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Abstract
Objectives To build a reliable radiomics model from multiregional and multiparametric magnetic resonance imaging (MRI) for
pretreatment prediction of O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation status in glioblastoma
multiforme (GBM).
Methods In this retrospective multicentre study, 1,705 multiregional radiomics features were automatically extracted from
multiparametric MRI. A radiomics model with a minimal set of all-relevant features and a radiomics model with univariately-
predictive and non-redundant features were built for MGMT methylation prediction from a primary cohort (133 patients) and
tested on an independent validation cohort (60 patients). Predictive models combing clinical factors were built and evaluated.
Both radiomics models were assessed on subgroups stratified by clinical factors.
Results The radiomics model with six all-relevant features allowed pretreatment prediction of MGMTmethylation (AUC=0.88,
accuracy=80 %), which significantly outperformed the model with eight univariately-predictive and non-redundant features
(AUC=0.76, accuracy=70 %). Combing clinical factors with radiomics features did not benefit the prediction performance.
The all-relevant model achieved significantly better performance in stratified analysis.
Conclusions Radiomics model built frommultiregional and multiparameter MRI may serve as a potential imaging biomarker for
pretreatment prediction of MGMTmethylation in GBM. The all-relevant features have the potential of offering better predictive
power than the univariately-predictive and non-redundant features.
Key Points
• Multiregional and multiparametric MRI features reliably predicted MGMT methylation in multicentre cohorts.
• All-relevant imaging features predicted MGMT methylation better than univariately-predictive and non-redundant features.
• Combing clinical factors with radiomics features did not benefit the prediction performance.
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Abbreviations
AUC Area under the ROC curve
FLAIR Fluid-attenuated inversion recovery
GBM Glioblastoma multiforme
GLCM Grey-level co-occurrence matrix
GLRLM Grey-level run length matrix
GLSZM Grey level size zone matrix
KPS Karnofsky performance score
MGMT O6-methylguanine-DNA methyltransferase
MRI Magnetic resonance imaging
NGTDM Neighbourhood grey-tone difference matrix
ROC Receiver operating characteristic curve
TCGA The Cancer Genome Atlas
TCIA The Cancer Imaging Archive
VASARI Visually Accusable Rembrandt Images

Introduction

Glioblastoma multiforme (GBM) is the most common malig-
nant brain tumour [1]. The poor prognosis (median survival
less than 15 months) is mainly due to its intratumour genetic
heterogeneity [2]. Among all identified genetic alterations,
MGMT promotor methylation has been used as an important
predictive molecular marker in clinical settings [3]. This alter-
ation is common in GBM, and less common in lower grade
glioma [1]. GBM patients with methylated MGMT are more
sensitive to temozolomide and radiotherapy, hence have im-
proved prognosis [4, 5]. Currently, the detection of MGMT
methylation status relies on genetic profiling approaches, re-
quiring tissue obtained via biopsy or surgical resection.
Although tissue is accessible in most patients undergoing
gross total resection, tumour heterogeneity poses clear barriers
to biopsy-based method [2, 6, 7]. Substantial methylation as-
sessment requires sampling multiple regions of the heteroge-
neous tumour to capture its full clonal history. In several
multiregional-biopsy studies, intratumour heterogeneity in
MGMT methylation status had been identified in 14 % of
cases [8, 9]. Medical image provides three-dimensional char-
acteristics of the entire tumour in a non-invasive and repeat-
able way. Recent advances in imaging-genomics permit cor-
relating imaging phenotypes with molecular data.
Identification of a possible association between imaging phe-
notypes andMGMTmethylation status has undoubted clinical
benefits.

Early evidence has shown the correlation between MRI
features and MGMT methylation [10–12]. Korfiatis et al.
[13] made use of texture features from 2D multiregional MR
slices. A recent study [14] investigated VASARI features [15]
and volumetric variables of 3D tumour subregions. These fea-
tures may not fully characterize image phenotypes, thus lim-
iting the potential of the models. Recent advances in an
emerging technique, radiomics, permit comprehensive

quantification of the imaging phenotypes in heterogeneous
tumours. Radiomics converts medical images into minable
data through extracting high-throughput quantitative imaging
features [16–18]. For GBM, several radiomics signatures as-
sociated with survival, molecular characteristics and treatment
response have been reported [19–25].

Recent studies have revealed the multiregional and micro-
environmental heterogeneity in GBM [2, 7, 26]. They high-
light the value of multiregional image analysis in spatially
distinct habitats, some of which harbour heterogeneous tu-
mour populations [27, 28]. To our knowledge, although it is
recognized that a radiomics model from multiparametric and
multiregional MRI holds prognostic and predictive value
[19–22], little work has been done on such an imaging-
genomics model associated with MGMT methylation status
in GBM. Currently, radiomics models built with a minimal set
of all-relevant multiregional imaging features for predicting
MGMT methylation status are still required. Particularly,
identifying a minimal set of features that are relevant to clas-
sification ofMGMTmethylation status, rather than a larger set
of features that are merely useful for predicting outcome with-
out interpretable relevance, might help researchers to explore
the mechanism underlying an imaging-genomics model.
Moreover, most previous studies use a relatively small cohort
from a single-centre, where bias may occur especially when
machine learning methods are used.

In this retrospective multicentre study, we investigated the
wealth of radiomics features frommultiple tumour subregions
inmultiparametricMR images. The aimwas to build a reliable
multiregional and multiparametric MRI radiomics model for
pretreatment prediction of MGMT promotor methylation sta-
tus in GBM.

Material and methods

Patient enrolment

In this retrospective multicentre study, a cohort of 193 patients
was recruited from The Cancer Imaging Archive (TCIA) and
three local institutions between 2011 and 2016. TCIA is a pub-
licly available data set that de-identifies and hosts a large archive
of medical images of cancer (www.cancerimagingarchive.net).
Institutional Review Board approval for TCIA data was not
required. Institutional Review Board approvals from the three
local institutions were obtained, and informed patient consent
was waived. The primary cohort of 133 patients comprised 57
from TCIA and 76 from Guangzhou General Hospital of
Guangzhou Military Command. Another cohort of 60 patients
comprising 39 from the ThirdAffiliatedHospital of SunYat-Sen
University and 21 from Sun Yat-Sen University Cancer Center
were used for independent validation. The inclusion criteria
were that patients with (1) newly diagnosed histologically-
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confirmed GBM (grade IV, WHO classification) and (2) pre-
treatment MR imaging including T1-weighted, T1-weighted
gadolinium contrast-enhanced, T2-weighted and T2-weighted
FLAIR (T1w, T1c, T2w and FLAIR, respectively) and (3) avail-
able MGMT methylation status. The MGMT methylation data
of the TCIA patients obtained from The Cancer Genome Atlas
(TCGA), which includes genomics data corresponding to TCIA
patients. The clinical variables consisted of age, sex and
Karnofsky performance score (KPS). Patient and tumour char-
acteristics of the primary and validation cohorts are summarized
in Table 1.

MR imaging

All local MR images were acquired with 3.0-T MR imaging
systems (Magnetom Verio or Trio TIM, Siemens Healthcare,
or Discovery MR 750, GE). T1w images were acquired at
repetition time 380–586 ms; echo time 4.3–20 ms; section
thickness 2.0–5.0 mm. T1c were acquired at repetition time
460–720 ms; echo time 4.3–20 ms; section thickness 2.0–5.0
mm. T2w were obtained with repetition time 2,137–5,360 ms;
echo time 80–119 ms; section thickness 4.0–5.0 mm. FLAIR
were obtained with a repetition time msec, 8002-11000; echo
time msec, 91-155; section thickness, 4.0-5.0mm.

MGMT promoter methylation status testing

MGMT promoter methylation status of local patients was
assessed by the pyrosequencing technologywith standard pro-
tocol described in [29]. The DNAwas isolated from paraffin
sections of tumuor tissue with the QIAampDNAFFPE Tissue
Kit (Qiagen). The prepared DNAwas modified with a sodium

bisulphite treatment using the EpiTect Bisulfite Kit (Qiagen).
Pyrosequencing analysis was performed using the PyroMark
Q96 system (Qiagen) in the CpG island region of MGMT.

Image preprocessing and tumour subregion
segmentation

A preprocessing pipeline was applied on T1w, T1c, T2w and
FLAIR for image standardization. First, N4ITK was applied
to correct the bias field distortion [30]. After skull stripping
and isotropic voxel resampling, rigid registration was per-
formed with the mutual information similarity metric. Due to
the intensity variation between different MRI acquisitions es-
pecially for multicentre studies, an efficient landmark-based
approach with piecewise intensity mapping was used for in-
tensity standardization across multicentre patients [31]. Then,
a convolutional neural network (CNN)-based method was
used to automatically segment the tumour into four subre-
gions: necrosis, oedema, non-enhancement area and enhance-
ment area [32]. The four subregions were defined in detail by
the Multimodal Brain Tumor Image Segmentation
Benchmark (BRATS) [33]. To train the CNN model, real pa-
tient MR data from the BRATS 2015 was used. The segmen-
tation procedure was accomplished using the deep learning
software TensorFlow [34].

Multiregional and multiparametric MRI radiomic
feature extraction

Based on the segmented subregions, we extracted four groups
of features: (1) location features, (2) geometry features, (3)
intensity features and (4) texture features. The features (2–4)
were extracted from four modalities within six extraction sub-
regions, including necrosis, enhancement area, non-
enhancement area, oedema, solid core (the whole tumour ex-
cept oedema) and whole tumour.

The location features were defined as the locations of the
tumour geographic epicentre according to the VASARI guide-
lines [15], and determined by three neurologists (H.B. with 12
years’ experience in neuroradiology, and Y.C. and C.L., each
with 5 years’ experience in neuroradiology) and a radiologist
(Y.Z., with 8 years’ experience in neuroradiology). There were
seven locations in each part of the right, left and bilateral areas,
resulting in 21 location features. Twenty-eight geometry fea-
tures were extracted to describe the 3D characteristics of the
tumour shape. 288 intensity features were extracted from six
extraction subregions and fourMRmodalities. These intensity
features described the first-order distribution of the multire-
gional intensities. The texture features were extracted using
four methods, including the grey-level co-occurrence matrix
(GLCM), grey-level run length matrix (GLRLM), grey-level
size zone matrix (GLSZM) and neighbourhood grey-tone dif-
ference matrix (NGTDM) methods. The calculation of the

Table 1 Patient and tumour characteristics of the study population

Characteristic Primary cohort Validation cohort

No. of patients 133 (68.91 %) 60 (31.09 %)

Sex

Male 79 (59.40 %) 39 (65.00 %)

Female 54 (40.60 %) 21 (35.00 %)

Age (y)

Mean (range) 54.2 (9-85) 51.2 (16-74)

≤ 60 73 (54.89 %) 31 (51.67 %)

> 60 60 (45.11 %) 29 (48.33 %)

KPS

Mean 80.61 79.67

≤ 70 80 (60.15 %) 38 (63.33 %)

> 70 53 (39.85 %) 22 (36.67 %)

MGMT

Methylated 63 (47.37 %) 23 (38.33 %)

Unmethylated 70 (52.63 %) 37 (61.67 %)
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texture features can be found in Aerts et al. [18]. 1,248 texture
features were computed from six subregions and four modal-
ities, describing the patterns or the high-order distributions of
the intensities. The features extracted are summarized in
Table 1. Finally, for each patient 1,705 quantitative features
were extracted.

Feature selection and classification

Having high-dimensional multiregional features, we aimed to
develop a reliable model with a minimal set of relevant fea-
tures. Selection of relevant features was different from selec-
tion of univariately-predictive and non-redundant ones, as we
cannot rely on classification accuracy and data redundancy as
the selection criteria. Thus a machine learning-based algo-
rithm, Boruta, was used to select all-relevant features and fi-
nally build a reliable classification model [35]. Boruta was a
wrapper algorithm for all-relevant feature selection, where
relevant features were searched in a top-down manner by
comparing the importance of the original features with the
importance achieved by artificially added random features.
A random forest algorithm [36] was performed in each itera-
tion to evaluate the classification and measure the feature im-
portance, where irrelevant features were eliminated progres-
sively. To obtain statistically significant results, the algorithm
repeatedly calculated all possible subsets of the features and
finally selected the minimal set of the most relevant features
for an optimal classification. The R package Boruta was used
to build the model [35].

A radiomics model with univariately-predictive and non-
redundant features was also built. For each feature, the Mann-
Whitney U test was used to assess its univariate predictive
power. The Benjamini-Hochberg method was used to correct
for multiple testing p-values. From all 1,705 features, features
with p<0.05 were selected for further analysis. Then,
Spearman’s correlation coefficient was used for redundancy
evaluation. For feature pairs with a correlation coefficient ≥
0.80, the more predictive feature was retained. Based on the
selected features, a random forest algorithm was used for clas-
sification. Furthermore, two combined models based on
radiomics features and clinical factors (sex, age and KPS)
were built using both feature selection methods followed by
a random forest. A predictive model based on clinical factors
alone was also built using random forest.

Statistical analysis

All statistical analysis was done with R software, version 3.4.0
(https://www.r-project.org/). The statistical significance levels
were set at .05. The differences in sex, age, KPS and MGMT
methylation status between the primary and validation cohorts
were assessed.

Model validation

All predictive models were trained on the primary cohort and
tested on the independent validation cohorts. The performance
was assessed using accuracy, sensitivity, specificity and area
under the receiver operating characteristic (ROC) curve
(AUC). The DeLong method was used for statistical compar-
ison of the ROC curves [37].

Stratified analyses

Stratified analyses were performed to assess the potential as-
sociation of both radiomics models with MGMT methylation
status in patient subgroups stratified by clinical factors.
Specifically, the patients from the validation cohort were strat-
ified by age (≤ 65 or > 65 years), sex (female or male) and
KPS (≤ 70 or > 70).

Results

There was no significant difference in patient and tumour
characteristics between the primary and validation cohorts
(p=0.56 to 0.85). Figure 1 shows one example of the segmen-
tation results. Subregions are shown in red (necrosis), yellow
(enhancement region), green (non-enhancement region) and
blue (oedema).

Feature selection

For both radiomics models, six all-relevant features were se-
lected by the Boruta algorithm while eight features remained
after univariately-predictive and non-redundant feature selec-
tion, as shown in Table 3 and Table 4. For both combined
models, the same six all-relevant features were selected after
Boruta selection while age and the same eight features
remained after univariately-predictive and non-redundant fea-
ture selection.

Model validation

The radiomics model with six relevant features achieved an
AUC of 0.95 and an accuracy of 87 % in the primary cohort.
The predictive performance was further confirmed in the vali-
dation cohort with anAUC of 0.88 and an accuracy of 80%. To
further reveal the relevance of the selected six features with the
MGMT methylation, the feature maps are presented in Fig. 2
for an unmethylated patient and a methylated patient.
Meanwhile, the radiomics model with eight univariately-
predictive and non-redundant features reached an AUC of
0.94 and an accuracy of 88 % in the primary cohort. In the
validation cohort its performance declined to an AUC of 0.76
and an accuracy of 70 %. The ROC curves of both six-feature
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and eight-feature radiomics models are shown in Fig. 3. The
DeLong analysis found a significant difference (p=.012) be-
tween the AUCs of both models in the validation cohort. The
performance of the radiomics models, the clinical model and
the combined models (radiomics features + clinical factors) are
summarized in Table 5.

Stratified analyses

The performance of both radiomics models for patients in the
validation cohort stratified by age, sex and KPS is shown in
Fig. 4. Significant differences (p<0.05) were found between
the AUCs of both radiomics models in all subgroups by using
the DeLong analysis.

Discussion

According to the radiomics hypothesis, imaging phenotypes
could be the expression of underlying biological or genetic
heterogeneity [16, 17]. Previous studies have investigated

the visually-assessed features [10–12], texture features from
2D MRI slices [13] and VASARI features [14] for MGMT
methylation prediction. In these studies, the AUCs ranged
from 0.75 to 0.85 while the accuracies ranged from 58 % to
73.6 %. Note that all these studies used cross-validation rather
than an independent validation cohort for performance evalu-
ation. To the best of our knowledge, our study was the first
multicentre study with an independent validation cohort, and
our all-relevant radiomics model achieved higher accuracy
(80 %) and AUC (0.88) compared with previous models.
Our study was based on 1,705 quantitative features derived
from multiple 3D tumour subregions in multiparametric MR
images (Table 2), allowing for a more comprehensive charac-
terization of the intratumour heterogeneity. This may offer
potential to improve the prediction performance. The inherent
intensity variability across MRI acquisitions may severely re-
duce the stability of quantitative features, especially in a
multicentre study. To overcome this, we normalized the im-
ages via an effective landmark-based mapping method [31]
that allowed for stable feature extraction frommultiparametric
MRI.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1-specificity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

se
ns

iti
vi

ty

reference line
primary cohort
independent validation cohort

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1-specificity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

se
ns

iti
vi

ty

reference line
primary cohort
independent validation cohort

a b

Fig. 2 Receiver operating characteristic (ROC) curves of the radiomics models for both primary and validation cohorts. (a) ROC curves for radiomics
model with six all-relevant features. (b) ROC curves for radiomics models with eight univariately-predictive and non-redundant features

Fig. 1 The segmentation result of tumour subregions overlapped on T1w, T1C, T2w and FLAIR images
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Feature selection was one key step in the discovery of predic-
tors from high-throughput features. Many existing imaging-
genomics studies built their classification models by selecting a
set of non-redundant features with the best univariate predictive
power [18, 20, 21]. This study built two radiomics models, one
with six all-relevant features and the other with eight
univariately-predictive and non-redundant ones. Despite the
comparable performance in the training cohort, the six-feature
model outperformed the eight-feature one in the validation cohort

with a significantly better AUC (Fig. 2). This demonstrated the
reliability of the employed all-relevant feature selection method.

Fig. 3 Radiomics feature maps of the six selected relevant features frommultiparametric andmultiregionalMR images for an unmethylated patient (top)
and a methylated patient (bottom)

�Fig. 4 Performance comparison between all-relevant radiomics model
and univariately-predictive non-redundant radiomics model for patients
in the validation cohort stratified by age, sex and Karnofsky performance
score (KPS). AR and PN indicate, respectively, all-relevant and
univariately-predictive non-redundant. (a) Age > 60 years. (b) Age≤ 60
years. (c) Female. (d) Male. (e) KPS > 70. (f) KPS ≤ 70

Eur Radiol (2018) 28:3640–3650 3645
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In imaging-genomics models a relevant feature selection
might be a more interesting problem than dimension reduc-
tion. It is related to the so-called all-relevant problem – the
identification of all features that are in certain circumstances
relevant to the classification [38]. The all-relevant principle
may be less well known, although it has received much inter-
est in genomics analysis that identifies genes related to cancer
[39, 40]. Here we built the six-feature model by using a Boruta
algorithm [35], which has been successfully used for all-
relevant feature selection in radiomic [41] and radiogenomic
[42] studies. Interestingly, the features selected in the two
models were totally different (Tables 3 and 4). This implies
that a relevant feature does not mean a strong predictive fea-
ture, and a relevant classifier might contain weakly predictive
features. Similarly, in the polygenic inheritance situation, the
identified relevant genes are often great in quantity but small

in individual effect [43]. In our study, univariately-predictive
feature selection ignored the potential correlation or interac-
tion between features, which may be important to the MGMT
methylation. This may cause the performance degradation of
the eight-feature model. Previous studies found that locations,
volumetric variables and diffusion tensor imaging (DTI) pa-
rameters were correlated with MGMT methylation [10–14].
In the eight-feature model, one geometry feature was selected
because of its higher univariately-predictive power, while in
the six-feature model, the selected all-relevant features
consisted of two intensity features and four texture features.
This indicates that multiregional intensity and texture features
may be more relevant to MGMT methylation than location
and geometric features.

Although our selected features were relevant to classifi-
cation, interpretation of the relevance remains challenging.

Table 2 A summary of the high-
throughput radiomics features
extracted

Feature classes Feature names

Location fatures Regions: Frontal, Temporal, Insular, Parietal, Occipital, Brainstem, Cerebellum;
Sides: Right, Left, Bilateral

Geometry features Volume, Subregion Proportion, Surface area, Longest Diameter, Solidity,
Eccentricity, Compactness, Spherical Disproportion, Surface Area to Volume
Ratio, Sphericity

Intensity features Max Value, Median Value, Min Value, Mean Value, Energy, Entropy, Variance,
Kurtosis, Root Mean Square, Skewness, Standard Deviation, Mean Absolute
Deviation

Texture
features

GLCM
features

Contrast, Correlation, Autocorrelation, Energy, Variance, Dissimilarity, Entropy,
Sum Average, Sum Entropy, Sum Variance, Difference Variance, Difference
Entropy, Cluster Prominence, Cluster Shade, Maximum Probability,
Homogeneity 1/2, Informational Measure of Correlation 1/2, Inverse
Difference Moment Normalized, Inverse Difference Normalized

GLRLM
features

Short Run Emphasis, Long Run Emphasis, Grey-Level Non-uniformity,
Run-Length Non-uniformity, Run Percentage, Low Grey-Level Run
Emphasis, High Grey-Level Run Emphasis, Run-Length Variance, Short Run
Low Grey-Level Emphasis, Short Run High Grey-Level Emphasis,
Grey-Level Variance, Long Run Low Grey-Level Emphasis, Long Run High
Grey-Level Emphasis

GLSZM
features

Small Zone Emphasis, Large Zone Emphasis, Grey-Level Non-uniformity,
Zone-Size Non-uniformity, Zone Percentage, Low Grey-Level Zone
Emphasis, High Grey-Level Zone Emphasis, Zone-Size Variance, Small Zone
Low Grey-Level Emphasis, Small Zone High Grey-Level Emphasis, Grey
level Variance, Large Zone Low Grey-Level Emphasis, Large Zone High
Grey-Level Emphasis

NGTDM
features

Coarseness, Contrast, Busyness, Complexity, Strength

Table 3 A summary of the
selected all-relevant features with
their univariate AUCs

No. Selected feature name Type Region Modality AUC

f1 Skewness Intensity Core T1w 0.63

f2 Energy Intensity Oedema T1w 0.65

f3 GLCM_Contrast Texture Necrosis FLAIR 0.61

f4 GLSZM_Grey Level Variance Texture Enhanced area T1c 0.61

f5 GLSZM_Low Grey Level Zone Emphasis Texture Oedema T2w 0.64

f6 NGTDM_Business Texture Core T2w 0.71
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Here we tried to understand the relevance in a fundamental
way. Radiological intratumour heterogeneity usually re-
flects multiregional variations in blood flow, oedema and
necrosis, whereas genetic heterogeneity is typically due to
random mutations. From tumour evolutionary and ecolog-
ical perspectives, the imaging-genomics association might
be ascribed to the link between imageable microenviron-
mental variations and cellular adaptive strategies [44],
which is governed by interactions between Darwin selec-
tion forces and cell phenotype in a predictable and reliable
manner [45, 46]. This link may enable clinical imaging to
make reliable predictions about cellular or even molecular
properties of cancer [46]. Based on this hypothesis, fea-
tures from multiregional and multiparametric MR images
could identify microenvironmental variations and radio-
logically characterize intratumour Darwin dynamics. The
feature maps in Fig. 3 give an example of how the selected
features radiologically quantified the multiregional varia-
tions. Specifically, the feature f1 measured the intensity
asymmetry within the tumour core; f2 was the quadratic
intensity in oedema; f3 measured the amount of local var-
iations present in necrosis; f4 quantified the intensity vari-
ance between homogeneous subregions within the en-
hancement area; f5 characterized the texture homogeneity
of the oedema area; f6 described the spatial rate of intensity
change within the tumour core. Several similar attributes
have been reported previously, such as a certain image
uniformity in tumour core and a certain image pattern in

the enhancement area for methylated tumours [13, 14].
Lemée et al. [28] revealed that GBM genetic heterogeneity
also involves the oedema area. Our method offers an auto-
matic way to identify methylation-relevant multiregional
features that in the radiological level characterize the
intratumour microenvironmental variations.

A previous study showed that GMB MGMT methyla-
tion may be more prevalent in the elderly [47]. Our results
show that although patient age was selected as a predic-
tive univariable, it was abandoned by the all-relevant se-
lection algorithm. From Table 5 we can observe that in the
validation cohort combing age with univariately-
predictive image features resulted in a slight performance
degradation (AUC=0.75, accuracy=68 %) compared with
using univariately-predictive image features alone
(AUC=0.76, accuracy=70 %). All the radiomics and com-
bined models outperformed the model built with clinical
factors alone. Our results highlight the value of the
radiomics feature rather than the clinical factor in meth-
ylation prediction. When the patients were stratified by
age, sex and KPS, the six-feature model outperformed
the eight-feature model in all subgroups with significantly
better AUCs.

The clinical relevance of this multicentre study lies in the
advancement of the radiomics-based non-invasive pretreat-
ment prediction of GBM MGMT methylation, and in the ex-
tension of existing knowledge by the all-relevant multiregion-
al and multiparametric MRI features that may serve as

Table 4 A summary of the
selected univariately-predictive
and non-redundant features with
their univariate AUCs

No. Selected feature name Type Region Modality AUC

p1 Compactness Geometry Core - 0.65

P2 Energy Intensity Necrosis T2w 0.67

p3 Skewness Intensity Enhanced area T1c 0.67

p4 GLCM_Inverse Difference Moment Normalized Texture Core T1c 0.66

p5 GLRLM_Short Run Low Grey Level Emphasis Texture Core FLAIR 0.67

p6 GLRLM_Grey Level

Non-uniformity

Texture Enhanced area T1c 0.68

p7 GLSZM_Small Zone Low Grey Level Emphasis Texture Whole tumor T1w 0.72

p8 GLSZM_Grey Level Variance Texture Edema T2w 0.66

Table 5 A performance summary
of the radiomics models,
combined models and clinical
model

Models Primary cohort Validation cohort

AUC ACC SENS SPEC AUC ACC SENS SPEC

AR radiomics 0.95 0.87 0.84 0.89 0.88 0.80 0.70 0.86

PN radiomics 0.94 0.88 0.83 0.92 0.76 0.70 0.61 0.76

AR radiomics + clinical 0.95 0.87 0.84 0.89 0.88 0.80 0.70 0.86

PN radiomics + clinical 0.95 0.89 0.87 0.90 0.75 0.68 0.60 0.76

Clinical 0.83 0.72 0.63 0.79 0.64 0.68 0.55 0.75

ACC accuracy, SENS sensitivity, SPEC specificity, AR all-relevant, PN univariately-predictive non-redundant
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putative imaging-genomics biomarker [48]. However, this
study still had several limitations. First, only four standard-
of-care MR modalities were used. Previous studies have sug-
gested that DTI and dynamic contrast-enhanced (DCE) im-
ages are promising in predicting MGMT methylation. Our
model may be potentially improved by incorporating these
new images. Second, although reasonable accuracy of 80 %
and AUC of 0.88 had been achieved on an independent vali-
dation cohort, we need to be cautious about direct use to aid
clinical decision making. Notwithstanding the virtue of pre-
treatment non-invasive detection, currently the biopsy-based
assessment may still outperform the prediction accuracy of
our model. More efforts should be made to improve the pre-
diction performance. Thirdly, although this study was based
on multicentre cohorts, larger data sets from more institutes
should be involved to demonstrate the potential clinical utility
of our model. A larger training data set also has great potential
to improve the prediction performance of our machine
learning-based model.

In conclusion, the presented multiregional and
multiparametric MRI radiomics model has the potential to
non-invasively detect MGMT promoter methylation status in
GBM. The all-relevant features predict MGMG methylation
with significantly better performance than the univariately-
predictive and non-redundant features. Despite the limitations,
the proposedmodel may serve as a potential imaging biomarker
to guide preoperative patient care and make a step forward in
radiomics-based precision medicine for GBM patients.
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