
MAGNETIC RESONANCE

Chemical shift magnetic resonance imaging for distinguishing
minimal-fat renal angiomyolipoma from renal cell
carcinoma: a meta-analysis

Ling-Shan Chen1
& Zheng-Qiu Zhu2

& Zhi-Tao Wang1 & Jing Li1 & Li-Feng Liang1 &

Ji-Yang Jin3
& Zhong-Qiu Wang1

Received: 23 June 2017 /Revised: 7 October 2017 /Accepted: 17 October 2017 /Published online: 24 November 2017
# European Society of Radiology 2017

Abstract
Objectives To determine the performance of chemical shift
signal intensity index (CS-SII) values for distinguishing
minimal-fat renal angiomyolipoma (mfAML) from renal cell
carcinoma (RCC) and to assess RCC subtype characterisation.
Methods We identified eligible studies on CS magnetic reso-
nance imaging (CS-MRI) of focal renal lesions via PubMed,
Embase, and the Cochrane Library. CS-SII values were ex-
tracted by lesion type and evaluated using linear mixedmodel-
based meta-regression. RCC subtypes were analysed. Two-
sided p value <0.05 indicated statistical significance.
Methodological quality was assessed using the Quality
Assessment of Diagnostic Accuracy Studies 2 tool.
Results Eleven articles involving 850 patients were included.
Minimal-fat AML had significantly higher CS-SII value than
RCC (p < 0.05); there were no significant differences between
mfAML and clear cell RCC (cc-RCC) (p = 0.112). Clear cell
RCC had a significantly higher CS-SII value than papillary
RCC (p-RCC) (p < 0.001) and chromophobe RCC (ch-RCC)
(p = 0.045). The methodological quality was relatively high,
and Begg’s test data points indicated no obvious publication
bias.
Conclusions The CS-SII value for differentiating mfAML
from cc-RCC remains unproven, but is a promising method
for differentiating cc-RCC from p-RCC and ch-RCC.

Key Points
• RCC CS-SII values are significantly lower than those of
mfAML overall.

•CS-SII values cannot aid differentiation between mfAML and
cc-RCC.

• CS-SII values might help characterise RCC subtypes.

Keywords Renal cell carcinoma .Minimal-fat
angiomyolipoma . Chemical shift magnetic resonance
imaging . Chemical shift signal intensity index .

Differentiation

Introduction

Angiomyolipoma (AML), the most common benign renal
tumour, is histologically composed of various proportions
of adipose tissue, smooth muscle, and thick-walled blood
vessels [1]. Originally, evidence of macroscopic fat within
a renal cortical tumour on computed tomography (CT) or
magnetic resonance imaging (MRI) was considered a
unique, identifying feature of classic AML [2–4].
However, macroscopic fat may be subtle or completely
absent in minimal-fat AML (mfAML), which account for
approximately 5% of AML [5]. Meanwhile, there are ex-
tensive findings that some renal cell carcinomas (RCC) can
contain either some macroscopic fat or minimal fat content
owing to lipid-producing tumour necrosis, bone metaplasia
with fatty marrow elements, or perinephric or renal sinus
fat entrapment [6, 7]. Moreover, clear cell RCC (cc-RCC)
frequently contain varying amounts of intracellular lipid
and glycogen in addition to macroscopic fat [8, 9].
Consequently, these overlapping imaging features may
lead to the misinterpretation of mfAML as RCC, and lead
to some patients undergoing unnecessary surgery.
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Chemical shift MRI (CS-MRI), which has been widely used
for differentiating adrenal adenoma from other neoplasms by
quantifying the minimal fat content [10–12], is a useful tech-
nique for diagnosing mfAML [13, 14]. In CS-MRI, a decrease
in signal intensity (SI) on opposed-phase gradient-echo images
is a function of the ratio of lipid content to the total amount of
tissue in each voxel. In general, a substantial CS SI index [CS-
SII = (SIin − SIopp)/(SIin) × 100], where SIin is the in-phase SI
and SIopp is the opposed-phase SI, decrease (CS-SII > 20–25%)
appears indicative of either cc-RCC or AML [15, 16]. In mouse
liver, Peng et al. [17] proved a strong correlation between liver
fat content and CS-MRI (r = 0.882). Yet, no pathological or
in vitro radiological research comparing the actual kidney lipid
content between mfAML and cc-RCC has been performed so
far, and the added value of in vivo evaluation of the small
intratumoural lipid content by MRI using double-echo CS se-
quences is controversial. Some studies [18, 19] have reported
that the CS-SII is a useful value for distinguishing mfAML
from other renal neoplasms, whereas others [20–24] have ob-
served a negative result.

Therefore, we aimed in this meta-analysis to review pub-
lished studies that used the CS-SII value to differentiate
mfAML and RCC to define the impact of this technique in
routine practice for the characterisation of renal tumours and
furthermore to assess its capability for classifying RCC
subtypes.

Materials and methods

Literature search and selection

The PubMed, Cochrane Library and Embase databases
were searched systematically for relevant published arti-
cles. The search strategy was based on the combination of
the following keywords: (BMRI^ OR Bmagnetic resonance
imag i n g^) AND ( Br e n a l^ OR Bk i d n e y^) AND
(Bneoplasm^ OR Btumor^ OR Bcancer^ OR Bcarcinoma^
OR Blesion^). The inclusion criteria were: (1) CS-SII val-
ue was used to determine mfAML or primary malignancy
of a renal lesion; (2) data were analysed on a per-lesion
basis; (3) histopathological results and/or clinical follow-
up were used as the reference standard; (4) absolute data
of CS-SII values could be obtained. The article search
was limited to those published in English. Review arti-
cles, letters, case reports and conference abstracts were
excluded due to insufficient data.

Data extraction and quality assessment

Two investigators reviewed the included articles and ex-
tracted the relevant details independently for the meta-
analysis, resolving any differences by consensus. The

extracted study characteristics were: first author, year of
publication, country of origin, sample characteristics
[number of patients and lesions, mean age, sex, study de-
sign, type of renal lesion, region of interest (ROI)], CS-SII
parameters (modality, magnetic field strength, imaging se-
quences) and reference standard (Table 1). In addition, the
absolute data of CS-SII values were recorded for further
analysis. The Quality Assessment of Diagnostic Accuracy
Studies 2 (QUADAS-2) tool [25] was used to extract the
appropriate study design characteristics from each study,
and consisted of 11 items: each was answered with Byes^,
Bno^, or Bunknown^. BYes^ was assigned 1 score, and
Bno^ or Bunknown^ was assigned 0 score. A score of 9
was used as a cut-off value for high versus low quality.

Statistical analysis

The CS-SII values of mfAML or RCC subtypes were extract-
ed on a per-lesion basis. Based on these data, and regardless of
the analysis population (intention to treat vs per protocol),
meta-regression analyses based on a linear mixed model for
pooled mean CS-SII values with 95% confidence intervals
(CIs) was conducted using STATA software (ver. 12.0;
StataCorp, College Station, TX, USA). Owing to the lack of
information on the different analysis populations, we did not
perform sensitivity analyses. We performed subgroup analy-
ses on the RCC subtypes. In addition, publication bias was
examined using Begg’s test. The level of statistical signifi-
cance was set to a two-sided p value of 0.05.

Heterogeneity across studies was evaluated using
Cochran’s Q-statistic (p < 0.05 was considered significant)
and the I2 test (0%, no heterogeneity; 100%, maximal hetero-
geneity). A random- or fixed-effects model was used based on
the heterogeneity analysis. A random-effects model was used
when there was significant heterogeneity among studies (p <
0.05 or I2 > 50%); otherwise, a fixed-effects model was used.
In either case, the results should be interpreted with care.

Results

Literature search and study description

The search initially yielded 11,689 articles (deadline, 31
May 2017). Figure 1 shows the detailed flow chart of the
literature search. Eventually, 11 articles involving 850 patients
and 1,183 CS-SII measurements met the inclusion and exclu-
sion criteria and were selected for data extraction and data
analysis. There were a total 127 and 436 measurements for
mfAML and RCC, respectively. RCC was divided into cc-
RCC (n = 427), papillary RCC (p-RCC, n = 156), and chro-
mophobe RCC (ch-RCC, n = 37). Table 1 lists the pooled
characteristics of these 11 articles.
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Quality assessment and publication bias

The quality assessment results in Table 1 demonstrate the
QUADAS-2 questions for each study. There were overall
high scores for the questions relating to quality of patient
selection [91% (10/11 studies) to 100% (11/11 studies) of
studies received a score for Byes^] and quality of index
test interpretation [91% (10/11 studies) to 100% (11/11
studies)]. However, the scores for the question on the
quality of reference standard interpretation were relatively
lower [55% (6/11 studies)], largely related to the lack of
exhibition in the literature four of the 11 studies (36%).
The question on the interval between the index test and
reference standard examination also had lower scores
[18% (2/11 studies)], generally related to the inclusion
of patients with an undocumented time interval between
MRI and the reference standard examination. In summary,
ten studies were high quality (score ≥ 9), and only one
study was low quality (score = 7). In addition, Begg’s test
found no significant publication bias (mfAML, p = 0.175;
RCC, p = 0.308; cc-RCC, p = 0.536; ch-RCC, p = 0.296;
p-RCC, p = 0.566).

Pooled estimates and subgroup analyses

Table 2 shows the pooled results, Figs. 2 and 3 show
forest plots of the CS-SII values of mfAML, and RCC
and its subtypes. The summarised CS-SII values for
mfAML, RCC, and cc-RCC were 13.63 (95% CI,
10.15–17.12), 7.92 (95% CI, 4.78–11.07) and 9.99 (95%
CI, 7.17–12.82), respectively. The CS-SII measurement of
mfAML was significantly higher than that of RCC (p =
0.017), yet no significant differences were observed in the
comparison between mfAML and cc-RCC (p = 0.11). For
RCC subtype, the CS-SII measurement of cc-RCC was
significantly higher than that of p-RCC [9.99 (95% CI,
7.17–12.82) vs -5.69 (95% CI, -8.40 to -2.98), p <
0.001] and ch-RCC [9.99 (95% CI, 7.17–12.82) vs 1.82
(95% CI, -5.68 to 9.32), p = 0.045]. However, the CS-SII
values of p-RCC and ch-RCC were not significantly dif-
ferent (p = 0.06). This is illustrated in Fig. 4.

Discussion

Generally, the diagnosis of renal AML depends on the detec-
tion of intratumoural macroscopic fat on CT. Nevertheless,
only 3–10% mature fat is microscopically detected in AML
[26], in which fat is not visible on CT and is distributed het-
erogeneously [5, 27, 28]. New evidence [20, 29] shows that
fat levels are substantially lower in the estimated percentage
volume of intratumoural fat of surgical mfAML compared
with surgically removed Bclassic^ AML. In contrast, the pres-
ence of microscopic fat is non-specific and can also be seen in
RCC, especially cc-RCC. Owing to the histological character-
istic of dissolved lipids and cholesterol accumulation in the
cytoplasm in cc-RCC [9, 30], abundant cytoplasmic lipid is
observed in as many as 60% of cc-RCC [16]. Therefore, mak-
ing a correct diagnosis for preoperative differentiation of
mfAML and RCC, especially cc-RCC, is challenging.

CS-MRI (also known as in-phase and out-of-phase imag-
ing, or opposed-phase imaging) has been proved extremely
useful for characterising lesions and organs with fatty [12,
31–33] or lipid-poor [12, 34] components, and appears to be
the most reliable method for differentiating adenomas from
non-adenomas [34–36]. Recently, the CS-SII value has also
been used to differentiate mfAML and other renal neoplasms.
Outwater et al. [16] first used CS-MRI for identifying intra-
cellular lipid within renal neoplasms, and suggested that both
AML and cc-RCC exhibit a decreased SI on opposed-phase

Fig. 1 Flow diagram of the study
selection procedure

Table 2 Number of cases and CS-SII values of renal lesion subtypes

Lesion Number Pooled CS-SII SE 95% CI

mfAML 127 13.63 1.77 10.15-17.12

RCC 436 7.92 1.61 4.78-11.07

cc-RCC 427 9.99 1.44 7.17-12.82

P-RCC 156 -5.69 1.38 -8.40-2.98

ch-RCC 37 1.82 3.82 -5.68-9.32

CS-SII chemical shift signal intensity index, SE standard error, CI confi-
dence interval, mfAML minimal fat angiomyolipoma, RCC renal cell
carcinoma, cc-RCC clear cell renal cell carcinoma, p-RCC papillary renal
cell carcinoma, ch-RCC chromophobe renal cell carcinoma

Eur Radiol (2018) 28:1854–1861 1857



images. However, the value of CS-MRI for differentiating
mfAML and RCC is controversial. Kim et al. [18] and
Sasiwimonphan et al. [19] reported that SI loss on opposed-
phase images of CS-MRI was higher for mfAML compared
with cc-RCC. Nevertheless, Jhaveri et al. [24] confirmed a
significantly higher percentage SI decrease in cc-RCC cases
(median, 24.3%) than in either mfAML (median, 3.2%) or
non–cc-RCC (median, −0.8%). Yet, other studies [20–23]
have reported conflicting results, with no difference between
the CS-SII values of mfAML and cc-RCC. The present meta-
analysis pooled those estimates and showed that, overall,
mfAML and cc-RCC exhibit a similar decrease in SI,
reflecting a similar amount of intravoxel fat (p = 0.11) (Fig.
4). This means that CS-SII might not be a suitable MRI pa-
rameter for differentiating mfAML and cc-RCC, and may
thereby lead to inaccurate diagnosis. However, the use of other
multivariate analyses for MRI findings, and the combination
of low T2-weighted imaging (T2WI) and/or apparent diffu-
sion coefficient (ADC) signal is highly accurate for diagnos-
ing mfAML, while cc-RCC always manifests as heteroge-
neously isointense to hyperintense to the renal cortex on
T2WI and with moderate restricted diffusion [37]. The en-
hancement pattern, i.e. hyperenhancement during the
corticomedullary phase of enhancement with gadolinium
washout over time, overlapped between the two tumours
[38]. Furthermore, the presence of intratumoural haemorrhage
or calcification are highly specific for RCC and are not ob-
served in mfAML [37].

Different RCC subtypes have unique histopathological fea-
tures, genetic expression patterns and clinical behaviour [36,
39]. Previous studies have suggested that patients with p-RCC
or ch-RCC have better prognosis than patients with cc-RCC
[40, 41]. In addition, particularly in patients with advanced
and metastatic RCC, these subtypes respond differently to
molecular targeted therapies: the tyrosine kinase inhibitors
sunitinib and sorafenib are more effective against cc-RCC,
whereas temsirolimus has recently been shown to be more

effective against non-cc-RCC [42–44]. Therefore, accurate
identification of the specific pathologic diagnosis prior to
treatment is critical. Current multiparametric MRI, such as
dynamic contrast enhancement (DCE) and diffusion-
weighted imaging (DWI), might be a valid diagnostic ap-
proach for characterising these two renal masses accurately.
Sun et al. [45] reported that signal intensity changes of the
corticomedullary phase on DCE MRI were the most effective
parameter for distinguishing cc-RCC and p-RCC. Mytsyk
et al. [46] demonstrated that cc-RCC had the largest mean
ADC value among the three subtypes, while ch-RCC had
the lowest ADC value. Nevertheless, no report has compared
the CS-SII values among the three subtypes. Our analysis of
RCC subtypes also showed significantly different CS-SII
values between cc-RCC and p-RCC (9.99 ± 1.44 vs -5.69 ±
1.38, p < 0.001), and between cc-RCC and ch-RCC (9.99 ±
1.44 vs 1.82 ± 3.83, p < 0.05) (Fig. 4), i.e. CS-SII measure-
ments might aid the differentiation of cc-RCC from the other
two major RCC subtypes.

Under electron microscopy, cc-RCC contains substantially
more intracytoplasmic lipids than other histological RCC sub-
types [9], yet only moderate amounts of intratumoural lipids
(limited to that in the clear cell component) have been shown
in p-RCC, and only small amounts have been shown in ch-
RCC [9], which characterise the distinct SI values on
opposed-phase MR images [3, 16, 47]. In their 2014 study,
Childs et al. [48] found that visual in-phase SI loss occurred in
42% of p-RCC. In our study, p-RCC had negative CS-SII
values, suggesting the presence of areas exhibiting increased
SI on opposed-phase images in p-RCC. This might be helpful
for identifying hemosiderin in p-RCC [49]. Moreover, the
negative CS-SII value of p-RCC may be the reason for the
decreased RCC CS-SII value, rendering the CS-SII values of
mfAML and RCC indistinguishable (13.63 ± 1.77 vs 7.92 ±
1.61, p < 0.05) (Fig. 4). Nevertheless, the difference between
the p-RCC and ch-RCCCS-SII values was not significant (p =
0.06). Current multiparametric MRI, such as DCE and DWI,

Fig. 2 Forest plots of CS-SII values for mfAML (a) and RCC (b)
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Fig. 3 Forest plots of CS-SII
values for cc-RCC (a), p-RCC
(b), and ch-RCC (c)
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might be a valid diagnostic approach for accurate characteri-
sation of these two renal masses.

Our meta-analysis has several limitations. First, as renal
tumours are generally non-homogeneous, the various def-
initions of the ROIs and their reproducibility among dif-
ferent readers and papers (Table 1) may lead to different
results in the literature on the value of CS-SII. Second, the
number of included studies is relatively small, and to some
extent the pooled results might be affected by inherent
factors such as random error. Third, the CS-MRI series
and field-strength parameters lack consensus, which would
have influenced the CS-SII measurements. Furthermore,
owing to the limitations of the published data (e.g. unavail-
ability of individual patient data) and to heterogeneity, it
was not possible to calculate the receiver operating char-
acteristic (ROC) curves or a reliable threshold value.
Fourth, publication bias is unavoidable for clinical evi-
dence, as the relevant data were extracted from non-
randomised controlled trials. Finally, as we excluded re-
ports in languages other than English, there might have
been language bias.

In summary, we conclude that the CS-SII values of CS-
MRI cannot be used to accurately distinguish mfAML from
cc-RCC, but cc-RCC has significantly higher CS-SII values
than p-RCC and ch-RCC. Further adequately designed pro-
spective studies with CS-MRI standardisation, especially
standardisation of the cut-off threshold value, should be con-
ducted to confirm our results.
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