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Abstract
Objectives To identify disease-related spatial covariance patterns of grey matter volume as an aid in the classification of
Parkinson’s disease (PD).
Methods Seventy structural covariance networks (SCNs) based on grey matter volume covariance patterns were defined using
independent component analysis with T1-weighted structural MRI scans (discovery sample, 70 PD patients and 70 healthy
controls). An image-based classifier was constructed from SCNs using a multiple logistic regression analysis with a leave-one-
out cross-validation-based feature selection scheme. A validation sample (26 PD patients and 26 healthy controls) was further
collected to evaluate the generalization ability of the constructed classifier.
Results In the discovery sample, 13 SCNs, including the cerebellum, anterior temporal poles, parahippocampal gyrus, parietal
operculum, occipital lobes, supramarginal gyri, superior parietal lobes, paracingulate gyri and precentral gyri, had higher clas-
sification performance for PD. In the validation sample, the classifier had moderate generalization ability, with a mean sensitivity
of 81%, specificity of 69% and overall accuracy of 75%. Furthermore, certain individual SCNs were also associated with disease
severity.
Conclusions Although not applicable for routine care at present, our results provide empirical evidence that disease-specific,
large-scale structural networks can provide a foundation for the further improvement of diagnostic MRI in movement disorders.
Key Points
• Disease-specific, large-scale SCNs can be identified from structural MRI.
• A new network-based framework for PD classification is proposed.
• An SCN-based classifier had moderate generalization ability in PD classification.
• The selected SCNs provide valuable functional information regarding PD patients.
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Abbreviations
ANCOVA Analysis of covariance
CSF Cerebrospinal fluid
DARTEL Diffeomorphic anatomical registration

exponentiated lie algebra
GMV Grey matter volume
HY stage Hoehn and Yahr stages
ICA Independent component analysis
LOOCV Leave-one-out cross-validation
MNI Montreal Neurological Institute
MELODIC Multivariate exploratory linear optimized de-

composition into independent components
PD Parkinson’s disease
ROC Receiver operator characteristic
SE-ADL Schwab and England activities of daily living

scale
SCNs Structural covariance networks
UPDRS Unified Parkinson’s disease rating scale
VBM Voxel-based morphometry
WM White matter

Introduction

Parkinson’s disease (PD) is a common neurodegenerative dis-
order characterized by bradykinesia, rigidity and resting trem-
or [1]. In addition, its many non-motor symptoms highlight
how PD should be considered a multi-systemic brain disease
[2, 3]. Although substantia nigra degeneration is a hallmark of
PD, magnetic resonance imaging (MRI) volumetric studies
have also shown extensive extra-substantia nigra pathology
[4]. Neocortical changes, such as atrophy and impairment in
the executive attention network, are related to the freezing of
gait [5], while increased cortical thickness, particularly in the
limbic region, has been demonstrated to worsen the inhibition
of compulsive behaviours in PD [6]. Furthermore, bilateral
temporal cortex thinning has been found to be predictive of
the early exacerbation of cognitive impairment in PD [7].
These findings raise the question of whether PD originates
from vulnerable anatomical regions and further consequent
multiple cortico-cortical network alterations that contribute
to the clinical phenotype.

Grey matter volume (GMV) covariation was recently pro-
posed as a surrogate method for assessing large-scale structur-
al networks between different cerebral regions [8, 9]. The
concept of large-scale structural covariance networks (SCNs)
was used to describe the inter-individual differences in region-
al brain structure covariation with other brain structures across
the population. This approach can reflect shared variation in
grey matter morphology [10] and provide a quantitative way
to investigate the features of cortical organization [11] Voxel-
based morphometry studies have previously explored wide-
spread grey matter damage and have been shown to be

capable of differentiating between different forms of parkin-
sonism [12–14]. However, the analysis of inter-regional de-
pendencies from SCNs could potentially supplement informa-
tion obtained from common analyses that consider each ana-
tomical region separately [15]. In addition, alterations in dis-
ease-specific, spatially restricted networks have been proven
to be associated with the development of disease [16–18],
suggesting that the SCN approach could be a powerful tool
for identifying at-risk individuals and aiding in early differen-
tial diagnosis in patients with neurodegenerative diseases.

Recently, the loss of integrity of SCNs in PD has been
demonstrated through the comparison of PD patients with
healthy individuals [19], and several particular SCNs have
also been correlated with various cognitive impairments, such
as visuospatial deficits, and loss of letter verbal fluency [20] .
The PD-specific spatial atrophy pattern is compatible with a
trans-neuronal spreading and can happen even in the early
stage of the disease [21]. These results further suggest a
network-degenerative mechanism in PD. However, particular
investigations focus on large-scale SCNs in PD patients and
their utility in terms of disease classification is still limited in
number.

In the present study, we aim to evaluate the feasibility of
using SCN analysis for the discrimination of PD patients from
healthy controls at an individual level by utilizing a discovery
and validation sample study design. To this end, first, we
extracted SCNs using a data-driven multivariate independent
component analysis (ICA) with anatomical MRI scans. In
order to identify a set of SCNs with high classification ability,
we constructed an SCN-based classifier with a feature selec-
tion framework from the discovery sample, and then tested the
generalization ability in the validation sample. Finally, to de-
termine the clinical significance of the derived SCNs, we per-
formed post hoc statistical analyses of selected SCNs between
study groups and further evaluated their relationship with dis-
ease severity.

Materials and methods

Participants in the discovery and validation samples

All the participants or their guardians provided written in-
formed consent prior to participation in the study. Seventy
PD patients in the discovery sample and 26 PD patients in
the validation sample with no previous history of neurological
or psychiatric illnesses or psychotropic medication usage were
prospectively enrolled in the neurology department. Patients
were included if they had idiopathic PD diagnosed according
to the Parkinson’s Disease Society criteria [22] by an experi-
enced neurologist. The disease severity and functional status
of each patient were evaluated with the unified Parkinson’s
disease rating scale (UPDRS) [23], the modified Hoehn and
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Yahr stages (HY stage) [24] and the Schwab and England
activities of daily living scale (SE-ADL) [25] in the BOFF^
state (i.e. 12 h after the withdrawal of medication).

For comparison, 70 healthy controls in the discovery
sample and another 26 healthy controls in the validation
sample with no medical history of neurologic diseases
or psychiatric illnesses, alcohol/substance abuse or head
injury were also recruited.

Image acquisition and analytical framework

Whole-brain T1W scans were performed on a 3-T MRI scan-
ner (Signa, General Electric Healthcare, Milwaukee, WI,
USA) with an eight-channel phased-array head coil using an
axial 3D inversion-recovery prepared fast-spoiled gradient-
recalled echo pulse sequence and the following parameters:
repetition time/echo time/inversion time = 9.5/3.9/450 ms; flip
angle = 15°; number of excitations = 1; field of view = 24 cm;
and matrix size = 512 × 512 × 110; yielding size = 0.47 × 0.47
× 1.3 mm3 (without inter-slice gap and interpolation). The
acquisition time for the T1W scan was 5 min and 38 s. A
systematic overview of the analytical framework is shown in
Fig. 1, and the processing steps are summarized below.

Estimation of voxel-wise grey matter volume

To generate the voxel-wise standard space GMV images,
T1W scans were first preprocessed using the voxel-based
morphometry (VBM) approach [26]. The pipeline used for
the VBM analysis followed that of our previous studies [9,
14, 27] (for details of the voxel-wise GMVestimation, see the
eMethods in the Supplemental Material).

Structural covariance network identification

Multivariate spatial ICA, a data-driven method, was used to ex-
tract SCNs for all the participants in the discovery sample. This
analysis characterized the common inter-subject GMV covaria-
tions without setting a priori regions of interests. We used the
multivariate exploratory linear optimized decomposition into in-
dependent components (MELODIC; FSL v5.0.9; http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/) tool to decompose the GMV data set into a
set of spatially distinct components and corresponding loading
parameters that represents the relative integrity of the SCN for
each participant. We performed the ICA decomposition with 70
components (pre-specified approach) to make it consistent with
previous high-order SCNand intrinsic functional network studies
[28–30]. All 70 of these SCN maps can be downloaded and
reused via a NeuroVault permanent link (https://neurovault.org/
collections/3112/)

Calculation of network integrity indices

The ICA approach provides 70 SCNs for the validation data
set. In order to construct the disease classifier based on the
degree of network integrity level in the validation sample, an
additional spatial regression analysis was conducted to obtain
the network integrity indices of these participants. The net-
work integrity indices were calculated using the four-
dimensional data set of GMV images in a spatial regression
against the 70 unthresholded SCN maps with the single gen-
eral linear model. The FSL command-line tool Bfsl_glm^ was
used for this calculation [31]. This analytical procedure pro-
vided the network integrity index of each corresponding SCN
for each participant in the discovery sample (i.e. the beta
weights of the spatial regression analysis) [18]. A larger net-
work integrity index indicated a stronger expression of the
corresponding SCN in that participant and vice versa.
Subsequent SCN-based disease classifier construction and re-
lated statistical analyses (post hoc group comparisons of large-
scale SCNs and multiple linear correlation analyses with clin-
ical evaluations) were performed on these network integrity
indices for the validation sample.

Statistical analysis

Demographic and group comparison of global brain
tissue volume

Differences between the study groups were investigated using
the two-sample Student t test (age) and analysis of covariance
(ANCOVA) for continuous variables, and using the chi-square
test for categorical variables (sex). The threshold of statistical
significance was set at Bonferroni corrected p value less than
0.05 (SPSS for Windows, Version 17.0, SPSS, Chicago, IL,
USA).

Construction of SCN-based classifier of the discovery
sample

To construct the SCN-based PD classifier, a forward step-
wise binary multiple logistic regression (FS-MLR, inclu-
sion criteria of p < 0.05) was used with 70 network integrity
indices as candidate predictors, diagnosis as the dependent
variable, and age and gender as nuisance variables. To con-
struct the classifier unbiasedly, the leave-one-out cross-
validation (LOOCV)-based feature selection scheme was
used to identify the subset of SCNs that best discriminated
the PD patients from the healthy controls (for details
regarding the classifier construction, see the eMethods in
the Supplemental Material) [14]. The model parameters of
the final classifier with selected SCNs were estimated from
the whole discovery sample. The optimal cut-off probability
value of the final classifier was determined by the highest
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sum of sensitivity and specificity squared using receiver
operator characteristic (ROC) analysis [32]. Classification
accuracy, specificity, sensitivity, positive/negative predic-
tive value and the Nagelkerke R2 test were used as metrics
to evaluate the efficacy of the classifier [33, 34]

Evaluation of constructed classifier using additional
validation sample

To simulate real-world application, an additional valida-
tion sample was also acquired. The same VBM prepro-
cessing pipeline was also applied for the validation sam-
ple. To obtain the network integrity index of the corre-
sponding SCNs in the validation sample, we used the
same spatial regression analysis with the 70 unthresholded
SCN maps which were obtained from the discovery sam-
ple. This analytical pipeline provided us with the set of
network integrity indices of each individual in the

validation sample. Finally, the constructed classifier was
applied to this validation sample to evaluate the general-
ization ability of the classifier. We also performed a bino-
mial test of statistical significance of the classification
accuracy in the validation sample compared to chance-
level performance.

Clinical significance of selected SCNs

To assist in interpreting the clinical significance of highly
predictive SCNs, the ANCOVA model with age and sex as
nuisance variables was used to investigate the network integ-
rity changes of the selected SCNs between study groups. To
further investigate the possible network-symptom association
in PD patients, multiple linear regression analyses were con-
ducted using the network integrity indices of highly predictive
SCNs as predictors, the clinical evaluations/illness duration as

Fig. 1 Systematic overview of the method used in this study. a A
conventional VBM preprocessing pipeline was used to generate the
MNI space GMV images. b The set of spatially organized large-scale
SCNs and corresponding loading parameters were estimated using spatial
ICA. c Spatial regression analysis with the SCN maps was applied to the
GMV images to calculate the network integrity indices of each subject. d
FS-MLR and an LOOCV-based feature selection scheme were used to
construct the classifier based on the network integrity indices of the large-
scale SCNs from the discovery sample. e To assess the generalization

ability of the classifier, we used an additional validation sample to eval-
uate the classification accuracy of the constructed classifier. f Multiple
regression analyses were also conducted to provide the additional
network-symptom information. DARTEL diffeomorphic anatomical reg-
istration exponentiated lie algebra, FS-MLR forward stepwise binary
multiple logistic regression, GMV grey matter volume, ICA independent
component analysis, LOOCV leave-one-out cross-validation, ROC re-
ceiver operating characteristic, MNI Montreal Neurological Institute,
SCN structural covariance network, VBM voxel-based morphometry
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dependent variables, and age and gender as nuisance vari-
ables. The statistical threshold was set at uncorrected p < 0.05.

Results

Demographics and clinical characteristics

The demographic and clinical data of the participants are
shown in Table 1. Sex and age did not differ between the
healthy controls and PD patients in both the discovery sample
and the validation sample. The mean modified HY stage of all
the patients with PD was 2.11, indicating a relatively early
stage of the disease, and there were no significant differences
among all the disease evaluation scorings. Compared to the
healthy controls, the PD patients had a smaller total GMVand
larger cerebrospinal fluid volume. Among the PD patients,

there were no demographic differences between the two sam-
ples. In addition, there were no significant differences in any
of the demographic variables or global brain volume of the
healthy controls in the discovery and validation samples.

Construction of classifier with highly predictive SCNs

By using FS-MLR with the LOOCV-based feature selection
scheme to identify the SCNs with high classification ability,
we found that the selected frequency of each SCN exhibited a
polarized distribution (Supplementary Fig. 1). Thirteen SCNs
(frequency > 99%) were selected for the final classifier (name-
ly SCNs of the cerebellum [IC1, IC18], anterior temporal pole
[IC8], hippocampus [IC13], parietal operculum [IC23], occip-
ital [IC37, 43, 48, 53], supramarginal gyrus [IC40, 44],
paracingulate gyrus [IC49] and supplementary motor area
(SMA) [IC58]; Fig. 2 and Supplementary Table 1). The

Table 1 Comparison of demographic variables, clinical profiles and global anatomical measurements between patients with Parkinson’s disease and
healthy controls for both the discovery sample and validation sample

Discovery sample Validation sample NC-d vs NC-v
p value

PD-d vs PD-v
p value

NC
(n = 70)

PD
(n = 70)

p value NC
(n = 26)

PD
(n = 26)

p value

Age (years) 59.05 ± 7.40 61.10 ± 8.01 0.117a 60.50 ± 5.75 63.19 ± 7.09 0.139a 0.372a 0.247a

Sex (male/female) 35/35 27/43 0.234b 7/19 11/15 0.382b 0.073b 0.922b

Education (years) 10.91 ± 4.87 8.56 ± 4.85 0.005a 12.35±4.16 8.00±3.84 < 0.001a 0.187a 0.600a

GMV (litres) 0.562 ± 0.051 0.523 ± 0.054 0.001c* 0.542 ± 0.044 0.498 ± 0.058 0.009c* 0.740c 0.518c

WMV (litres) 0.562 ± 0.062 0.539 ± 0.052 0.960c 0.541 ± 0.056 0.527 ± 0.072 0.704c 0.228c 0.429c

CSFV (litres) 0.227 ±0.033 0.239 ± 0.047 < 0.001c* 0.214 ± 0.029 0.240 ± 0.044 0.010c* 0.373c 0.999c

TIV (litres) 1.352 ± 0.122 1.301 ± 0.115 0.110d 1.298 ± 0.112 1.264 ± 0.136 0.016d* 0.739d 0.035d*

UPDRS I – 3.56 ± 2.73 – – 3.58 ± 3.44 – – 0.991d

UPDRS II – 10.89 ± 8.60 – – 10.27 ± 6.84 – – 0.569d

UPDRS III – 25.31 ± 17.29 – – 26.62 ± 16.81 – – 0.896d

UPDRS total score – 39.78 ± 27.39 – – 40.46 ± 25.40 – – 0.928d

Modified HY stage# – 2.18 ± 1.15 – – 1.92 ± 0.92 – – 0.256d

SE-ADL+ – 81.45 ± 19.65 – – 84.62 ± 13.34 – – 0.431d

Duration of disease++ (years) – 4.07 ± 3.99 – – 1.81 ± 2.25 – – 0.007d*

Means and standard deviations of raw scores for the patients with Parkinson’s disease and healthy controls in two samples. For each variable, the p value
indicates the significance level of the appropriate statistical test comparing the raw scores of the patients with Parkinson’s disease and the control group

CSFV cerebrospinal fluid volume, GMV grey matter volume, Modified H&Y stage modified Hoehn and Yahr stage, NC normal control, NC-d normal
control of discovery sample, NC-v normal control of validation sample, PD Parkinson’s disease, PD-d Parkinson’s disease of discovery sample, PD-v
Parkinson’s disease of validation sample, SE-ADL Schwab and England activities of daily living scale, TIV total intracranial volume, UPDRS unified
Parkinson’s disease rating scale, WMV white matter volume
# For modified HY stage, the maximum stage is 5
+ For the SE-ADL, the minimum score is 0, suggesting vegetative functions; the maximum score is 100, suggesting complete independence
++ The patients’ mean disease duration, defined as the time since the given patient subjectively noticed his or her first symptoms
* p < 0.05
a Two-sample Student t test
b Chi-square test
c Analysis of covariance after adjustment for age, sex and TIV
dAnalysis of covariance after adjustment for age and sex
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classifier distinguished PD with 89% accuracy, 90% sensitiv-
ity, 87% specificity, 88% positive predictive value and 90%
negative predictive value in the discovery sample (Table 2).
Furthermore, the goodness of fit for the constructed classifier
was 0.73 (Nagelkerke R2). All of these 13 SCN maps with
highly predictive ability can be downloaded and reused via a
NeuroVault permanent link.

Generalization performance in the validation sample

In the validation sample, the constructed classifier had mod-
erate generalization ability, with a sensitivity of 81%, speci-
ficity of 69% and overall accuracy of 75% (Table 2). The
binominal test demonstrated that the classification accuracy
in the unseen validation sample was statistically different from
chance-level performance (p < 0.001)

Between-group comparisons of selected SCNs

Group differences were found in nine of these 13 SCNs.
Compared to the healthy controls, the network integrity indi-
ces were lower in the cerebellum (IC1, IC18), anterior tempo-
ral pole (IC8), hippocampus (IC13), parietal operculum

(IC23) and supramarginal gyrus (IC44) in the PD patients.
In contrast, the PD patients exhibited higher network integrity
indices in the occipital lobe (IC43, 53) and SMA (IC58).
Meanwhile, no significant between-group differences were
found in the other four networks (IC37, 40, 48, 49) (Fig. 2
and Supplementary Table 1).

Relationship between clinical evaluations
and selected SCNs

We found that the lower network integrity indices of the se-
lected SCNs were associated with higher disease severities of
PD as indicated by the UPDRS I (mentation), UPDRS II (dai-
ly activities), UPDRS III (motor function) and general evalu-
ation (UPDRS total, modified HY stage and SE-ASL) scores
(Fig. 3). The following network integrity indices of SCNs
predicted the UPDRS I score (IC48), UPDRS II score (IC8,
IC13, IC18, and IC48), UPDRS III score (IC13, IC18, and
IC48), UPDRS total score (IC13, IC18, and IC48), modified
HY stage (IC13 and IC48) and SE-ASL (IC13 and IC48). In
addition, there were no statistically significant associations
between the network integrity indices of selected SCNs and
illness duration.

Fig. 2 Voxel-wise spatial patterns of the 13 structural covariance
networks with high classification ability. This figure displays the spatial
location of each SCN and corresponding network integrity index in the
two study groups from the discovery sample. To visualize the spatial
locations of the SCNs, the spatial maps of each SCN were converted to
a spatial mixture model Z-statistic map with thresholded |Z| > 4, and these
maps were further overlaid onto an anatomical template in MNI space.
The anatomical locations of the SCNs were identified using the Harvard–
Oxford cortical and subcortical structural atlases included in the FSL
package. The colour bar indicates the corresponding Z value of each

SCN. The violin plots show the network integrity index of each SCN in
the healthy controls (HC, blue) and the patients with Parkinson’s disease
(PD, red) (mean ± SD). The asterisks indicate the statistical differences
between the two groups after adjusting for sex and age effects (* indicates
a p value less than uncorrected p value 0.05, ** indicates a corrected p
value less than 0.05 after FDR correction). All the 13 SCNs can be
downloaded and reused via a NeuroVault permanent link. FDR false
discovery rate, a.u. arbitrary units, IC independent component, MNI
Montreal Neurological Institute, SCN structural covariance network
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Discussion

Using T1W MRI scans with data-driven multivariate ICA
analysis, we first extracted the potential whole-brain, large-
scale SCNs and further identified a set of SCNs with high
classification ability for PD patients. The constructed classifier
also demonstrated moderate generalization ability in an un-
seen validation sample and was associated with several clini-
cal evaluations in individual subjects. Our results showed the
value of SCNs as potential network-based image markers for
PD classification and disease severity evaluation.

Voxel-based morphometry analysis has been shown to dif-
ferentiate different forms of parkinsonism with 74–83% sen-
sitivity and 79–94% specificity [12–14]. The SCNs have pre-
viously been used for exploring the underlying disease path-
ophysiology. However, the use of this approach for the clas-
sification in PD is limited and makes further inter-study com-
parisons difficult. In one previous study, the accuracy of using
SCNs to distinguish between Alzheimer’s patients/controls,
Alzheimer’s patients/patients with mild cognitive impairment
(MCI) and patients with MCI/controls was 87%, 80% and
86%, respectively [35]. In another study, the combination of
CSF biomarkers and ApoE ε4 status with SCNs also achieved
excellent diagnostic accuracy for MCI conversion [17].
Resting state functional MRI with a novel covariance of pro-
jection approach which integrates multiple network informa-
tion also achieved acceptable classification accuracy in

patients with PD [36]. Similar to a previous study using a
multiple-networks approach, our classification model
achieved moderate discriminability by using multiple SCNs.
The highly predictive SCNs in the classifier, including the
basal ganglia, limbic regions, the cerebellum, and other cere-
bral regions, were consistent with those identified in another
functional network study using linear discriminant analysis to
evaluate the network regional efficiency [37]. The classifica-
tion ability of SCNs is comparable to that of voxel-based
analysis and the inter-regional dependencies analysis in which
supplementary information is obtained from common analy-
ses that consider each anatomical region separately [15].

In addition to such uses of grey matter information, the
classification feasibility of different MRI modalities or com-
bined multimodal imaging data has also been studied in PD
and exhibited better performance. Nonetheless, the question
of which modality or modalities are most useful in a clinical
context remains unresolved. The different subjects, sample
sizes, image modalities and image analyses of previous stud-
ies might affect the classification ability in those studies. For
example, one previous study used diffusion-weighted MRI
and found that the mean kurtosis of the ipsilateral substantia
nigra had good diagnostic accuracy (sensitivity 0.92 and spec-
ificity 0.87) in differentiating between PD patients and con-
trols, with that accuracy being better than that of tensor-
derived indexes [38]. A recent meta-analysis also demonstrat-
ed that the visual assessment of dorsolateral nigral

Table 2 Summary of the binary
multiple logistic regression
analysis with discovery and
validation sample

Parameters of the estimated model Model performance

Beta S.E. p value Discovery Validation

Constant 8.9 4.2 0.037 Accuracy 0.89 0.75

IC 1 −237.0 69.8 0.001 Sensitivity 0.90 0.81

IC 8 −182.0 58.5 0.002 Specificity 0.87 0.69

IC 13 −229.7 64.6 < 0.001 Positive predictive value 0.88 0.72

IC 18 −70.1 49.3 0.155 Negative predictive value 0.90 0.78

IC 23 −205.8 55.3 < 0.001 Nagelkerke R2 0.73 –

IC 37 −226.9 67.3 0.001 Cut-off point 0.45 –

IC 40 −127.7 54.1 0.018

IC 43 170.8 57.8 0.003

IC 44 −191.1 64.8 0.003

IC 48 205.5 73.7 0.005

IC 49 −167.6 66.2 0.011

IC 53 234.9 67.6 0.001

IC 58 302.2 75.0 < 0.001

Age −0.1 0.1 0.101

Sex −1.2 0.8 0.131

The left column shows the corresponding beta coefficient of each highly predictive SCN estimated by the binary
MLR approach in the discovery sample. The right column shows the performance metrics of the constructed
classifier including accuracy, sensitivity, specificity, positive/negative predictive value, goodness of fit and opti-
mum cut-off value in the discovery and validation sample, respectively IC independent component,MLRmultiple
logistic regression, SCN structural covariance network, S.E. standard error
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hyperintensity in iron-sensitive MRI provides excellent diag-
nostic accuracy for distinguishing between PD patients and
controls [39]. Furthermore, single basal ganglia network con-
nectivity can also help to differentiate PD patients from con-
trols with 85% accuracy [40]. For all studies, using only the
core feature usually yielded higher performance than using the
whole brain, such as was used in this SCN-based study.
However, those imaging biomarkers with good classification
performance are usually a trait marker of the given disease,
reflecting a constitutional fault and not the resulting clinical
symptoms, and the changes in the biomarker may be profound
enough to produce a floor effect where gradation of severity is
lost. A multiple-SCNs approach, in contrast, includes the pos-
sibility that cortical pathology is predictive of PD if the com-
ponent regions are more carefully specified a priori.

In the present study, 13 of 70 SCNs were selected to clas-
sify PD effectively, including the cerebellum, anterior tempo-
ral pole, hippocampus, parietal operculum, supramarginal gy-
rus, paracingulate gyrus, occipital and SMA. Both higher and
lower network integrity indices were identified in PD patients.
A higher network integrity index indicates that the spatial
pattern of the corresponding SCN is more strongly weighted
in the data for that individual. It might reflect malfunction
related to disease pathology or compensation that is not effi-
cient enough to counterbalance clinical impairment, while a
lower network integrity index might indicate volume atrophy
or structural damage. In terms of movement deficits, the lower
network integrity indices of the cerebellar SCN in PD suggest
declined cerebellar and parietal opercular network integrity in
PD and may be related to akinesia/rigidity, tremor, gait distur-
bance, dyskinesia and the freezing of gait [41, 42]. The lower

network integrity indices of the supramarginal gyrus,
paracingulate gyrus, anterior temporal lobe and hippocampus
might reflect the ventral attentional network disconnection
[43], declarative memory impairment [44] and visual halluci-
nations [45] in PD.

We also found a significantly higher network integrity in-
dex in the SMA in PD. The SMA is strongly embedded in
motor circuits through its connections with the primary motor
cortex, premotor cortex and cingulate cortex [46]. Mal-
modulation with increased functional connectivity in the
SMA and decreased activity in the inferior frontal cortex
[47] can be associated with levodopa-induced dyskinesia in
PD. Our aforementioned result thus corresponded to the path-
ological involvement of the SMA in PD [9, 48] and also might
reflect the phenotype of PD.

Actually, brain functions are distributed across different
brain areas, and any complex behaviour might require inter-
actions between different brain systems. Therefore, SCNs
mainly focused on regional interactions that reveal an infor-
mation network system in the brain might be useful for clinical
phenotype evaluation. Our correlation analyses further dem-
onstrated that those selected diagnostic networks were associ-
ated with the common disease severity evaluation scores, such
as UPDRS I, II, III and total scores, HY stage and SE-ASL.
We found that motor evaluation in PD, like UPDRS III, could
be predicted by integrity of hippocampus, cerebellum and
occipital network; daily life activities evaluation in UPDRS
II can be predicted by anterior temporal lobe, hippocampus,
cerebellum and occipital network; and general disease severity
evaluation, such as UPDRS total score, modified HY stage
and SE-ASL, can also be evaluated by hippocampus,

Fig. 3 Multiple linear regression analysis of clinical evaluations and
network integrity indices of large-scale structural covariance networks
in patients with Parkinson’s disease. The relationships between clinical
evaluations and the network integrity indices of highly predictive SCNs
were revealed by multiple linear regression anlaysis. The standardized
beta coefficients are listed in the figure. The grids in black indicate that

the beta coefficient is statistically insignificant (uncorrected p > 0.05); the
light grey and white grids indicate that the uncorrected p value is less than
0.05 and 0.01, respectively. IC independent component, H&YHoehn and
Yahr, SCN structural covariance network, SE-ADL Schwab and England
activities of daily living scale, UPDRS unified Parkinson’s disease rating
scale
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cerebellum and occipital network. The current study suggests
that human large-scale SCNs may not only provide the differ-
entiation information for PD diagnosis but also be associated
with individual clinical evaluations. The network integrity of
SCNs in limbic system, cerebellum and occipital network,
which also reflects movement disorder, executive deficits
[49] and visual disturbances [45], can become important PD
imaging diagnostic makers. Furthermore, anMLRmodel with
SCN analysis might be an alternative method to time-
consuming and interviewer-dependent scoring systems to fa-
cilitate classification and prognosis evaluation of individual
PD. However, further validation is necessary in the future.

Until now, the use of ICA-based SCNs to evaluate PD has
been limited. PD-specific atrophy patterns have been identi-
fied in the hippocampus, temporal lobes, fronto-parietal re-
gions and the midbrain/cerebellum, and were further correlat-
ed with cognitive functions in previous studies [19, 20]. Most
of our results were consistent with the findings in those stud-
ies. In addition, PD-specific spatial atrophy can mimic intrin-
sic functional networks derived from healthy participants [19]
and highlight the value of SCNs in the evaluation of the
network-degenerative mechanism in PD [21]. However, be-
cause of the different patient groups enrolled and the different
imaging analyses conducted in previous studies, the integrity
of some brain networks, such as the occipital lobe, parietal
lobe and cerebellum, differed across studies.

Interpretations of the present findings should be viewed
with caution. First, it is possible that we included cases that
were more Btypical^ and age- and sex-matched in the present
study. Therefore, disease-related changes may be more evi-
dent in this study’s sample than in the Breal-world^ popula-
tion. Second, it is still unknown whether large-scale SCNs can
differentiate between idiopathic PD and Batypical
parkinsonism.^ In addition, their ability to differentially diag-
nose PD at an early stage and PD at an advanced stage is not
known. Third, the mean education level of the two groups in
the present study was different. However, a further supple-
mentary analysis adjusting for education level revealed com-
parable classification performance in the diagnosis of PD. Last
but not least, factors such as the number of ICs, sample size
and parameter setting of structural MRI acquisition could also
lead to variations in model construction. Future studies with
multi-scanners/sites design should be conducted to further
confirm our findings.

In conclusion, using structural MRI scans with a data-
driven multivariate ICA approach can define the spatial com-
ponents showing interregional covariant areas relevant to PD
pathophysiology. Our results identify an objective set of SCNs
to predict PD and can guide future studies aiming to automat-
ically classify PD from a system-level perspective.
Application of the ICA-based SCN technique will increase
the applicability of structural MRI scans for the identification
of potential imaging markers for PD.
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