underwent CT examination
using a CT system (SOMATOM Definition; Siemens
Healthcare, Forchheim, Germany) in the dual-energy mode
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(80 and 140 kV). Two sets of spiral CT data were acquired
with a collimation of 14 x 1.2 mm, a pitch of 0.5 and a rotation
time of 0.33 s. The tube current for the 80 kV level was
adjusted to be four times greater than that for the 140 kV level.
A total of 125 ml of iodinated contrast agent (Ultravist, 370
mgI/ml; Schering) was injected intravenously using a dual-
head power injector at a rate of 2.5 ml/s, followed by a saline
chaser of 30 ml at the same injection rate. The scan delay was
fixed at 40 s. Images were reconstructed using a medium-soft

convolution kernel (D30), with a 1.5 mm slice thickness and a
0.7 mm increment. Three sets of weighted average images,
iodine distribution images and overlay images of the weighted
images were generated on a commercially available worksta-
tion with the pulmonary blood volume application of Syngo
Dual Energy (Siemens Healthcare), as described by Chae et al
[16, 17]. We used these iodine distribution images as the ‘io-
dine overlay map’.

Data post-processing and image reconstruction

The DECT images were retrieved from the institution’s ar-
chives and loaded by our in-house software (a medical imag-
ing solution for segmentation and radiomic analysis). Tumour
segmentation was performed on weighted-average images to
delineate tumour borders, and the resulting mask was applied
to the iodine overlay maps. Tumours were drawn three-
dimensionally using a semi-automated technique, covering
as large a portion of the whole tumour as possible by the
software, and then minimally corrected by a radiologist who
was blinded to the pathological results and clinical outcome.
The interobserver reproducibility was analysed for region-of-
interest (ROI)–based texture feature extraction by two experi-
enced radiologists (L.S.M. and J.C.; readers 1 and 2, with 6
and 2 years of experience in chest CT, respectively). Further
analyses were performed using the measurements of the first
reader.

Histogram- and gradient-based features, along with run-
length encoding (RL), absolute gradient (GRAD), moment
[18] and grey-level co-occurrence matrix (GLCM)-based fea-
tures were obtained from a quantitative CT analysis of the
automatically derived ROI. Histogram analysis (HIST) was
performed for assessment of mean attenuation, skewness
(skewness of pixel distribution), kurtosis (magnitude of pixel

Table 1 Patient characteristics

Characteristic

Age (y) 64.7 ± 9.1

Sex

Male 66 (71.0)

Female 27 (29.0)

Smoking history

Current/former smoker 64 (68.8)

Never-smoker 29 (31.2)

Histopathological type

Squamous cell carcinoma 30 (32.3)

Adenocarcinoma 55 (59.1)

Others 8 (8.6)

Stage

I 50 (53.8)

II 24 (25.8)

III 19 (20.3)

Median follow-up, months (range) 60.4 (0.7–76.5)

Disease recurrence 42 (45.2)

Deaths 39 (41.9)

Data are presented asmean ± standard deviation or n (%), unless indicated
otherwise

Fig. 1 Schematic flow chart of
patient inclusion criteria
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distribution), energy and entropy (irregularity). Texture pa-
rameters derived from the GLCM were also calculated, in-
cluding angular second moment (ASM), contrast, correlation,
entropy and homogeneity. The derivation of the GLCM of an
image was based on the statistical relationships of the intensi-
ties of nearby pixels [19].

Statistical analysis

All statistical analyses were performed using SPSS (version
21; IBM, Armonk, NY, USA) and the R statistical package,
version 3.1.2 [http://www.r-project.org]). For all comparisons,
p < 0.05 was considered statistically significant.

The associations of continuous and categorical variables
with OS and DFS were evaluated using Cox proportional
hazards regression models. In univariate analyses, each vari-
able was included in a Cox regression model alone.
Multivariate analyses were performed using the backward
elimination method, and variables with p-values < 0.05 in
the univariate analysis were used as input variables for multi-
variate analyses. The removal of variables was based on like-
lihood ratio statistics, with a probability of 0.10.

Using parameter estimates from the multivariate Cox mod-
el, we calculated predictive scores. K-adaptive partitioning, a
multi-group partitioning algorithm that divides data into K
heterogeneous subgroups based on information from a prog-
nostic factor, was then used to determine the cut-off value of
the score that could best separate the patients into groups with
poor, intermediate and good survival outcomes (as indicated
by the best p-value determined using the log-rank test) [20].
Kaplan-Meier survival curves stratified according to the risk
groups were generated. The incremental value of the radiomic
feature to the traditional staging system was assessed with the
C-index, and the area under the receiver operating character-
istic (ROC) curve was calculated. The interobserver reproduc-
ibility of feature extraction was evaluated using the interclass
correlation coefficient (ICC) [21].

Results

Patients

Among the 93 patients, 42 patients (45.2%) had disease recur-
rence and 39 patients (41.9%) died during the follow-up peri-
od. The mean DFS was 49.8 ± 3.7 months and mean OS was
55.2 ± 2.8 months. The cohort included 55 (59.1%) patients
with adenocarcinoma, 30 (32.3%) patients with squamous cell
carcinoma and eight (8.6%) patients with other histopatholog-
ical subtypes of tumour, including sarcomatoid carcinoma and
adenosquamous carcinoma. For the pathological staging, 26
(28.0%) patients were diagnosed with stage IA, 24 (25.8%)

with IB, 14 (15.1%) with IIA, 10 (10.8%) with IIB and 19
(20.4%) with IIIA.

Survival analysis: Univariate

In the univariate Cox regression analysis, the significant
predictors of survival were stage (stage 1 vs. 3) and
radiomic parameters, including histogram energy, histo-
gram entropy, GLCM ASM, GLCM entropy and homoge-
neity for both DFS and OS (Table 2). GLCM contrast (haz-
ard radio (HR) = 1.070, p = 0.048) was the only significant
predictor for DFS.

SUVmax showed borderline significance as a predictor
of survival (p = 0.057 for DFS and 0.076 for OS). Stage was
also evaluated by regrouping into two new subgroups, stage
1/2A and stage 2B/3. The regrouped stage was a significant
predictor of both DFS and OS (HR = 2.793 for DFS and
2.782 for OS).

Survival analysis: Multivariate

The multivariate Cox regression analysis identified the regrouped
overall stage and histogram entropy as independent risk factors
predictingDFS (regrouped stage, HR= 2.132, p= 0.034; entropy,
HR = 1.497, p = 0.034; Table 3) and OS (regrouped stage, HR =
2.020, p = 0.046; entropy, HR = 1.543, p = 0.021; Table 4).

For the prediction of DFS, histogram entropy alone had
slightly lower diagnostic performance compared to regrouped
stage (C-index, 0.631for entropy and 0.671 for regrouped
stage) (Table 3). For the prediction of OS, the diagnostic per-
formance of regrouped stage and entropy were similar (C-
index, 0.667 for regrouped stage and 0.677 for entropy).
ROC analysis showed that adding the radiomic feature pro-
duced a better model for prediction of overall survival com-
pared to stage only (0.720 and 0.667, respectively; p = 0.048,
Table 4). Adding radiomic feature to stage also slightly im-
proved the model performance for DFS prediction but without
statistical significance (0.703 and 0.671; p = 0.090).

Applying this prediction model, a risk score can be cal-
culated using the following formula.

Prediction of DFS:

Risk−score¼ 0:757 x stage 1 for stage 1=2A; 2 for stage 2B=3ð Þ
þ0:404 x HIST entropy

Patients were subsequently classified into a high-risk group
(G3; risk-score > 2.99, n = 13), an intermediate-risk group
(G2; 1.64 < risk-score ≤ 2.99, n = 65) and a low-risk group
(G1; risk-score ≤ 1.64, n = 15).

Prediction of OS:

Risk−score ¼ 0:703 x stage 1 for stage 1=2A; 2 for stage 2B=3ð Þ
þ0:434 x HIST entropy
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High-risk group (G3; risk-score > 2.92, n = 15), an
intermediate-risk group (G2; 1.78 < risk-score ≤ 2.92, n =
56) and a low-risk group (G1; risk-score ≤ 1.78, n = 22,
Fig. 2). Kaplan-Meier survival analyses based on the risk-
score showed significant differences in survival between the
three groups (Fig. 3).

Interobserver agreement for CT radiomic features

There were no statistically significant differences between
the measurements of the two readers for any feature. The
interobserver ICCs of all metrics calculated on the basis of
the two readers’ measurements (except run-length and
moment-based texture features) were excellent, ranging

Table 2 Univariate analysis of tumour parameters for predicting disease-free survival and overall survival

Parameter Disease-free survival Overall survival

HR 95% CI p HR 95% CI p

Age 1.018 0.981–1.056 0.355 1.028 0.991–1.067 0.142

Sex (male) 1.366 0.671–2.779 0.390 1.858 0.854–4.044 0.119

Smoking status* 0.961 0.499–1.852 0.961 1.479 0.721–3.036 0.286

Stage (1 vs. 2 vs. 3) 3.652 1.779–7.507 <0.001 2.761 1.288–5.919 0.009

2.070 0.978–4.383 0.057 1.885 0.881–4.033 0.102

Stage (1,2A vs. 2B,3) 2.793 1.510–5.168 0.001 2.782 1.479–5.234 0.002

SUVmax 1.051 0.999–1.106 0.057 1.045 0.995–1.098 0.076

HIST_mean 1.001 1.000–1.001 0.155 1.001 1.000–1.002 0.109

HIST_SD 1.024 0.992–1.056 0.145 1.017 0.987–1.047 0.274

HIST_skewness 0.991 0.959–1.025 0.611 0.926 0.710–1.207 0.569

HIST_kurtosis 0.99 0.956–1.024 0.552 0.99 0.956–1.024 0.552

HIST_energy 0.053 0.007–0.413 0.005 0.041 0.004–0.382 0.005

HIST_entropy 1.741 1.255–2.416 0.001 1.789 1.27–2.518 0.001

GLCM_ASM 0.078 0.011–0.543 0.010 0.049 0.006–0.424 0.006

GLCM_contrast 1.070 1.000–1.145 0.048 1.048 0.972–1.130 0.219

GLCM_correlation 0.647 0.342–1.224 0.181 0.375 0.135–1.042 0.060

GLCM_entropy 1.767 1.204–2.594 0.004 1.850 1.230–2.781 0.003

GRAD_mean 1.001 0.999–1.003 0.337 1.000 0.999–1.002 0.571

GRAD_SD 1.001 0.999–1.002 0.431 1.000 0.999–1.002 0.698

RL_SRE 81.656 0.127–52657.27 0.182 179.410 0.171–188227.453 0.144

RL_LRE 1.000 0.998–1.003 0.819 1.001 0.998–1.004 0.540

RL_LGRE 0.000 0.000–16.098x1054 0.118 0.000 0.000–2.541x1093 0.180

RL_HGRE 0.995 0.978–1.012 0.544 0.989 0.972–1.007 0.237

RL_RP 0.117 0.005–2.554 0.173 0.098 0.004–2.695 0.170

Moment_j1 0.981 0.959–1.004 0.100 0.983 0.960–1.007 0.156

Homogeneity 0.018 0.001–0.575 0.023 0.011 0.000–0.433 0.016

HR hazard ratio, SUVmax maximum standardised uptake value, HIST histogram, SD standard deviation, GLCM grey-level co-occurrence matrix, ASM
angular secondmoment,RL run-length, SRE short run emphasis, LRE long run emphasis, LGRE low gray-level run emphasis,HGRE high gray-level run
emphasis, RP run percentage

Table 3 Multivariate Cox proportional hazards regression analysis for prediction of disease-free survival and its performance

Parameters Disease-free survival 5-year disease-free survival

HR 95% CI p C-index

Stage (1,2A vs. 2B,3) 2.132 1.060–4.287 0.034 0.671

HIST_entropy 1.497 1.031–2.173 0.034 0.631

Stage + HIST_entropy 0.703
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from 0.929 to 0.996 (all p-values < 0.0001, Table 5). The
run-length-based texture features showed moderate reli-
ability (ICC = 0.653–0.753), and the moment-based feature
showed good reliability (ICC = 0.813).

Discussion

This is the first study using radiomic features extracted from a
DECT iodine overlay map to predict the prognosis of patients
with resectable lung cancer. Our study showed that radiomics
feature from DECT iodine overlay map was an independent
predictor of survival including both OS and DFS, with an
incremental value when incorporated with the staging system.

Table 4 Multivariate Cox proportional hazards regression analysis for prediction of overall survival and its performance

Parameters Overall survival 5-year overall survival

HR 95% CI p C-index

Stage (1,2A vs. 2B,3) 2.020 1.014–4.026 0.046 0.667

HIST_entropy 1.543 1.069–2.228 0.021 0.677

Stage + HIST_entropy 0.720

Fig. 2 A 78-year-old man with non-small-cell lung cancer who
underwent pre-operative dual-energy perfusion computed
tomography (CT). Preoperative CT showed a 4.3 cm irregular
enhancing mass in the right middle lobe in contact with the pleura
and associated mild pleural thickening (a). The same anatomical
tumour is shown on the iodine overlay map and the blue line denotes
the region of interest (ROI) for radiomic analysis (b). Histogram entropy
in this patient was 2.41. The patient underwent right middle lobectomy
and chest wall invasion was confirmed. The final pathological stage of
lung cancer was stage 2B (T3 N0 M0). Regarding the risk-score using
regrouped pathological stage and histogram entropy, the patient was
grouped into the intermediate-risk group (disease-free survival risk
score 2.48, overall survival risk-score 2.45). There was no relapse
and the overall survival was 56.9 months

Table 5 Interclass correlation coefficient for the quantitative histogram-
and gradient-based parameters

Measurements Mean ICC 95% limits of agreement

HIST_mean 0.995 0.993–0.997

HIST_SD 0.996 0.994–0.997

HIST_skewness 0.965 0.947–0.977

HIST_kurtosis 0.929 0.893–0.953

HIST_energy 0.980 0.970–0.987

HIST_entropy 0.987 0.980–0.991

GLCM_ASM 0.975 0.963–0.984

GLCM_contrast 0.992 0.988–0.995

GLCM_correlation 0.995 0.993–0.997

GLCM_entropy 0.987 0.981–0.992

GRAD_mean 0.983 0.974–0.989

GRAD_SD 0.988 0.981–0.992

RL_SRE 0.753 0.628–0.836

RL_LRE 0.653 0.477–0.770

RL_LGRE 0.683 0.522–0.790

RL_HGRE 0.719 0.576–0.814

RL_RP 0.697 0.543–0.799

Moment_j1 0.813 0.718–0.876

Homogeneity 0.985 0.977–990

ICC interclass correlation coefficient, HIST histogram, SD standard
deviation, GLCM grey-level co-occurrence matrix, ASM angular second
moment, RL run-length, SRE short run emphasis, LRE long run emphasis,
LGRE low gray-level run emphasis,HGRE high gray-level run emphasis,
RP run percentage
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The combination of stage and radiomic feature successfully
stratified the patients into high-, intermediate- and low-risk
groups, with significant differences in 5-year OS and DFS.

In our study, histogram energy, histogram entropy, GLCM
ASM, GLCM entropy and homogeneity were consistently
significant in the univariate analysis for predicting both OS
and DFS. These features reflect the heterogeneity of a tumour,
and our results are consistent with those of recent studies that
evaluated prognostic radiomic parameters and risk stratifica-
tion of lung cancer in cross-sectional imaging [22–24].
However, the implications of heterogeneity in an iodine over-
lay map can be different from those of heterogeneity in non-
contrast and contrast-enhanced images. Because the DECT
technique allows selective visualisation and quantification of
iodine-related attenuation, and thus enables quantification of
tumour blood supply more accurately at the time of CT scan
than routine enhanced CT [16, 25], heterogeneity on an iodine
map may represent heterogeneity of intratumoral perfusion
and permeability, which will be different among regions of
well-oxygenated tissue, hypoxia or necrosis. Heterogeneity
of intratumoral perfusion, especially for necrosis, which is
associated with aggressive tumour behaviour and reduced sur-
vival, has been recognised in previous studies as a prognostic
factor in patients with lung cancer [26–28]. Therefore, based
on our results, we believe that radiomic analysis of iodine
overlay maps may capture the status of blood supply within
a tumour.

Our final prediction model combined histogram entropy
and staging (C-index, 0.72 for OS and 0.70 for DFS). The fact
that histogram entropy showed significant additional value for
prediction of OS demonstrates that radiomic features of iodine
overlay maps can provide new information on lung cancer
prognosis. For the prediction of DFS, adding histogram entro-
py to stage also slightly increased the performance but did not
show statistical significance, which might result from irregular
follow-up intervals exhibited in the patients. The performance
of our prediction model incorporating radiomic features was
comparable or better than that of previous studies using
radiomics (C-index: 0.65–0.72), although there were differ-
ences in study population and endpoints for survival [8, 24].
Therefore, we believe that radiomic features derived from io-
dine overlay maps can be used for survival estimation, and
may help to determine the management of patients in terms of
patient-tailored treatment. Given that DECT has several ad-
vantages in addition to evaluation of lung cancer staging, in-
cluding better characterisation of tumour using iodine-
enhanced images and virtual non-contrast images without ad-
ditional radiation doses [29], pre-operative/post-operative
functional evaluation of surgical candidates [17] and addition-
al prognostic information [14], DECTcan be a good option for
comprehensive evaluation in cases of resectable lung cancer.
However, as we did not compare the performance of radiomic
features between routine CT images and DECT-derived iodine

overlay maps, further studies are needed to verify whether a
multiparametric radiomics approach using several CT images
(non-contrast, contrast-enhanced and iodine overlay map im-
ages) could further improve performance in survival
prediction.

The results indicated that histogram- and gradient-based
features using a three-dimensional semi-automatically drawn
ROI covering the whole tumour on iodine map were all repro-
ducible. Although one of the main challenges of radiomics is
tumour segmentation and reproducibility, the interobserver
agreement in our study showed an excellent range of ICC.
The entropy in particular was a robustly reproducible param-
eter (ICC = 0.987). In previous lung cancer research, interob-
server agreement for texture features ranged from 0.752 to
1.00. The ICC was mostly higher than this in our study; the
difference might be caused by a different method of tumour
segmentation, using a semiautomatic region-growing volu-
metric segmentation algorithm with minimal manual correc-
tion by a reader. Semiautomatic volumetric segmentation is
known to reduce interobserver variability, and significantly
improve the robustness of radiomic feature quantification,
compared to manual segmentation [30, 31].

Fig. 3 Prediction model for survival analysis using stage and radiomic
features extracted from an iodine overlay map. Kaplan-Meier curves for
disease-free survival (a) and overall survival (b). G1, G2 and G3 are risk
groups defined by the prediction model
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Interestingly, SUVmax showed marginal significance
for prediction of survival in patients with resectable lung
cancer (p = 0.076). It is well known that high values of
SUVmax are associated with a higher risk of disease recur-
rence or death in lung cancer patients [32, 33]. However,
there is high measurement variability in reported SUV
values derived from FDG-PET/CT in clinical practice be-
tween different centres, due to different time of FDG injec-
tion, start of scanning, instrument performance changes,
execution/interpretation of the examination and condition
of the patient [34, 35]. The marginal significance of
SUVmax in our study might be due to the retrospective
nature of the study, and to measurement variance of
SUVmax values, which were based on scans acquired and
evaluated in several different centres.

Our study had several limitations. First, the study was per-
formed in a single centre using a retrospective design. Also,
the study population was relatively small. Therefore, the gen-
eralizability of our results may be limited. However, the
DECT data were all acquired using the same machine, which
is subjected to a robust quantitative analysis. Our study dem-
onstrated the usefulness of radiomic analysis of iodine overlay
map and provided evidence for expanding the scope of
radiomic approaches. Second, as we used in-house software
in our study, a multicentre reproducibility study may be war-
ranted. Finally, an inherent limitation of DECT is that it can
only provide a static picture of pulmonary perfusion at a par-
ticular time point and iodine enhancement can be influenced
by several confounding factors such as age, sex, body weight
and cardiac function of the patient despite the same scanning
parameters.

In conclusion, radiomic features extracted from iodine
overlay map reflecting heterogeneity of tumour perfu-
sion can add prognostic information for patients with
resectable lung cancer. Future prospective studies are
needed to further explore the potential of this technique
to guide individualised post-operative management for
these patients.

Funding This research was supported by Basic Science Research
Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Science, ICT and Future Planning (grant num-
ber: NRF-2016R1A2B1016355).

Compliance with ethical standards

Guarantor The scientific guarantor of this publication is Dr. Joon Beom
Seo.

Conflict of interest The authors of this manuscript declare no relation-
ships with any companies whose products or services may be related to
the subject matter of the article.

Statistics and biometry One of the authors (Jung Bok Lee, PhD) has
significant statistical expertise.

Informed consent Written informed consent was waived by the
Institutional Review Board.

Ethical approval Institutional Review Board approval was obtained.

Methodology
• Retrospective
• Prognostic study
• Performed at one institution

References

1. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA
Cancer J Clin 67:7–30

2. Mitsudomi T, Suda K, Yatabe Y (2013) Surgery for NSCLC in the
era of personalized medicine. Nat Rev Clin Oncol 10:235–244

3. al-Kattan K, Sepsas E, Fountain SW, Townsend ER (1997) Disease
recurrence after resection for stage I lung cancer. Eur J Cardiothorac
Surg 12:380–384

4. Uramoto H, Nakanishi R, Nagashima A et al (2010) A randomized
phase II trial of adjuvant chemotherapy with bi-weekly carboplatin
plus paclitaxel versus carboplatin plus gemcitabine in patients with
completely resected non-small cell lung cancer. Anticancer Res 30:
4695–4699

5. Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor het-
erogeneity and branched evolution revealed by multiregion se-
quencing. N Engl J Med 366:883–892

6. Nitadori J-i, Bograd AJ, Kadota K et al (2013) Impact of
micropapillary histologic subtype in selecting limited resection vs
lobectomy for lung adenocarcinoma of 2cm or Smaller. J Natl
Cancer Inst 105:1212–1220

7. Patnaik SK, Kannisto E, Knudsen S, Yendamuri S (2010)
Evaluation of microRNA expression profiles that may predict re-
currence of localized stage I non-small cell lung cancer after surgi-
cal resection. Cancer Res 70:36–45

8. Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tu-
mour phenotype by noninvasive imaging using a quantitative
radiomics approach. Nat Commun 5:4006

9. Straume O, Chappuis PO, Salvesen HB et al (2002) Prognostic
importance of glomeruloid microvascular proliferation indicates
an aggressive angiogenic phenotype in human cancers. Cancer
Res 62:6808–6811

10. Maeda R, Ishii G, Ito M et al (2012) Number of circulating endo-
thelial progenitor cells and intratumoral microvessel density in non-
small cell lung cancer patients: differences in angiogenic status
between adenocarcinoma histologic subtypes. J Thorac Oncol 7:
503–511

11. Zhao YY, Xue C, Jiang W et al (2012) Predictive value of
intratumoral microvascular density in patients with advanced non-
small cell lung cancer receiving chemotherapy plus bevacizumab. J
Thorac Oncol 7:71–75

12. Son JY, Lee HY, Kim JH et al (2016) Quantitative CT analysis of
pulmonary ground-glass opacity nodules for distinguishing inva-
sive adenocarcinoma from non-invasive or minimally invasive ad-
enocarcinoma: the added value of using iodine mapping. Eur
Radiol 26:43–54

13. Kim YN, Lee HY, Lee KS et al (2012) Dual-Energy CT in Patients
Treated with Anti-Angiogenic Agents for Non-Small Cell Lung
Cancer: New Method of Monitoring Tumor Response? Korean J
Radiol 13:702–710

14. Bae JM, Jeong JY, Lee HYet al (2017) Pathologic stratification of
operable lung adenocarcinoma using radiomics features extracted
from dual energy CT images. Oncotarget 8:523–535

922 Eur Radiol (2019) 29:915–923



15. Sobin LH, Gospodarowicz MKCW (2009) UICC International
Union Against Cancer. TNM Classification of Malignant
Tumours. Lung and pleural tumours. Wiley-Blackwell, Oxford
England, pp 138–146

16. Chae EJ, Song J-W, Seo JB, Krauss B, Jang YM, Song K-S (2008)
Clinical Utility of Dual-Energy CT in the Evaluation of Solitary
Pulmonary Nodules: Initial Experience. Radiology 249:671–681

17. Chae EJ, Kim N, Seo JB et al (2013) Prediction of Postoperative
Lung Function in Patients Undergoing Lung Resection: Dual-
Energy Perfusion Computed Tomography Versus Perfusion
Scintigraphy. Investigative Radiology 48:622–627

18. Wu K, Garnier C, Coatrieux J-L, Shu H (2010) A preliminary study
of moment-based texture analysis for medical images. Conf Proc
IEEE Eng Med Biol Soc 2010:5581–5584

19. Soh L., C. T (1999) Texture analysis of SAR sea ice imagery using
gray level co-occurrence matrices. IEEE Trans Geosci Remote Sens
37:780–795

20. Eo S, Kang HJ, Hong S, ChoHJ (2014) K-Adaptive Partitioning for
Survival Data, with an Application to Cancer Staging

21. Portney LG, M.P. W (2000) Foundations of clinical research: ap-
plications to practice, 3rd edn. Prentice Hall, New Jersey

22. Yoon SH, Park CM, Park SJ, Yoon JH, Hahn S, Goo JM (2016)
Tumor Heterogeneity in Lung Cancer: Assessment with Dynamic
Contrast-enhanced MR Imaging. Radiology 280:940–948

23. Hayano K, Kulkarni NM, Duda DG, Heist RS, Sahani DV (2016)
Exploration of Imaging Biomarkers for Predicting Survival of
Patients With Advanced Non-Small Cell Lung Cancer Treated
With Antiangiogenic Chemotherapy. AJR Am J Roentgenol 206:
987–993

24. HuangY, Liu Z, He L et al (2016) Radiomics Signature: A Potential
Biomarker for the Prediction of Disease-Free Survival in Early-
Stage (I or II) Non—Small Cell Lung Cancer. Radiology 281:
947–957

25. Johnson TR, Krauss B, Sedlmair M et al (2007) Material differen-
tiation by dual energy CT: initial experience. Eur Radiol 17:1510–
1517

26. Swinson DE, Jones JL, Richardson D, Cox G, Edwards JG,
O'Byrne KJ (2002) Tumour necrosis is an independent prognostic
marker in non-small cell lung cancer: correlation with biological
variables. Lung Cancer 37:235–240

27. Park SY, Lee HS, JangHJ, Lee GK, ChungKY, Zo JI (2011) Tumor
necrosis as a prognostic factor for stage IA non-small cell lung
cancer. Ann Thorac Surg 91:1668–1673

28. Kilicgun A, Turna A, Sayar A, Solak O, Urer N, Gurses A (2010)
Very important histopathological factors in patients with resected
non-small cell lung cancer: necrosis and perineural invasion.
Thorac Cardiovasc Surg 58:93–97

29. Kang M-J, Park CM, Lee C-H, Goo JM, Lee HJ (2010) Dual-
Energy CT: Clinical Applications in Various Pulmonary Diseases.
Radiographics 30:685–698

30. Parmar C, Rios Velazquez E, Leijenaar R et al (2014) Robust
Radiomics feature quantification using semiautomatic volumetric
segmentation. PLoS One 9:e102107

31. Velazquez ER, Parmar C, Jermoumi M et al (2013) Volumetric CT-
based segmentation of NSCLC using 3D-Slicer. Sci Rep 3:3529

32. Liu J, Dong M, Sun X, Li W, Xing L, Yu J (2016) Prognostic Value
of 18F-FDG PET/CT in Surgical Non-Small Cell Lung Cancer: A
Meta-Analysis. PLoS One 11:e0146195

33. Satoh Y, Onishi H, Nambu A, Araki T (2014) Volume-based pa-
rameters measured by using FDG PET/CT in patients with stage I
NSCLC treated with stereotactic body radiation therapy: prognostic
value. Radiology 270:275–281

34. Kumar V, Nath K, Berman CG et al (2013) Variance of
Standardised Uptake Values for FDG-PET/CT Greater in Clinical
Practice than Under Ideal Study Settings. Clin Nucl Med 38:175–
182

35. Nahmias C, Wahl LM (2008) Reproducibility of standardised up-
take value measurements determined by 18F-FDG PET in malig-
nant tumors. J Nucl Med 49:1804–1808

Eur Radiol (2019) 29:915–923 923


	Prognostic...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Study population
	Imaging acquisition – dual-energy perfusion computed tomography
	Data post-processing and image reconstruction
	Statistical analysis

	Results
	Patients
	Survival analysis: Univariate
	Survival analysis: Multivariate
	Interobserver agreement for CT radiomic features

	Discussion
	References


