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Abstract
Objectives To investigate whether liver fibrosis can be staged by deep learning techniques based on CT images.
Methods This clinical retrospective study, approved by our institutional review board, included 496 CT examinations of
286 patients who underwent dynamic contrast-enhanced CT for evaluations of the liver and for whom histopathological
information regarding liver fibrosis stage was available. The 396 portal phase images with age and sex data of patients
(F0/F1/F2/F3/F4 = 113/36/56/66/125) were used for training a deep convolutional neural network (DCNN); the data for
the other 100 (F0/F1/F2/F3/F4 = 29/9/14/16/32) were utilised for testing the trained network, with the histopathological
fibrosis stage used as reference. To improve robustness, additional images for training data were generated by rotating or
parallel shifting the images, or adding Gaussian noise. Supervised training was used to minimise the difference between
the liver fibrosis stage and the fibrosis score obtained from deep learning based on CT images (FDLCT score) output by
the model. Testing data were input into the trained DCNNs to evaluate their performance.
Results The FDLCTscores showed a significant correlation with liver fibrosis stage (Spearman's correlation coefficient = 0.48, p <
0.001). The areas under the receiver operating characteristic curves (with 95% confidence intervals) for diagnosing significant
fibrosis (≥ F2), advanced fibrosis (≥ F3) and cirrhosis (F4) by using FDLCT scores were 0.74 (0.64–0.85), 0.76 (0.66–0.85) and
0.73 (0.62–0.84), respectively.
Conclusions Liver fibrosis can be staged by using a deep learning model based on CT images, with moderate performance.
Key Points
• Liver fibrosis can be staged by a deep learning model based on magnified CT images including the liver surface, with moderate
performance.

• Scores from a trained deep learning model showed moderate correlation with histopathological liver fibrosis staging.
• Further improvement are necessary before utilisation in clinical settings.
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Abbreviations
AUC Area under the receiver operating characteristic

curve

DCNN Deep convolutional neural network
DICOM Digital Imaging and Communications in Medicine
FDLCT Fibrosis score obtained from deep learning based

on CT images
IQR Interquartile range
JPEG Joint Photographic Experts Group
MRE Magnetic resonance elastography
ROC Receiver operating characteristic
ROI Region of interest
TE Transient elastography

Introduction

Liver cirrhosis is an end stage of liver fibrosis, and is associ-
ated with hepatocellular carcinomas, oesophageal and/or
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gastric varices and hepatic failure [1, 2]. Diagnosis of liver
fibrosis and liver cirrhosis is therefore clinically important.
Liver fibrosis is staged from biopsied specimens by using
METAVIR [3] or the new Inuyama classification system [4].
However, liver biopsy is invasive and associated with compli-
cations [5], and less invasive methods for staging liver fibrosis
would be beneficial to patients.

Some non-invasive or minimally invasive modalities for
staging liver fibrosis are available. Transient elastography
(TE) is the most validated ultrasound elastography method
for staging liver fibrosis [6, 7]; this is easy to perform, but
its failure rate has been reported as 6–23% [6]. Magnetic res-
onance elastography (MRE) also allows the evaluation of liver
elasticity [8], but it requires dedicated equipment that is not
readily available.

Recently, deep learning has been gaining attention as a
strategy for realising artificial intelligence [9]. Several types
of deeply stacked artificial neural network have been used for
deep learning, with deep convolutional neural networks
(DCNNs) recognised as demonstrating high performance for
image recognition tasks [10–13]. There has also been some
initial success in applying deep learning to the assessment of
radiological images [14–21], including liver imaging [22–24],
suggesting that this approach may have the potential to stage
liver fibrosis on the basis of radiological images. Given that
CT is more readily available than magnetic resonance imag-
ing, a deep learning model that enables the staging of liver
fibrosis based on CTwould benefit a large number of patients.

The aim of this study was to investigate whether liver fi-
brosis could be staged from dynamic contrast-enhanced CT
images by using deep learning techniques.

Materials and methods

This clinical retrospective study was approved by our institu-
tional review board, which waived the requirement for
obtaining written informed consent from the patients.

Patients

CT examinations of patients who underwent dynamic
contrast-enhanced CT for evaluations of the liver at our insti-
tution between January 2014 and December 2015 were ini-
tially included in this study (4671 examinations). The follow-
ing exclusion criteria were applied: lack of liver fibrosis stag-
ing evaluated histopathologically within 250 days from
the CT (4144 examinations); surgery or transarterial
chemoembolisation of the left lobe of the liver (29 examina-
tions); massive tumours in the left lobe of the liver (1 exam-
ination) and an image that included a substantial metal artefact
(1 examination).

Because of the inevitable overfitting problem with deep
learning techniques, we divided the patients into a training
group and a testing group, ensuring that images of a patient
obtained at different examinations were not included in both
the training group and the testing group. The number of CT
examinations for the testing group was chosen to be about
20% of the total number of CT examinations. The testing
group patients were chosen randomly from those at each fi-
brosis stage among the patients who underwent a single CT
examination, ensuring that the training and testing groups
contained a similar proportion of patients at each fibrosis
stage. The remaining patients were included in the training
group.

Reference standard: histopathological liver fibrosis
staging

A single radiologist (K.Y.) reviewed the patients’ clinical his-
topathological reports. Liver fibrosis stages were based on the
new Inuyama classification (F0 = no fibrosis, F1 = fibrous
portal expansion, F2 = bridging fibrosis, F3 = bridging fibro-
sis with architectural distortion and F4 = cirrhosis) [4]. When
several stages were noted, the most advanced stage was re-
corded for this study; for example, if there were mixed find-
ings of F3 and F2, the stage was recorded as F3.

For the training group, the median (interquartile range)
time intervals between biopsy and CT examination and be-
tween surgery and CT examination were 101 days (31–154
days) and 58 days (21–144 days), respectively. For the testing
group, these intervals were 132 days (46–175 days) and 60
days (23–153 days).

CT scanning

CTscanners from two vendors were used to obtain the images
used in this study: from Canon Medical Systems (Aquilion
One and Aquilion Prime) and from GE Healthcare
(Discovery CT 750HD). The following scanning and image
reconstruction parameters were used: tube potential, 120 kVp
for both Canon and GE; tube current, SD of 13.0 for Canon
and noise index of 11.36 for GE, with automatic tube current
modulation used for both; helical pitch, 0.8125:1 for Canon
and 0.984:1 for GE; gantry rotation speed, 0.5 s for both
Canon and GE; detector configuration, 0.5 mm × 80 for
Canon and 0.625 mm × 64 for GE; reconstruction algorithm,
filtered back projection for both Canon and GE; kernel, FC03
for Canon and standard for GE; and slice thickness/interval,
0.3/0.3 mm for Canon and 0.25/0.25 mm for GE. The con-
centration of iodine contrast enhancement material was deter-
mined on the basis on the patient’s body weight: 350 mgI/ml
for patients weighing less than 60 kg and 370 mgI/ml for
patients weighing more than 60 kg. The volume was deter-
mined by multiplying the body weight (in kilograms) by 2,
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with an upper limit of 100 ml. The iodine contrast enhance-
ment materials were injected within 30 s. A bolus-tracking
technique was used to determine the timing of scan. A region
of interest (ROI) was placed at the descending aorta at the
level of the diaphragm, and portal phase images were scanned
55 s after the CT attenuation within the ROI reached 200
Hounsfield units.

Formatting the input images

A single radiologist (K.Y.) performed the input image for-
matting. Axial portal phase CT images in the Digital
Imaging and Communications in Medicine (DICOM) for-
mat, acquired with the table position including the umbil-
ical portion of the portal vein, were displayed with a
commerc i a l v i ewe r (Cen t r i c i t y RA 1000 , GE
Healthcare). The images were magnified, referencing the
scale bar displayed at the bottom of the window, so that
the width of the image became about 10 cm. They were
then shifted so that the ventral aspect of the liver was
displayed horizontally across the centre of the window
(Fig. 1). Then, using the viewer’s capture function, the
image was captured in 8-bit Joint Photographic Experts
Group (JPEG) format with 594 × 644 pixels. The JPEG
images (the ‘original images’) were further processed with
the Python 3.5 programming language (https://www.
python.org) and the Python imaging library of Pillow 3.
3.1 (https://pypi.python.org/pypi/Pillow/3.3.1). Regions
with 350 × 350 pixels were cropped from the original
images with the crop function and resized to 96 × 96
pixels with the resize function. These resized images
were used as the input images for the DCNNs.

Adjustment of the input images for training

For the training data, the radiologist (K.Y.) adjusted the
images in various ways so that the model would robustly
handle differences in the location of the liver within an
image, the angle of rotation of the liver (especially for
small angles) and the amount of image noise. Axial im-
ages were captured in three slightly different table posi-
tions (all including the umbilical portion of the portal
vein) for the training group. These original images were
processed with Python 3.5 and Pillow 3.3.1. Fifteen
cropped images (with regions of 350 × 350 pixels) were
generated from each original image, changing the location
of the cropping region. Further new images were created
by rotating these 15 new images through 5, 90, 180, 270
and 355°, and by adding Gaussian noise (with mean of 0
and sigma of 15) to the image. Thus, 105 (= 15 × (1 + 5 +
1)) images were generated from each original image.

Implementation of the deep convolutional neural
network

Deep learning was implemented on a computer with 64 GB of
random access memory, a Core i7-6700K 4.00-GHz central
processing unit (Intel) and a GeForce GTX 1080 graphics

Fig. 1 Image preparation. a The original axial image at the table position
of the umbilical portion of the portal vein. b The images after
magnification and shifting so that the ventral aspect of the liver is
displayed horizontally across the middle of the screen
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processing unit (NVIDIA), using the Python 3.5 programming
language and the Chainer 1.24.0 framework for neural net-
works (http://chainer.org/). The structure of the DCNN is
shown schematically in Fig. 2. In summary, the input images
were fed into the DCNN, where they were down-sampled
with the ‘max pooling’ functions, ultimately to single-pixel
images, before being processed with fully connected layers
[13]. The patient’s age and sex (0 = male; 1 = female) were
concatenated to the data at the second fully connected layers.
The DCNN returned a single value for each image as the
output. The rectified linear unit (Relu) function [25] was used
as an activation function for the DCNN. This function returns
the input value when the value is greater than 0; otherwise, it
returns 0. The DCNN used batch normalisation, which nor-
malises the values of the input data for each minibatch; this is
known to reduce the risk of the overfitting problem [26, 27].

Training and testing the deep convolutional neural
network

The DCNNwas trained from scratch by feeding in the training
images and data. The training was supervised to minimise the
difference between the actual liver fibrosis stages and the fi-
brosis scores obtained from deep learning based on CT images
(FDLCT scores) output by the DCNN. This was achieved by
using the error function (in this study, the mean squared error

function) to calculate the error between the FDLCT scores and
liver fibrosis stage data; this error was then backpropagated to
the DCNN and the parameters within the DCNN were up-
dated by using the optimiser of AdaGrad [28]. Minibatch
learning was performed using the data for batches of 15 pa-
tients. To obtain the DCNN model, five epochs were per-
formed (i.e. each set of patient data was utilised five times).
For each epoch, the sets of patient data were shuffled before
they were assigned to the minibatches. Because there was
randomness in the initial weight and patient selection for the
minibatches, the training was performed 15 times (i.e.
resulting in 15 DCNN models).

After the trainingwas completed, the testing data were used
as input into the trained DCNN models, and the resulting
FDLCT scores were used to evaluate each model’s
performance.

Statistical analysis

Statistical analyses were performed with EZR version 1.33
(http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/
statmedEN.html) [29], which is a graphical user interface of R
version 3.3.1 (https://www.r-project.org/). All the statistical
analyses were performed on the basis of the testing data.

The relationship between liver fibrosis stages and FDLCT
scores was analysed with Spearman’s correlation analysis for
each model. And for each model, receiver operating charac-
teristic (ROC) analyses were used to assess the models’ effi-
cacy in using FDLCT scores for diagnosing significant fibrosis
(≥ F2), advanced fibrosis (≥ F3) and cirrhosis (F4), by calcu-
lating the areas under the ROC curve (AUCs). The results are
expressed as the median values for the 15 models with ranges.
For the model which showed median Spearman’s correlation
coefficient among 15 models, p value for Spearman’s correla-
tion coefficient and 95% confidence interval (CI) for AUC
were calculated by using test data (100 examinations).

Results

In this study, 496 CTexaminations (286 patients) were includ-
ed. Of these, 396 CT examinations (186 patients) (mean age,
66.2 ± 11.6; 281 men and 115 women) and 100 CT examina-
tions (100 patients) (mean age, 66.1 ± 11.6; 73 men and 27
women) were assigned to the training and testing groups, re-
spectively. The distribution of fibrosis stages (F0/F1/F2/F3/
F4) in the training and testing groups were 113/36/56/66/125
and 29/9/14/16/32, respectively. These were based on biopsy
specimens (n = 112 and 34 for the training and testing groups,
respectively) or surgical specimens (n = 284 and 66). In the
training group, 261 and 135 examinations were performed
with the Canon and GE scanners, respectively; in the testing
group, these numbers were 67 and 33.

Fig. 2 The structure of the deep convolutional neural network (DCNN).
The input images were processed with four convolutional layers with
filters with 3 × 3 pixels. The data were then processed with three fully
connected layers. This DCNN was structured to output a single
continuous value. BN batch normalisation, C channel, Conv
convolutional layer, FC fully connected layer, Relu rectified linear unit
function, S stride, U unit
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The median (range) Spearman's correlation coefficients
between FDLCT score and liver fibrosis stage calculated in
each model was 0.48 (0.41–0.53). There were significant
correlations for all 15 models (all p < 0.001). The median
(range) AUCs for diagnosing significant fibrosis, ad-
vanced fibrosis and cirrhosis by using FDLCT scores were
0.73 (0.69–0.76), 0.76 (0.71–0.81) and 0.74 (0.69–0.77),
respectively.

Table 1 summarises the diagnostic performance of the
model with the median (r = 0.48, p < 0.001) Spearman's
correlation coefficient. Figure 3 shows the relationship
between FDLCT scores and fibrosis stages for the model
with the median correlation coefficient. For this model,
the AUCs (with 95% CIs) for diagnosing significant fi-
brosis, advanced fibrosis and cirrhosis by using FDLCT
scores calculated by using a test group data (100 exami-
nations) were 0.74 (0.64–0.85), 0.76 (0.66–0.85) and 0.73
(0.62–0.84), respectively (Fig. 4).

Discussion

In this study, we showed that liver fibrosis can be staged,
with moderate performance, by using a deep learning
model based on dynamic contrast-enhanced portal phase
CT images.

There are several less-invasive modalities available for
the diagnosis of liver fibrosis. TE and MRE are known to
perform well in liver fibrosis staging, with meta-analyses
reporting their performance (assessed as AUCs) in diag-
nosing significant fibrosis, advanced fibrosis and cirrhosis
as 0.84, 0.89 and 0.94, respectively, for TE [30] and 0.88–
0.95, 0.93–0.95 and 0.92–0.93 for MRE [31, 32].
Although the performance of our model was not as high
as these values, our model can be applied retrospectively
to CT images, providing the potential to estimate a pa-
tient’s past course of liver fibrosis. Deep learning has

previously been applied to liver fibrosis staging based
on gadoxetic acid-enhanced hepatobiliary phase MR im-
ages. The AUCs assessing the performance of that model
in diagnosing significant fibrosis, advanced fibrosis and
cirrhosis were reported to be 0.85, 0.84 and 0.84, respec-
tively [23]. The performance of our model, based on por-
tal phase CT images, was not as high; but, because CT is
more readily available than MRI, our model would offer
more opportunities for use in clinical settings. CT can be
acquired for patients who are not eligible for MRI, such
as those with claustrophobia or the presence of mechani-
cal devices or metal. Our model could be used for such
patients.

Several limitations of this study should be acknowl-
edged. First, because of the limitation of computer re-
sources, we used a single resized JPEG format image
per patient. Resizing and capturing of the image (as
JPEG format) require human interaction; however, we be-
lieve that they can be relatively easily performed on com-
mercial viewers. Use of multiple non-resized images as
volume data could potentially have improved the perfor-
mance of the model. The overall morphological features
of the liver (such as atrophic right lobe, hypertrophy of
the caudate and lateral left lobes, expanded gallbladder
fossa, etc.) and total splenic volume are known to be
useful information in predicting the liver fibrosis [6, 33],
and such information might be able to be included in the
model if the volume data of the liver and/or the spleen are
utilised. However, the use of such a large volume of input

Table 1 Diagnostic performance of the deep learning model

Significant fibrosis Advanced fibrosis Cirrhosis

AUC 0.74 0.76 0.73

Sensitivity 0.76 0.75 0.75

Specificity 0.68 0.65 0.57

Cut-off value 1.69 1.83 1.97

The model which showed the median Spearman's correlation coefficients
between fibrosis score obtained from deep learning based on CT images
and histopathologically evaluated liver fibrosis stage is presented.
Sensitivity, specificity and cut-off values that achieved sensitivity of
around 0.75 are presented

AUC area under the receiver operating characteristic curve

Fig. 3 Box and whisker plot for the relationship between pathological
liver fibrosis stage and the model’s output fibrosis score obtained from
deep learning based on CT images (FDLCT score). These data are for the
model that showed the median Spearman's correlation coefficient. The
thick black lines, boxes, whiskers and circles denote the median,
interquartile range, 10 and 90 percentiles and outliers, respectively
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data would have resulted in a large DCNN. Training of a
large DCNN generally requires much more input data,
much greater computation and time, and a more powerful
computer with a large amount of random access memory.
Second, we did not include information regarding hepati-
tis B or C and alcohol consumption because the retrospec-
tive nature of this study meant these were not available
for all the patients. Future prospective studies with large
numbers of patients are expected. Third, unlike TE and
MRE, our model did not use information about the elas-
ticity of the liver for estimating the liver fibrosis stage.
Instead, our model was developed to directly associate CT
images with liver fibrosis stage. Fourth, the performance
of the models was moderate. In the previous similar study,
deep learning models based on gadoxetic acid-enhanced
hepatobiliary phase MR images were developed by using
534 examinations and showed high performance for stag-
ing of liver fibrosis [23]. Considering that the current
study was performed in a similar way to that study, the
number of CT examinations utilised for building models
would not be considerably small. The difference in

imaging modality’s ability to capture the features of liver
parenchyma might be a main reason for the difference in
performance between this study and the previous study.
Because deep learning technologies are evolving, perfor-
mance improvement in models is expected by applying
new technologies or by using high-performance com-
puters (so that volume data of the liver can be utilised
as input data) in the future. Finally, the histopathological
liver fibrosis stages were evaluated from specimens ob-
tained by biopsy or surgery and so they may not have
reflected the degree of fibrosis across the whole liver or
the ventral aspect of the liver. However, it is difficult to
obtain whole liver specimens for a large number of
patients.

In conclusion, liver fibrosis can be staged, with moderate
performance, by using deep learning models based on dynam-
ic contrast-enhanced portal phase CT images. This model
allowed liver fibrosis staging with minimal human interaction;
however, further improvement in the performance of the mod-
el would be required before being integrated into clinical
strategy.

Fig. 4 Receiver operating
characteristic curves (grey
background colour denotes 95%
confidence intervals [CI]) for
predicting a significant fibrosis (≥
F2) (AUC [with 95% CI] = 0.74
[0.64–0.85]), b advanced fibrosis
(≥ F3) (AUC = 0.76 [0.66–0.85])
and c cirrhosis (F4) (AUC = 0.73
[0.62–0.84]). These results were
for the model that showed the
median Spearman's correlation
coefficient between FDLCT score
and liver fibrosis stage
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