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Abstract
Objectives The preoperative prediction of the WHO grade of a meningioma is important for further treatment plans. This study
aimed to assess whether texture analysis (TA) based on apparent diffusion coefficient (ADC) maps could non-invasively classify
meningiomas accurately using tree classifiers.
Methods A pathology database was reviewed to identify meningioma patients who underwent tumour resection in our
hospital with preoperative routine MRI scanning and diffusion-weighted imaging (DWI) between January 2011 and
August 2017. A total of 152 meningioma patients with 421 preoperative ADC maps were included. Four categories of
features, namely, clinical features, morphological features, average ADC values and texture features, were extracted. Three
machine learning classifiers, namely, classic decision tree, conditional inference tree and decision forest, were built on these
features from the training dataset. Then the performance of each classifier was evaluated and compared with the diagnosis made
by two neuro-radiologists.
Results The ADC value alone was unable to distinguish three WHO grades of meningiomas. The machine learning classifiers
based on clinical, morphological features and ADC value could achieve equivalent diagnostic performance (accuracy = 62.96%)
compared to two experienced neuro-radiologists (accuracy = 61.11% and 62.04%). Upon analysis, the decision forest that was
built with 23 selected texture features and the ADC value from the training dataset achieved the best diagnostic performance in
the testing dataset (kappa = 0.64, accuracy = 79.51%).
Conclusions Decision forest with the ADC value and ADC map-based texture features is a promising multiclass classifier that
could potentially provide more precise diagnosis and aid diagnosis in the near future.
Key Points
• A precise preoperative prediction of the WHO grade of a meningioma brings benefits to further treatment plans.
• Machine learning models based on clinical, morphological features and ADC value could achieve equivalent diagnostic
performance compared to experienced neuroradiologists.

• The decision forest model built with 23 selected texture features and the ADC value achieved the best diagnostic performance
(kappa = 0.64, accuracy = 79.51%).
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Abbreviations
TA Texture analysis
ADC Apparent diffusion coefficient
DWI Diffusion-weighted imaging
ROI Region of interest

Introduction

Meningiomas are the most common primary intracranial tu-
mours in adults, accounting for 36.8% of all primary central
nervous system tumours, with an incidence of 8.14/100,000,
based on the most recent data (2010–2014) from the Central
Brain Tumor Registry of the United States (CBTRUS) [1].
Although most meningiomas are benign, approximately 10-
20% of them exhibit aggressive behaviour [2–4]. The histo-
pathological grade of these tumours defined by the World
Health Organization (WHO) is important because it is one of
the critical factors in determining clinical outcome [5]. A
higher WHO grade usually means a higher recurrence rate
and a lower survival rate [6–8]. Therefore, a presurgical eval-
uation of the WHO grade of a meningioma may enable the
recognition of a potentially invasive meningioma, facilitate
treatment decisions and improve the patient's prognosis.

Magnetic resonance imaging (MRI) has become the key
imaging technique used for visualising and managing intracra-
nial meningiomas. Many attempts have been carried out to
preoperatively assess the grades and histopathology of menin-
giomas based on various MRI sequences [9–12]. The apparent
diffusion coefficient (ADC) value generated from diffusion-
weighted imaging (DWI) has been recognised as an effective
method by several studies in distinguishing low-grade and
high-grade meningiomas, demonstrating its potential value of
grading meningiomas to some extent [11, 13–15]. However,
different grades of meningiomas do not always demonstrate
clear differences in their diffusion parameters, and the ADC
value is not able to separate WHO II and III meningiomas,
thus, potentially leading to inaccurate diagnosis [11, 13].

Currently, the emerging field of radiomics has provided a po-
tential method for non-invasively recognising tumour characteri-
sation by converting medical images into mineable data via the
extraction of a large number of quantitative imaging features [16,
17]. Texture analysis (TA) is amethod of radiomics that is used to
analyse the statistical, structural and spectral characteristics of
pixel intensities (grey value) within selected regions and then to
classify the texture by employing supervised or unsupervised
methods, in order to extract invisible feature correlations inside
[18]. Comparedwith visual assessments of texture, computational
TA techniques are more objective and more sensitive to changes
that are imperceptible to the human visual system [19].

Although TA has been used to pathologically distinguish
different subtypes of meningiomas since 2007, its utility in
medical images is still limited [18, 20–22]. To the best of

our knowledge, there is still no previous work that has
evaluated the diagnostic effectiveness of TA in preopera-
tive meningioma grading based on DWI images. Therefore,
in our study, we investigated (1) whether TA based on
ADC maps would be more efficient in the prediction of
the WHO grade of meningiomas compared with radiolo-
gists and (2) then built the best classifier for further clinical
practice.

Materials and methods

This study was a retrospective study; approval from the insti-
tutional review board (IRB) was obtained, and written in-
formed consents were waived.

Patient cohort

Data were collected from our institution, which is a university-
affiliated hospital. We searched the pathology database for
consecutive patients with pathologically confirmed meningi-
omas between January 2011 and August 2017. Preoperative
enhanced MRI scanning with diffusion-weighted images was
required. Patients who had any previous relevant treatment
history (including radiotherapy or surgery) were excluded.
Cases with motion artefacts were also excluded. Finally, a
total of 152 meningioma patients [88 (57.89%) with WHO I
meningiomas, 48 (31.58%) with WHO II meningiomas and
16 (10.53%) with WHO III meningiomas, consisting of 16
anaplastic meningiomas, 48 atypical meningiomas, 56 fibrous
meningiomas, 23 meningothelial meningiomas, 5 transitional
meningiomas, 2 angiomatous meningiomas, 1 secretory me-
ningioma and 1 psammatous meningioma] with 421 preoper-
ative ADC maps were included. The mean (±SD) age of pa-
tients was 53.97±12.13 years and female accounted to
61.84%. (Table 1)

A neuropathologist with 12-year-experience reviewed all
the pathological tumour slices and assessed them according to
the 2016 WHO classification system to avoid any potential
impact that the inclusion of brain invasion as a formal diag-
nostic criterion for grade II meningiomas might have had on
their association with the imaging features [5].

MRI protocol

All patients experienced anMRI-enhanced head scan with a 3.0
T device (Verio, Siemens, Erlangen, Germany/DISCOVERY
MR750W, GE, Milwaukee, MI, USA). For this study, the nec-
essary sequences are listed in Table 2.

All images were available in digital form. The morpholog-
ical features were collected on a GE post-processing station
(AW Volume Share™ 5; GE, Milwaukee, WI, USA) by two
radiologists with over 10 years of experience, without any
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knowledge of the histopathological diagnosis. They
reached consensus after negotiation. Details of clinical
and morphological features were described in Table 3.
Regions of interest (ROIs) for the ADC values were drawn
by another radiologist blinded to the pathological results.
Whole, solid-appearing portions of each meningioma were
selected as ROIs. Both the ADC value and the area of the
ROI in each slice were recorded, and the average ADC
value for each patient was calculated based on the weights
(area) of the value as follows:

x ¼ w1x1 þ w2x2 þ…þ wnxn
w1 þ w2 þ…þ wn

Radiologist evaluation

Two neuro-radiologists, with 10 and 11 years’ experience,
respectively, independently reviewed the images. Both of
them were blinded to pathological grades but were aware that
the tumours were meningiomas. They assessed all the conven-
tional MR images [T1-weighted imaging (T1WI), T1-
weighted imaging (T2WI), T2-weighted fluid attenuated in-
version recovery (T2-FLAIR), echo-planar diffusion-weight-
ed imaging (EPI-DWI) and enhanced-T1WI, and recorded
their diagnosis: grade I, grade II and grade III. The kappa
value and accuracy for the diagnosis of each radiologists were
recorded after compared with pathological results.

Table 2 The parameters of the MRI sequences implemented in the study

T1WI T2WI T2-FLAIR EPI-DWI Enhanced T1WI

TR (ms) 2000 4000 4000 5000 2000

TE (ms) 18 94 94 104 18

Matrix scan 358×512 358×512 358×512 192 × 192 358 × 512

Excitation 1 2 2 1 1

FOV (mm) 240 × 240 240 × 240 240 × 240 240 × 240 240 × 240

Bandwidth (Hz) 122 122 122 1,022 122

Slice thickness (mm) 3 3 3 3 3

Flip angle (°) / / / / /

Acquisition time (s) 36 43 90 90 36

Application To identify the
existence of cysts,
necrosis and
haemorrhage.

To identify the
existence of cysts,
necrosis and
haemorrhage.

To assess the severity
of peri- tumoural
oedema

To measure ADC
values and acquire
texture features

To assess the visually
observed features, e.g.
size, irregularity, etc.

TR time of repetition, TE time of echo, FOV field of view, FLAIR fluid attenuated inversion recovery, EPI-DWI echo-planar diffusion-weighted imaging

Table 1 Baseline information of
the patients enrolled WHO grade I WHO grade II WHO Grade HI p value Total

No. of patients 88 48 16 / 152

No. of ADC maps 149 196 76 / 421

Female (n,%) 66 (75.00%) 20 (41.67%) 8 (50.00%) 0.0004 94 (61.84%

Age (year) 52.77 ± 11.18 55.90 ± 12.24 54.81 ± 16.28 0.3440 53.97 ± 12.13

Maximum diameter (cm) 3.96 ± 1.50 5.46 ± 1.51 6.15 ± 1.97 <0.0001 4.65±1.75

Location (n, %):

Cerebral convexity 44(50.00%) 34 (70.83%) 12 (75.00%) 0.1205a 90 (59.21%)

Falx 18 (20.45%) 5(10.42%) 1 (6.25%) 24 (15.79%)

Skull base 26 (29.55%) 9(18.75%) 3 (18.75%) 38 (25.00%)

Peritumoural oedema (n,%)

No oedema 26 (29.55%) 4(8.33%) 1(6.25%) 0.0004a 31 (20.39%)

Mild 36 (40.91%) 17 (35.42%) 5 (31.25%) 58 (38.16%)

Moderate 14 (15.91%) 6 (12.50%) 2 (12.50%) 22 (14.47%)

Severe 12 (13.63%) 21 (43.75%) 8 (50.00%) 41 (26.97%)

Ki-67 value (%) 1.51 ± 0.69 5.96 ± 1.60 19.38 ± 7.93 <0.0001b 4.80±6.05

a Fisher’s exact test (chi-squared test)
b Friedman test (one-way ANOVA test)
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Texture feature extraction

The ADC maps were processed offline in the DICOM for-
mat with the TA software MaZda (version 4.6; Institute of
Electronics, Technical University of Lo dz; Poland ) [23,
24]. A polygonal ROI was placed on each slide within the
boundary of the tumour on the ADC maps, in reference to
the enhanced T1WI images. To minimise the influence of
brightness variations on the different machines, grey-level
normalisation and image quantisation were performed for
each ROI. Grey-level normalisation uses the limitation of
dynamics to μ ± 3SD (μ, grey level mean). Quantisation of
the resulting grey-level range was done to compress it between
1 and 2k, where k is the number of bits per pixel [23, 24].
The extracted features included five categories, namely, the
grey-level histogram, co-occurrence matrix, run-length
matrix, autoregressive model and wavelet transform.
Altogether, 156 texture features were retrieved from each
ADC map (Table 3). An example of feature extraction was
shown in Fig. 1.

Texture feature selection

Texture feature selection was necessary to avoid over-fitted
and poorly generalised classification models. The process of
feature selection was completed by MaZda and R software
(version 1.1.383). First, a temporal split was used randomly

and assigned all the data to a training dataset or a testing set
with a ratio of 0.7:0.3. All feature selections were based on the
training dataset to ensure independence from the testing
dataset. In the MaZda software, three algorithms were imple-
mented: mutual information; Fisher coefficient and classifica-
tion error probability; average correlation coefficient (POE +
ACC). Each algorithm was able to determine ten features.
Thus, a total of 30 texture features were exported to R soft-
ware. Finally, A subset of 23 texture features with the lowest
misclassification rate (27.03%) among the three grades of me-
ningiomas in the training dataset was selected. by recursive
feature elimination (RFE) model.

Classification

The process of classification was performed using R stu-
dio. Since the pathological results of the meningiomas
were classified into three groups, tree classifiers were ap-
plied to build multiclass models. Nested cross validation
was used for model tuning and training by Bcaret^ package
on the training set, leaving the validation database inde-
pendent from the model selection process. Differences in
the predictive power among the models were assessed
using bootstrapping (1,000 iterations).

Three types of tree classifiers were built to assess the
diagnostic performances of all the selected features among
the three grades of meningiomas: classical decision tree

Table 3 The description of all categories of the features used in our study

Feature / parameter Description

Clinical features Gender Gender difference among different grades of meningiomas.

Age Age difference among different grades of meningiomas.

Location Classified into 3 groups: convexity, falx and skull base.

Maximum diameter The maximum length of the tumour.

Morphological features Irregularity Irregularities in tumour shape and border.

Cystic component Fluid filled cysts inside the tumour.

Necrosis / haemorrhage Presence of necrosis or haemorrhage, usually in the central part.

Bone invasion Appearance of tumour invading the skull.

Hyperostosis Bony overgrowth adjacent to tumour.

Peri-tumoural oedema Appearance and severity of oedema around the tumour.

Multifocality Non-contiguous growth of tumour.

ADC measurement Average ADC value The calculated coefficient based on signal intensity acquired on DWI maps with b = 0 and b =
1,000 s/mm2

Radiomic features Grey-level histogram First-order statistical features computed from the intensity of pixels in the images with grey levels.

Co-occurrence matrix Second-order statistical features to explore the spatial relationship between 2 pixels with certain
distance and direction, including contrast, correlation, entropy, angular second moment, etc.

Run-length matrix A matrix to explore the number of pixels with same grey level as the first one in certain direction,
including long-run emphasis, short-run emphasis, etc.

Autoregressive model The model assumes that pixel intensity, in reference to the mean value of image intensity, may be
predicted as a weighted sum of four neighbouring pixel intensities.

Wavelet transform A kind of transformation that separates data into different frequency components, and then studies
each component with resolution matched to its scale.
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based on C4.5 algorithm, conditional inference tree based
on statistical theory and decision forest based on random
forest algorithm. The features used for comparison in clas-
sifiers were divided into five groups: (1) the average ADC
value; (2) significantly-related clinical features + morpho-
logical features + average ADC value; (3) 23 selected tex-
ture features; (4) all texture features; (5) 23 selected texture
features + ADC value. All classifiers were built by the
data in the training dataset. Then, the data in the testing
dataset were imported to these classifiers to compare
their diagnostic performance. The kappa value and accu-
racy for each classifier was recorded, and the best classifier
was selected. The process of the study was shown in Fig. 2.

Statistical analysis

All statistical analyses were performed using R software.
The significance and correlations of the non-continuous
features among the different grades of the meningiomas
were evaluated using the chi-squared test and Fisher's
exact test. The significance and correlations of the con-
tinuous features of the different groups were analysed
using one-way ANOVA and the Friedman test. The pre-
dictive power of the decision tree was evaluated by the
kappa va lue and accuracy us ing the Bvcd^ and
BrandomForest^ packages.

Results

The diagnostic performance of radiologists

The diagnostic performance of the two radiologists was fair in
distinguishing different grades of meningiomas: one with a
kappa value of 0.3501(95% CI, 0.2069-0.4933) and accuracy
of 61.11%, while another with a kappa value of 0.3957 (95%
CI, 0.2565–0.5350) and accuracy of 62.04%. Two represen-
tative confusing cases can been seen in Fig. 3.

The clinical and morphological features in different
grades of meningiomas

The clinical features included gender, age, location and the
size of meningiomas. After analysis, the gender distributions
(p = 0.0004) and the maximum diameters of the meningiomas
(p < 0.0001) showed significant differences among the three
grades of meningiomas (Table 1).

Seven morphological features of the meningiomas were
assessed, which mainly described the number, shape, com-
ponents and effects of each meningioma on the surround-
ing tissues. The results of the one-way ANOVA showed
the existence of irregular shape, cysts, necrosis/haemor-
rhage, invasion of the skull and peritumoural oedema ex-
hibited significant positive but weak correlations with
higher pathological grades of the meningiomas (all p <

Fig. 1 An example of ROI selection and feature extraction. A 72-
year-old man who had complained of hypomnesia for half a year.
The pathological diagnosis was anaplastic meningioma. Before sur-
gery, he underwent MRI scanning in our hospital including T1WI (a),
T2WI (b), T2-FLAIR (c), DWI and enhanced T1WI (d). The ROI

was selected in ADC map with reference to other sequences to avoid
cystic part (e) and the average ADC value was 1042.536 × 10-6 mm2/
s. All the region of tumour was selected when using MaZda software
(f) to extract the texture information
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0.05; the correlation coefficients were 0.45, 0.28, 0.2, 0.17
and 0.25, respectively), as seen in Fig. 4.

Average ADC values in different grades
of meningiomas

The average ADC value of the WHO I meningiomas was
891.05 ± 86.05 × 10-6 mm2/s, which was just statistically
higher than the value of the WHO II meningiomas (815.28 ±
97.02 × 10-6 mm2/s, p < 0.001) and theWHO III meningiomas
(792.06 ± 117.02 × 10-6 mm2/s, p = 0.003); however, no
significant difference was found between the WHO II and
III meningiomas, though a decreasing tendency was observed.

The diagnostic performance of three machine
learning models

The diagnostic performances of each tree classifier were
showed in Table 4 and the relationship between WHO grade
and 23 selected texture features could be seen in Fig. 5.

We found that the ADC value alone could not help distin-
guish the three grades of meningiomas; if combined with the
clinical and morphological features, the kappa value could be
elevated to 0.35, with an accuracy of 62.96%, indicating a fair
diagnostic efficiency. The texture features extracted from
ADCmaps could significantly increase the efficiency of diag-
nosis, with a kappa value over 0.50 and an accuracy over 70%.
Based on the combination of the ADC value and the 23 se-
lected texture features, the diagnostic efficiency was further
increased to a kappa value of 0.63 and an accuracy near 80%
(Table 4). The decision forest presented a robust diagnostic
performance, topping the list of all three classifiers (Figs. 4
and 5).

Discussion

The histopathological grade of a meningioma is important
since it has a close relation with clinical outcome and deter-
mines the treatment protocol to some extent. According to

Mul�-focalBone Invasion HyperostosisNecrosisIrregular Shape Edema Cysts

a b

MRI Examina�on

Clinical Features Morphological Features

Tree Classifiers Training

Tree Classifiers Tes�ng and Model Selec�on

ADC Measurement Segmenta�on

Feature Extrac�on Feature Selec�on

Fig. 2 Flowchart showing methodological overview of our experimental
set-up. a Features based on clinical and morphological features in each
patient were used to build tree classifiers in distinguishing three grades of
meningiomas. b Texture features and ADC values in each image were

acquired to build tree classifiers in distinguishing three grades of
meningiomas. Finally, the accuracy and kappa value were compared to
determine the best classifier
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Fig. 3 Two representative cases of meningiomas. a-d A 60-year-old man
was admitted with left blepharoptosis for 1 month. He underwent MRI
scanning with T1WI (a), T2-FLAIR (b), DWI and enhanced T1WI (d)
sequences. The average ADC value of the tumour was 820.23 ×10-6

mm2/s (c). Both neuro-radiologists diagnosed it as grade I meningioma.
His pathological diagnosis was grade III meningioma. e-h A 71-year-old

man had been complaining of headache for 1 month. The MRI scanning
sequence was the same as a, b, d. The average ADC value of the tumour
was 940.95 ×10-6 mm2/s (c). One neuro-radiologist diagnosed it as grade
II meningioma, while another misdiagnosed it as Grade III. His patholog-
ical diagnosis was Grade I meningioma

Fig. 4 Correlation matrix among
WHO grade, the clinical features,
morphological features and
average ADC values. The asterisk
in the upper panel indicates a
significant p value (p < 0.05),
while the value in the lower panel
indicates the Pearson correlation
coefficient between two features
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NCCN (National Comprehensive Cancer Network) guideline
version 1.2017, a WHO grade I meningioma could be treated
by surgery or observation, while aWHO grade II meningioma
was recommended to be treated with gross total surgery with/
without radiotherapy, and a WHO grade III meningioma
should be treated as a malignant tumour with a more radical
surgery combined with radiotherapy [2]. Furthermore, com-
pared with the favourable prognosis of WHO grade I menin-
giomas, grade II and III meningiomas can recur more easily,
and the 5-year overall survival rates are approximately 80%
and <60%, respectively [3, 6, 8, 25–27]. Therefore, a
presurgical evaluation of the WHO grade may recognise a
potentially invasive meningioma, facilitate treatment deci-
sions and improve the patient's prognosis.

DWI, based on the measurement of aberrancies in the ex-
pected Brownian motion of free water, has been proven to
have potential diagnostic value in grading meningiomas
[28]. According to our study, we found WHO grade I menin-
giomas did have higher ADC values compared with the other
two grades; however, the ADC value alone was not capable to
distinguish these three WHO grades of meningiomas. There
are several problems that may affect the application of ADC.
The first problem is the distortion effect of the EPI-DWI se-
quence. Meningiomas are always located in the cerebral con-
vexity and at the skull base, where the heterogenous magnetic
field caused by bone and sinuses could result in a distortion in
the image, ultimately affecting the identification of the tu-
mour. The second lies in the scattered cysts inside the tumour.
Based on our data, cysts and necrosis had close relationships
with higher grade meningiomas. Although we tried very hard
to avoid these fluid components in the ROI selection, some
scattered cysts with high ADC values were inevitably includ-
ed, which could have raised the average ADC values in the
grade II/III meningiomas. The third problem is the proportion
of the subtypes of meningiomas. Angiomatous and secretory
meningiomas always have higher ADC values, and fibrous
meningiomas usually have lower ones. Therefore, a high pro-
portion of angiomatous and secretory meningiomas could re-
sult in a higher average ADC values, which could decrease
with more fibrous meningiomas. All of these reasons above
limited the application of the ADC value.

In clinical practice, radiologists usually depend on not only
the ADC value but also the clinical and the morphological
information to estimate the malignancy of a meningioma. In
our study, we found that gender, maximum diameter, margin,
the existence of fluid components, peritumoural oedema and
bone invasion were all weakly related to the WHO grades of
meningiomas. The higher the grade was, the higher the rate of
male predominance, large sizes, irregular shape, internal fluid
components, and frequencies of peritumoural oedemas and
bone invasion would be. After building tree classifiers based
on these clinical, morphological features and the ADC value,
the highest diagnostic accuracy was 62.96%, equivalent to theTa
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diagnostic performance of the two experienced neuro-radiol-
ogists. Hence, the features which could be easily captured by
human beings, such as clinical data, morphology, ADC value,
etc., may not achieve much better diagnostic efficiency even
using machine learning algorithm.

The texture features extracted from the ADC map were
expected to identify the intrinsic characteristics that could in-
crease the preoperational diagnostic accuracy of meningio-
mas. The 23 selected texture features included 10 from the
histogram, 4 from the co-occurrence matrix, 5 from the run-
length matrix, 2 from the autoregressive model and 2 from the
wavelet transform. From our results, texture features might
reflect the microstructural changes in meningiomas. In higher
grades of meningiomas, higher values were seen in almost all
features from the histogram, indicating fluid components
without diffusion restriction in higher grade meningiomas;
the skewness was low, meaning that the number of pixels with
hypointensities was predominant in WHO grade II and III
meningiomas. Higher values of run length non-uniformity
and grey-level non-uniformity indicated heterogenous struc-
ture inside higher grade meningiomas, while lower values of
contrast and difference variance depicted the irregular changes
in the grey pixels of aggressive meningiomas [19]. The find-
ings above aligned with those of some previous works, but the

explanation of the texture features should be complemented
by further studies concerning pathology [18, 21, 22].

Although TA and machine learning are frequently in-
vestigated in the healthcare field, most studies have been
designed to build binary classifiers. Unlike other studies,
our research aimed to solve a multi-class problem which
is more practical for clinical applications. Hence, we
chose decision tree and decision forest as the algorithm.
As a method used in machine learning, decision tree is
statistically non-parametric, and its main advantage is its
simple structure, which allows for interpretation and visu-
alisation [29, 30]. In our study, both classic decision tree
and conditional inference tree were applied. The results
showed that classic decision tree was superior to condi-
tional inference tree in all feature groups. Decision forest
classifier in our study, based on random forest, is one of
the most successful ensemble learning techniques. The
principle of decision forests is to build subtrees using
the training bootstrap samples, and when testing samples
are imported, they choose the classification that has the
most votes over all the trees in the forest [29]. In our
study, the decision forest did outperform two single deci-
sion trees in terms of both kappa values and diagnostic
accuracy. The best feature group applied to the decision

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

W
H
O
.G
ra
d
e

A
D
C

W
a
v
E
n
H
H
_
s
.1

X
_
M
a
x
N
o
rm

P
e
rc
.9
0
.

V
a
ri
a
n
c
e

M
e
a
n

P
e
rc
.9
9
.

H
o
rz
l_
G
L
e
v
N
o
n
U

X
1
3
5
d
r_
R
L
N
o
n
U
n
i

H
o
rz
l_
R
L
N
o
n
U
n
i

S
.2
.0
.S
u
m
A
v
e
rg

P
e
rc
.5
0
.

S
ig
m
a

T
e
ta
3

W
a
v
E
n
L
H
_
s
.4

P
e
rc
.1
0
.

X
_
M
in
N
o
rm

S
.1
.1
.D
if
V
a
rn
c

P
e
rc
.0
1
.

S
.1
.1
.C
o
n
tr
a
s
t

X
4
5
d
g
r_
G
L
e
v
N
o
n
U

X
1
3
5
d
r_
G
L
e
v
N
o
n
U

S
k
e
w
n
e
s
s

S
.1
.0
.S
u
m
A
v
e
rg

WHO.Grade

ADC

WavEnHH_s.1

X_MaxNorm

Perc.90.

Variance

Mean

Perc.99.

Horzl_GLevNonU

X135dr_RLNonUni

Horzl_RLNonUni

S.2.0.SumAverg

Perc.50.

Sigma

Teta3

WavEnLH_s.4

Perc.10.

X_MinNorm

S.1.1.DifVarnc

Perc.01.

S.1.1.Contrast

X45dgr_GLevNonU

X135dr_GLevNonU

Skewness

S.1.0.SumAverg

100

−30

−47

50

48

42

39

50

17

11

13

49

35

−51

21

−32

20

−25

−38

7

−37

15

15

−29

50

100

1

13

18

7

23

8

−31

−28

−28

6

24

−1

−9

9

27

19

5

28

6

−29

−30

−3

4

100

−59

−52

−51

−37

−66

10

26

24

−47

−29

93

−19

37

−12

46

64

−6

65

11

11

7

−53

100

98

90

88

93

−6

−15

−11

63

81

−67

45

−35

62

−25

−37

44

−39

−8

−9

−35

64

100

85

93

87

−4

−10

−6

63

87

−58

41

−33

72

−10

−35

55

−34

−7

−8

−42

63

100

64

80

−10

−20

−17

52

53

−63

35

−34

30

−54

−40

14

−43

−10

−11

−29

52

100

77

1

−1

2

55

99

−40

36

−26

91

24

−22

76

−20

−2

−2

−38

54

100

−3

−17

−11

53

68

−74

53

−37

53

−34

−35

39

−40

−5

−7

−13

56

100

92

92

4

3

20

9

−22

9

16

−1

12

3

99

99

10

−1

100

98

1

2

37

5

−5

10

28

13

12

22

90

91

−6

−4

100

1

5

35

13

−8

14

28

18

16

27

89

89

−5

−3

100

52

−49

25

−29

35

−17

−38

17

−36

3

3

−54

98

100

−31

32

−21

93

36

−17

78

−14

−1

0

−39

49

100

−17

40

−11

56

64

−2

69

21

21

9

−55

100

−1

27

−18

35

13

28

7

4

−7

30

100

−16

19

47

−15

52

−21

−21

−5

−29

100

59

−3

92

0

6

6

−23

32

100

32

65

39

14

15

−5

−22

100

−2

95

−2

−3

12

−37

100

2

9

9

−6

15

100

1

0

−1

−35

100

99

12

−3

100

13

−3

100

−54 100

* *
*
*

*

*
*
*
*

*
*
*
*
*

*

*
*
*
*

*
*
*
*
*
*
*

*

*
*
*
*
*
*

*
*
*

*

*
*
*
*
*
*

*
*
*

*
*
*
*

*

*
*
*
*

*

*
*
*
*
*
*

*

*
*
*
*
*
*
*
*

*
*

*

*
*
*
*
*
*
*
*
*
*
*
*

*

*
*
*
*
*
*

*
*
*
*
*

*

*
*
*
*
*
*
*

*
*
*

*

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

*
*
*
*
*
*

*
*
*
*
*
*
*

*
*

*

*
*
*
*
*
*
*
*
*
*

*
*
*
*

*

*

*
*
*
*
*
*

*
*
*
*
*
*
*

*
*

*

*
*
*

*

*
*
*

*

*

*

*

*
*
*

*

*
*
*

*

*

*

*
*

*

*
*
*
*
*
*

*
*

*

*

*
*
*

*

*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

*
*

Fig. 5 Correlation matrix among
WHO grade, ADC value and
texture features. The asterisk in
the upper panel indicates a
significant p value (p < 0.05),
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forest was the combination of the 23 selected texture fea-
tures and the ADC value. Therefore, decision forest model
based on TA might exhibit potential in enhancing diag-
nostic performance concerning multiple diseases.

There were still several limitations in our study. First, the
texture features selected from each image were two-
dimensional; thus, they could not match the single set of mor-
phological features. Some studies used the central layer of the
tumour to solve this problem, but the use of only one layer
might result in important texture features being missed. This
problem might be solved by extracting three-dimensional tex-
ture features, which would require MRI images with high
resolution. Second, we enrolled 152 cases with 421 images
from one single institution; this was a small sample with a risk
of selection bias. Third, since this was a retrospective study,
we did not achieve enough prognostic information such as
KPS scores and survival situations which could make TA a
more useful technique in clinical practice.

Conclusions

The ADC values did differ between WHO grade I meningio-
mas and WHO grade II/III meningiomas, but the ADC value
alone did not help in the distinguishing different grades of
meningiomas. Machine learning models based on clinical,
morphological features and ADC value could achieve equiv-
alent diagnostic performance compared to experienced neuro-
radiologists. The decision forest with ADCmap-based texture
features is a promising model that could potentially recognise
an invasive meningioma and bring exact WHO classification
of meningioma before surgery, which can help to predict its
biological behaviour for neurosurgeons and make the optimal
treatment decision.

Acknowledgements The authors thank Wang Pei, M.Sc., at Xi`an
Jiaotong University, Xi`an, China, for scripting and algorithm support.

Funding This project was supported by the National Natural Science
Foundation of China (Grant No. 81471627, 81501435) and Shanghai
Sailing Program (Grant No. 18YF1403000).

Compliance with ethical standards

Guarantor The scientific guarantor of this publication is Geng Daoying.

Conflict of interest All authors of this manuscript declare no relation-
ships with any companies, whose products or services may be related to
the subject matter of the article.

Statistics and biometry No complex statistical methods were necessary
for this paper.

Informed consent Written informed consent was waived by IRB.

Ethical approval Institutional Review Board approval was obtained.

Methodology
• retrospective
• observational
• performed at one institution

References

1. Ostrom QT, Gittleman H, Liao P et al (2017) CBTRUS Statistical
Report: Primary brain and other central nervous system tumors
diagnosed in the United States in 2010–2014. Neuro Oncol
19(suppl_5):v1–v88

2. Nabors LB, Portnow J, Ammirati M et al (2017) NCCN Guidelines
Insights: Central Nervous System Cancers, Version 1.2017. J Natl
Compr Canc Netw 15:1331–1345

3. Champeaux C, Dunn L (2016) World Health Organization grade ii
meningioma: a 10-year retrospective study for recurrence and prog-
nostic factor assessment. World Neurosurg 89:180–186

4. Rogers L, Barani I, Chamberlain M et al (2015) Meningiomas:
knowledge base, treatment outcomes, and uncertainties. A RANO
review. J Neurosurg 122:4–23

5. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World
Health Organization Classification of Tumors of the Central
Nervous System: a summary. Acta Neuropathol 131:803–820

6. Champeaux C, Houston D, Dunn L (2017) Atypical meningioma.
A study on recurrence and disease-specific survival. Neurochirurgie
63:273–281

7. Aizer AA, Bi WL, Kandola MS et al (2015) Extent of resection and
overall survival for patients with atypical and malignant meningio-
ma. Cancer 121:4376–4381

8. Moliterno J, Cope WP, Vartanian ED et al (2015) Survival in pa-
tients treated for anaplastic meningioma. J Neurosurg 123:23–30

9. Gutman DA, Dunn WD, Grossmann P et al (2015) Somatic muta-
tions associated with MRI-derived volumetric features in glioblas-
toma. Neuroradiology 57:1227–1237

10. Svolos P, Tsolaki E, Theodorou K et al (2013) Classification
methods for the differentiation of atypical meningiomas using dif-
fusion and perfusion techniques at 3-T MRI. Clin Imaging 37:856–
864

11. Yin B, Liu L, Zhang BY, Li YX, Li Y, Geng DY (2012) Correlating
apparent diffusion coefficients with histopathologic findings onme-
ningiomas. Eur J Radiol 81:4050–4056

12. Lu Y, Xiong J, Yin B, Wen J, Liu L, Geng D (2018) The role of
three-dimensional pseudo-continuous arterial spin labelling in grad-
ing and differentiating histological subgroups of meningiomas. Clin
Radiol 73:176–184

13. Surov A, Gottschling S, Mawrin C et al (2015) Diffusion-weighted
imaging in meningioma: prediction of tumor grade and association
with histopathological parameters. Transl Oncol 8:517–523

14. Tang Y, Dundamadappa SK, Thangasamy S et al (2014)
Correlation of apparent diffusion coefficient with Ki-67 prolifera-
tion index in grading meningioma. AJR Am J Roentgenol 202:
1303–1308

15. Vermoolen MA, Kwee TC, Nievelstein RAJ (2012) Apparent dif-
fusion coefficient measurements in the differentiation between be-
nign and malignant lesions: a systematic review. Insights Imaging
3:395–409

16. Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics:
extracting more information from medical images using advanced
feature analysis. Eur J Cancer 48:441–446

17. Kumar V, Gu Y, Basu S et al (2012) Radiomics: the process and the
challenges. Magn Reson Imaging 30:1234–1248

Eur Radiol (2019) 29:1318–1328 1327



18. Zacharaki EI, Wang S, Chawla S et al (2009) Classification of brain
tumor type and grade using MRI texture and shape in a machine
learning scheme. Magn Reson Med 62:1609–1618

19. Kassner A, Thornhill RE (2010) Texture analysis: a review of neuro-
logicMR imaging applications. AJNRAm JNeuroradiol 31:809–816

20. Lessmann B, Nattkemper TW, Hans VH, Degenhard A (2007) A
method for linking computed image features to histological seman-
tics in neuropathology. J Biomed Inform 40:631–641

21. Coroller TP, Bi WL, Huynh E et al (2017) Radiographic prediction
of meningioma grade by semantic and radiomic features. PLoSOne
12:e0187908

22. Yan P, Yan L, Hu T et al (2017) The potential value of preoperative
MRI texture and shape analysis in grading meningiomas: a prelim-
inary investigation. Transl Oncol 10:570-577

23. Szczypiński PM, Strzelecki M, Materka A, Klepaczko A (2009)
MaZda—a software package for image texture analysis. Comp
Methods Programs Biomed 94:66–76

24. Strzelecki M, Szczypinski P, Materka A, Klepaczko A (2013) A soft-
ware tool for automatic classification and segmentation of 2D/3D
medical images. Nucl Instrum Methods Phys Res A 702:137–140

25. Barnholtz-Sloan KJS (2007) Meningiomas: causes and risk factors.
Neurosurg Focus 23:E2

26. Rockhill J, Mrugala M, Chamberlain MC (2007) Intracranial meningi-
omas: an overview of diagnosis and treatment. Neurosurg Focus 23:E1

27. Commins DL, Atkinson RD, Burnett ME (2007) Review of menin-
gioma histopathology. Neurosurg Focus 23:E3

28. Koh DM, Padhani AR (2006) Diffusion-weighted MRI: a new func-
tional clinical technique for tumour imaging. Br J Radiol 79:633–635

29. Azar AT, Elshazly HI, Hassanien AE, Elkorany AM (2014) A ran-
dom forest classifier for lymph diseases. Comput Methods
Programs Biomed 113:465–473

30. Naik J, Patel S (2014) Tumor detection and classification using
decision tree in brain MRI. Int J Computer Sci Network Security
14:87–91

1328 Eur Radiol (2019) 29:1318–1328


	The...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Patient cohort
	MRI protocol
	Radiologist evaluation
	Texture feature extraction
	Texture feature selection
	Classification
	Statistical analysis

	Results
	The diagnostic performance of radiologists
	The clinical and morphological features in different grades of meningiomas
	Average ADC values in different grades of meningiomas
	The diagnostic performance of three machine learning models

	Discussion
	Conclusions
	References


