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Abstract
Objectives To determine if identifiable hepatic textural fea-
tures are present at abdominal CT in patients with colorectal
cancer (CRC) prior to the development of CT-detectable he-
patic metastases.
Methods Four filtration–histogram texture features (standard
deviation, skewness, entropy and kurtosis) were extracted
from the liver parenchyma on portal venous phase CT images
at staging and post-treatment surveillance. Surveillance scans
corresponded to the last scan prior to the development of CT-
detectable CRC liver metastases in 29 patients (median time
interval, 6 months), and these were compared with interval-
matched surveillance scans in 60 CRC patients who did not
develop liver metastases. Predictivemodels of livermetastasis-
free survival and overall survival were built using regularised
Cox proportional hazards regression.
Results Texture features did not significantly differ between
cases and controls. For Cox models using all features as predic-
tors, all coefficients were shrunk to zero, suggesting no associa-
tion between any CT texture features and outcomes. Prognostic
indices derived from entropy features at surveillance CT

incorrectly classified patients into risk groups for future liver
metastases (p < 0.001).
Conclusions On surveillance CT scans immediately prior to
the development of CRC liver metastases, we found no evi-
dence suggesting that changes in identifiable hepatic texture
features were predictive of their development.
Key Points
•No correlation between liver texture features and metastasis-
free survival was observed.

• Liver texture features incorrectly classified patients into risk
groups for liver metastases.

• Standardised texture analysis workflows need to be devel-
oped to improve research reproducibility.
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Introduction

Colorectal cancer remains the second leading cause of cancer
worldwide despite expansion of screening programs and ad-
vances in treatment [1, 2]. Significant mortality is attributable
to disease recurrence in colorectal cancer survivors, with an
estimated occurrence of 29–63% of patients diagnosed with
stage II–III disease [3]. The American Society of Clinical
Oncology has highlighted the importance of identifying new
prognostic factors associated with disease recurrence in order
to improve surveillance guidelines [4]. Identifying risk factors
may allow clinicians to tailor surveillance strategies for pa-
tients at higher risk for recurrence, particularly among those
with stage II–III disease. Advances in computing power have
given radiomics, the process of using quantitative image fea-
tures as clinical data, the potential for earlier identification of
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metastatic recurrence that could positively impact outcomes
and help guide post-treatment surveillance strategies [5].

Radiomic features of the liver, themost common site of distant
metastatic spread in patients with colorectal cancer, may provide
information about underlying physiology [6]. It has been shown
that hepatic textural features at staging portal-venous enhanced
computed tomography (CT) appear correlated with hepatic per-
fusion values in colorectal cancer patients [7, 8]. For example,
entropy, a textural feature that increases with overall image
Bdisorder^ [9], appears to be inversely correlated with hepatic
perfusion indices [8]. Such physiologic measurements may be
altered in the setting of early occult liver metastases, where re-
duced portal venous blood flow and increased hepatic arterial
blood flow have been observed in mouse and rat models [10, 11].

Given that CT texture features may reflect changes in hepatic
perfusion, monitoring changes in these features could potentially
alert radiologists to the imminent development of hepatic metas-
tases. In other words, micro-metastatic hepatic disease may be
present, detectable by CT texture features, which may be later
seen at imaging as discrete lesions. However, to our knowledge,
no studies regarding the change in hepatic texture features at CT
during post-treatment surveillance of colorectal cancer patients to
portend subsequent development of hepatic metastases have
been reported. The purpose of this study was twofold. First, a
major aim was to determine if CT texture changes of the hepatic
parenchyma are present in patients shortly before the develop-
ment of hepatic metastases compared with control patients with
colorectal cancer who did not develop hepatic metastases, and if
these changes can predict their development. And secondly,
whether such hepatic textures predictive of changes are present
at the initial staging CT.

Materials and methods

This study was HIPAA-compliant and IRB-approved; the
need for informed consent was waived.

Patient population

A flowchart of patient participation and sample selection is given
in Fig. 1. A database of 923 patients treated with FOLFOX,
FOLFOX + bevacizumab, FOLFIRI or FOLFIRI +
bevacizumab at our institution from 2003 to 2016 was searched
to identify potential patients with colorectal cancer. Colorectal
cancer cases were identified throughmanual review of pathology
reports in the electronic health record. Date of diagnosis was
taken as the date of colonoscopy biopsy or surgical pathology
report of the resected tumour. TNM staging information was
collected from the surgical pathology report of the primary tu-
mour resection. Imaging follow-up was obtained through the
picture archiving and communication system (PACS). Staging
CT images were reviewed by three board-certified abdominal

radiologists (DK, MGL, PJP) to exclude the presence of liver
metastases at the time of initial cancer diagnosis. Then, the ear-
liest CT images demonstrating visible hepatic metastases were
identified. We then searched for the most recent surveillance CT
study prior to the development of CT-detectable liver metastases
(no earlier than 1 year prior to demonstrable metastatic disease).
Sixty control patients were selected such that the distribution of
TNM stages at diagnosis and timing of surveillance scans were
similar to the case cohort, yielding a final sample size of 89.
Chart review was performed by a single reader (SJL).

CT imaging

All texture measurements were performed on anonymised
contrast-enhanced portal venous-phase exams. CT imaging
studies were performed on a variety of scanners (predominate-
ly GE, but also Siemens and Toshiba in a small minority of
cases). Seven scans were performed at 140 kV, two were per-
formed at 130 kVand one was performed at 100 kV; all others
were performed at 120 kV. Our standard IV contrast protocol
consists of weight-based contrast dosing (range, 80–150 ml)
with iohexol (300 mg I/ml), followed by 40-ml saline chaser,
all at 3 ml/s. Portal venous phase imaging is initiated by a liver
enhancement threshold of 50 HU, typically 60–70 s after ini-
tiation of contrast injection. The CT series were reconstructed
at a slice thickness of 5 mm at 3-mm intervals.

Texture analysis

A single image slice at the level of the porta hepatis was
selected for texture analysis of the liver parenchyma, similar
to prior studies (Fig. 2) [12]. All images were reviewed and
appropriate slices were selected by an abdominal radiologist.
These anonymised images were then uploaded to a commer-
cially available texture analysis program (TexRAD Ltd,
Somerset, UK). A region of interest was manually drawn
around the margin of the liver parenchyma by a single reader
(SJL), excluding the large proximal branches of the portal vein
(Fig. 2). To perform texture analysis, the software uses a fil-
tration–histogram method in which an initial filtration step is
performed that highlights image features of a specified size,
followed by histogram analysis of the filtered image. The
initial filtration step uses a Laplacian of Gaussian (LoG) spa-
tial band-pass filter to selectively extract features of different
sizes. Informed in part by prior work, the following
histogram-based texture features were calculated to character-
ise intrahepatic heterogeneity and complexity:

Standard deviation of pixel attenuation histogram (SD)
Entropy of pixel attenuation histogram
Skewness of pixel attenuation histogram
Kurtosis of pixel attenuation histogram
The number of variables was deliberately limited to mini-

mise type I error (multiple hypothesis testing). Each of these
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features was calculated at six filter sizes, ranging between fine
(spatial scaling factor [ssf] = 0–2), medium (ssf = 3, 4) and
coarse (ssf = 5, 6), yielding a total of 24 texture features.

Statistical analysis

Texture features for cases and controls were separately com-
pared at staging and surveillance CT with Mann–Whitney U
tests. Bonferroni correction for type I error was applied.
Hypothesis tests for 24 texture features were performed at

both staging and surveillance CT; the corrected threshold for
statistical significance was p = 0.05/48.

For Cox models predicting freedom from metachronous
metastatic liver disease, time-to-event was defined as the num-
ber of months between the date of tissue diagnosis of colorec-
tal cancer and the date of CT-detectable liver metastases.
Control patients were right-censored at their last follow-up
date at our institution, or at date of death from any cause (if
recorded). For models predicting overall survival, time-to-
event was defined as the number of months between date of
tissue diagnosis and date of death from any cause; control
patients in overall survival models were right-censored at their
last follow-up date at our institution. We also noted the use of
oxaliplatin in each patient’s chemotherapy regimen.
Colorectal cancer patients treated with oxaliplatin frequently
develop sinusoidal obstruction syndrome, which affects he-
patic haemodynamics and thus may affect texture measure-
ments. We tested for a difference in proportion of patients
receiving oxaliplatin between the liver metastases group and
control group with a Pearson’s chi-squared test.

To test our specific hypotheses that hepatic entropy values
are associated with the development of metachronous liver
metastases or overall survival, we built separate Cox propor-
tional hazards models using staging and surveillance CT en-
tropy values as the predictor variables. Linear predictor values
for each patient were obtained by leave-one-out cross-
validation (LOOCV) and were used to create a prognostic
index based on their median value. For a Coxmodel, the linear
predictor is the sum of covariate values weighted by the re-
gression coefficients, and it represents the log(relative hazard)
compared to a hypothetical observation whose linear predictor
value is 0. When the outcome of interest is an adverse event,
higher linear predictor values indicate a greater risk of occur-
rence [13]. Using this paradigm, we assigned patients into
Blow risk^ or Bhigh risk^ groups based on the median value

Fig. 1 Flow diagram for case and
control patient selection

Fig. 2 Images showing a the region-of-interest utilised for CT texture
analysis, and the subsequent output from b fine, c medium and d coarse
filtering of the image. The anatomic level shown was seleceted for
segementation in all patients, performed on the last negative CT prior to
the development of hepatic metastases for cases, andmatched for controls
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of the linear predictors. Kaplan–Meier estimators were then fit
to the data using the linear predictor categorisation, and log-
rank statistics were calculated to determine if the survival func-
tions were significantly different between the two groups [14].

For models using all 24 texture features as predictors, we
utilised least absolute shrinkage and selection operator
(LASSO) regression and LOOCV to perform model selection
[15]. The number of features allowed in the final model is
subjected to a penalty determined by λ, a tuning parameter.
By varying λ, any number of coefficients in the model may be
shrunk to zero, effectively removing them. The optimal value
for λ and thus the number of included features in the final
model is determined by calculating the partial likelihood de-
viance at each λ value through LOOCV, and selecting the
model with the minimal value [16]. This process reduces type
I error rates by reducing the probability of overfitting the
model to the Bnoise^ in the data set, which becomes a signif-
icant concern when there is a large number of predictor vari-
ables relative to the number of observations [17]. LASSO
regression and cross-validation were implemented using the
software package, glmnet, in R [18].

Results

Patient characteristics are listed in Table 1. The median inter-
val between staging and surveillance CT scans from which
texture features were calculated was 14 months for patients
who developed liver metastases (on the subsequent CT scan)
and 22 months for patients who did not develop metastases.
For cases, the median interval between surveillance CT and
the CT showing hepatic metastases was 6 months (IQR 4.5–
11.25 months). The distribution of stage at diagnosis was
well-matched between cases and controls, with the majority
being stage III (69% for cases, 72% for controls). There was

no evidence that the proportion of patients receiving
oxaliplatin in their chemotherapy regimen differed between
cases and controls (p = 0.81 by chi-squared test). The distri-
butions of entropy values for cases and controls at staging and
surveillance CT are shown in Fig. 3.

Table 2 displays the results of Mann–WhitneyU tests com-
paring texture features between cases and controls at staging
and surveillance CT. Two of the tests suggested that kurtosis
values (ssf = 3, 4) differed between cases and controls (p =
0.01, p = 0.03), but these were no longer statistically signifi-
cant after applying Bonferroni correction.

For models using entropy values as predictors, cross-
validated Kaplan–Meier curves and corresponding log-
rank statistics are shown in Fig. 4. At staging CT, using
linear predictor values to categorise patients into groups at
high or low risk for liver metastases resulted in inaccurate
prognostic predictions; patients categorised as high risk had
a significantly greater survival function than those
categorised as low risk (p = 0.02). This suggests that leaving
out a single patient’s hepatic entropy values during model
LOOCV significantly affected the parameter estimates of
the Cox model. Incorrect prognostic categorisation was also
seen when using entropy values at surveillance (pre-

Table 1 Patient demographics
Cases (n = 29) Controls (n = 60)

Mean age at diagnosis (years) 58.1 ± 12.4 61.8 ± 13.3

Sex

Male 18 24

Female 11 36

Median total follow-up (months) 24 (range 3–66) 47.5 (range 11–165)

Median CT interval (months)* 14 (range 2–38) 22 (range 1–42)

Alive at last follow-up 10/29 (34.5%) 47/60 (78.3%)

Stage at diagnosis

I 0 3 (5%)

II 6 (21%) 12 (20%)

III 20 (69%) 43 (72%)

IV 3 (10%) 2 (3%)

*CT interval is time from initial staging CT to Bpre-metastatic^ surveillance CT in cases (and approximately
matched in controls)

�Fig. 3 Box-and-whisker plots show the change in liver parenchyma
entropy values at both the initial staging and the surveillance CT scans
before imminent development of metastasis amongst cases (Y) and
matched for controls (N). Each plot represents entropy values at
different spatial scaling factors (ssf): fine (ssf = 0–2), medium (ssf = 3,
4) and coarse (ssf = 5, 6). The whiskers extend to the furthest
measurement within (1.5 × interquartile range). a, b Staging and
surveillance entropy, respectively. Note the lack of separation for
entropy values between cases and controls for any filter at either time
point. This demonstrates the lack of predictive ability for identifying
those patients who subsequently went on to develop identifiable
metastases at the next CT scan after the surveillance scan depicted
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metastasis) CT to predict liver metastasis-free survival and
overall survival.

For LASSO models using all 24 texture features as predic-
tors, the partial likelihood deviance was still decreasing when
the value for λ shrunk all coefficients to 0, which suggests that
none of the calculated hepatic texture features from either
staging or pre-metastasis CT scans are predictive of future
occurrence of liver metastasis or overall survival.

Discussion

In this study of patients with colorectal cancer, we have shown
that CT texture features of the hepatic parenchyma shortly
before the development of liver metastases are similar to those
ofmatched colorectal cancer patients who do not develop liver
metastases. We compared these CT texture features at both the
initial cancer staging CT and at similar time intervals after
biopsy-confirmed diagnosis (and immediately before CT-
detectable metastases in the case cohort). Using survival anal-
ysis methods developed for high-dimensional data sets, we

showed that these texture features were poor predictors of
the occurrence of liver metastases and overall survival.
Lastly, we tested the hypothesis that hepatic entropy values
are predictive of liver metastases when measured on CT scans
just before their development.

We were not able to predict overall survival or time to liver
metastasis using survival models based on hepatic entropy
values at staging and surveillance pre-metastatic CT. In some
cases, using the models to assign patients to high- and low-risk
groups resulted in categorisations that were worse than ran-
dom assignment to those groups.

Prior studies using CT texture analysis have identified ei-
ther uniformity or entropy of the liver parenchyma as potential
predictors for clinical outcomes in patients with colorectal
cancer [8, 12]. One study has suggested that entropy values
of the liver parenchyma at staging CT may differ between
patients who eventually develop liver metastases and those
who do not, but this study had a limited sample size (total n
= 29) [19]. We sought to test these intriguing hypotheses that
entropy values at CT texture analysis might be predictive of
either the development of hepatic metastases or overall

Table 2 Results of Mann–
Whitney U tests comparing
texture features between patients
who developed liver metastases
and controls

Staging CT Surveillance CT

Feature Spatial Scaling Factor p value Spatial Scaling Factor p value

Skewness 0 0.68 0 0.90

2 0.96 2 0.54

3 0.41 3 0.38

4 0.49 4 0.34

5 0.36 5 0.49

6 0.20 6 0.73

Standard deviation 0 0.86 0 0.65

2 0.7 2 0.38

3 0.47 3 0.61

4 0.67 4 0.65

5 0.94 5 0.5

6 0.74 6 0.26

Kurtosis 0 0.44 0 0.73

2 0.14 2 0.36

3 0.01* 3 0.33

4 0.03* 4 0.35

5 0.75 5 0.46

6 0.22 6 0.57

Entropy 0 0.82 0 0.68

2 0.99 2 0.42

3 0.74 3 0.51

4 0.74 4 0.87

5 0.88 5 0.86

6 0.92 6 0.72

*These results were no longer statistically significant after applying Bonferroni correction for type I error (mul-
tiple hypothesis testing)
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survival. To improve our investigation, we not only included
the initial staging CT but also identified the last nominally
normal CT (in terms of hepatic evaluation) before the devel-
opment of liver metastases. Our results differ from these stud-
ies, and this difference may be due to a variety of reasons.
Most notably, we used a more robust statistical methodology
for feature selection and cross-validation for estimating model
test error rates. These methods reduce data overfitting, leading
to more conservative estimates of prediction accuracy. They
are also less affected by the problems associated with multiple
hypothesis testing, such as false positive associations between
covariates and outcomes [20].

The statistical problems of multiple comparisons are inher-
ent when performing analyses with large numbers of potential
predictor variables, and independent validation studies of pre-
viously generated hypotheses are imperative before large-
scale prospective studies of texture features’ clinical utility
can be carried out [21]. This issue has caused criticism of
texture analysis studies in the recently published literature.
For example, one group conducted a systematic review of
CT texture analysis studies and applied p value correction to
their results using the Benjamini–Hochberg method; none of
the included studies’ results remained statistically significant
after the corrections were applied [22]. Furthermore, they sim-
ulated 100 quantitative random variables in place of the

original image-derived indices from one of the included stud-
ies and found that 10% of these variables were associated with
clinical outcomes. The statistical methodologies of future tex-
ture analysis studies can be improved and false positive asso-
ciations reduced by utilising machine learning and data min-
ing techniques developed for analysing data in other B-omics^
disciplines [23, 24].

The results of texture analysis studies have been difficult to
compare because of variability in acquisition, pre-processing
and reconstruction of images. For example, a recent phantom
study demonstrated that texture features significantly varied
across scanner models, and the authors suggested that re-
searchers should develop a standardised acquisition technique
when collecting images to be used in texture analysis studies
[21]. Another study involving patients with non-small cell
lung cancer tumours showed significant variations in over half
(13/23) of the calculated CT texture features after simulating a
decrease in tube current (mA), and also when comparing fea-
ture values fromwhole-tumour or largest cross-sectional slices
of tumours [25]. Finally, the reconstruction algorithm most
likely varied within our sample since our scans were obtained
over a wide range of time, which also could have affected the
texture parameters used in the study. Overall, these sources of
variation make it difficult to validate results of texture studies
performed at other institutions. The development of a texture-

Fig. 4 a Cross-validated Kaplan–Meier curves displaying liver
metastasis-free survival for patients split into high- and low-risk groups
based on linear predictor values at staging CT. b Liver metastasis-free
survival for patients split into high- and low-risk groups based on linear
predictor values at the Bpre-metastasis^ surveillance CT. c, d Overall
survival for patients split into high- and low-risk groups based on linear
predictor values at staging and pre-metastasis surveillance CT,

respectively. Linear predictor values are calculated through leave-one-
out cross-validation (LOOCV) of Cox survival models, using hepatic
entropy values as covariates. In a, b and d, using linear predictor values
to categorise patients into high- and low-risk groups resulted in incorrect
predictions of patient prognoses (i.e. Blow-risk^ groups show decreased
metastasis-free survival)
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specific protocol that leads to minimal feature variation is
necessary if predictive models are to be validated across dif-
ferent healthcare settings and translated into clinical practice.

There have been increasing efforts to produce guide-
lines and software that facilitate standardisation, reproduc-
ibility and collaboration between radiomics research
groups. A recent review has proposed a set of potential
guidelines for future texture analysis studies to facilitate
reproducibility and pooling of results [21]. Additionally,
open-source software platforms have been developed spe-
cifically for reproducible feature calculation [26]. These
radiomics software platforms were developed with an em-
phasis on transparency and reproducibility of the compu-
tational methods used to perform texture analysis. It is
paramount that future radiomics studies are as transparent
as possible when describing the methods used to acquire,
process and analyse texture features from images.

There are several limitations to our study. Partly because of
the retrospective method of data collection, CTscans included
were performed at multiple institutions on a wide variety of
scanner models, including those from different manufacturers,
in order to reach an adequate sample size. This could have
biased the results and potentially could even mask actual dif-
ferences between cases and controls. Also, we included pa-
tients with stage I–IV disease, although the majority of the
patients in this study that developed liver metastases were
diagnosed with stage III disease. Three patients had metasta-
ses at sites other than the liver at diagnosis, and this may have
affected liver texture measurements in the liver which could
conceivably bias the texture measurements within the case
group. However, by design, there was a similar distribution
of disease stage at diagnosis within the control group, and this
may have sufficiently reduced the bias of the parameter con-
fidence intervals.

In summary, we compared select CT texture features of the
liver parenchyma in patients with colorectal cancer who de-
veloped metachronous liver metastases against those who did
not develop liver metastases. These features were derived
from staging CT images and from CT images just before the
development of liver metastases. We were unable to demon-
strate the predictive utility of the 24 calculated texture features
using a machine learning algorithm developed for high-
dimensional survival analysis. We also were unable to repli-
cate the utility of entropy alone for predicting overall survival
or development of liver metastases. Despite these findings, CT
texture analysis still holds great promise for other clinical
applications and is being investigated in the setting of re-
sponse to therapeutics and evolution of the molecular profile
of cancers. To advance the field of radiomics into clinical
practice, future texture analysis studies must make efforts to
reduce feature variation during image acquisition and compu-
tation so that generated models are easily replicable across
research settings.
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