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may distinguish between low and high grade gliomas
before surgery

Xi-Xun Qi1 & Da-Fa Shi2 & Si-Xie Ren3
& Su-Ya Zhang1 & Long Li4 & Qing-Chang Li5 &

Li-Ming Guan1

Received: 29 June 2017 /Revised: 16 September 2017 /Accepted: 29 September 2017 /Published online: 16 November 2017
# European Society of Radiology 2017

Abstract
Objective To investigate the value of histogram analysis of
diffusion kurtosis imaging (DKI) maps in the evaluation of
glioma grading.
Methods A total of 39 glioma patients who underwent preoper-
ative magnetic resonance imaging (MRI) were classified into
low-grade (13 cases) and high-grade (26 cases) glioma groups.
Parametric DKI maps were derived, and histogram metrics be-
tween low- and high-grade gliomaswere analysed. The optimum
diagnostic thresholds of the parameters, area under the receiver
operating characteristic curve (AUC), sensitivity, and specificity
were achieved using a receiver operating characteristic (ROC).
Result Significant differences were observed not only in 12met-
rics of histogram DKI parameters (P<0.05), but also in mean
diffusivity (MD) and mean kurtosis (MK) values, including age
as a covariate (F=19.127, P<0.001 and F=20.894, P<0.001, re-
spectively), between low- and high-grade gliomas. Mean MK
was the best independent predictor of differentiating glioma
grades (B=18.934, 22.237 adjusted for age, P<0.05). The partial

correlation coefficient between fractional anisotropy (FA) and
kurtosis fractional anisotropy (KFA) was 0.675 (P<0.001). The
AUC of the mean MK, sensitivity, and specificity were 0.925,
88.5% and 84.6%, respectively.
Conclusions DKI parameters can effectively distinguish be-
tween low- and high-grade gliomas. Mean MK is the best
independent predictor of differentiating glioma grades.
Key points
• DKI is a new and important method.
• DKI can provide additional information on microstructural
architecture.

• Histogram analysis of DKI may be more effective in glioma
grading.
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MK mean kurtosis
MRI magnetic resonance imaging
NPV negative predictive value
RD radial diffusivity
RK radial kurtosis
WHO World Health Organization

Introduction

Cerebral gliomas are the most common type of primary brain
tumours, accounting for approximately 28% of all primary
brain and central nervous system (CNS) tumours and 80%
of malignant tumours, according to statistics from the
Central Brain Tumor Registry of the United States
(CBTRUS) [1]. These tumours can be classified into four
grades according to the World Health Organization (WHO)
based on pathological appearance; grade I-II gliomas are low-
grade tumours, while grade III-IV gliomas are high-grade gli-
omas [2]. Glioma preoperative grading, particularly the differ-
entiation between low- and high-grade gliomas, is of the ut-
most importance in offering guidance for therapeutic deci-
sions and predicting prognosis [3–6]. Conventional magnetic
resonance imaging (MRI) techniques are useful tools in grad-
ing gliomas; however, these methods have limited sensitivity
and specificity [3, 6, 7].

With the development of MRI techniques, some advanced
procedures, such as diffusion-weighted imaging (DWI) [6]
and diffusion tensor imaging (DTI) [3, 4, 7], have been widely
used in glioma preoperative grading. DWI is a noninvasive
in vivo imaging technique for the assessment of water mole-
cule diffusive motion in tissues, and this technique can reveal
the microstructural architecture of normal and diseased tis-
sues. DTI is an MRI technique based on DWI, and reflects
the anisotropic diffusion of water molecules in vivo including
their orientation and microstructure integrity. The theoretical
basis for both DWI and DTI is that the diffusion displacement
probability in tissues follows a Gaussian diffusion distribu-
tion. However, the complex microscopic environments of tis-
sues; the influence of microstructures and other structures,
such as cellular membranes and organelles; the interaction
and size of macromolecules; and the tissue viscosity cause
the diffusion displacement probability distribution to deviate
substantially from a Gaussian form. Thus, DWI and DTI have
limitations in accurately reflecting tissue structures and
properties.

Diffusion kurtosis imaging (DKI) is an extension of DTI
and a new MRI technique that describes the non-Gaussian
aspect of water diffusion [8, 9]. DKI enables the use of addi-
tional diffusion metrics to estimate microstructural changes
and better reflects the microstructural complexity of the exam-
ined tissues [5, 8, 10, 11]. DKI provides conventional DTI
metrics, such as fractional anisotropy (FA) and mean

diffusivity (MD) and generates particular DKImetrics, includ-
ing mean kurtosis (MK), kurtosis fractional anisotropy (KFA).
Previous studies have demonstrated the utility of DKI for
assessing glioma grading [5, 10, 12]. Histogram analysis is a
mathematical method that may improve tumour heterogeneity
in MRI assessment without additional imaging, and this anal-
ysis more comprehensively estimates tumour biological char-
acteristics, including intratumour heterogeneity. Histogram
analysis has been widely used in neoplasms for diagnosis,
grading, typing, and response evaluation [4, 13–17].
However, the evaluation of glioma grading using DKI histo-
gram analysis has not yet been reported. Hence, the purpose of
the present study was to investigate the value of the histogram
analysis of DKI-derived maps for the evaluation of glioma
grading.

Materials and Methods

Patients

Between May 2014 and June 2015, 39 patients who
underwent preoperativeMRI, including conventional MR (in-
cluding pre- and post-contrast MR) and DKI, and were path-
ologically confirmed with gliomas were enrolled in the pres-
ent study. According to the WHO criteria, among these 39
patients, 13 had low-grade gliomas (seven women and six
men, with ages ranging from 31-55 years and a mean age of
40.08±8.26 years), and 26 had high-grade gliomas (11 women
and 15 men, with ages ranging from 11-67 years and a mean
age of 54.35±11.31 years).

MRI protocols

All MRI examinations were performed using a 3T MRI sys-
tem (Verio Syngo; Siemens Medical Solutions, Erlangen,
Germany) with an eight-channel head coil. All patients
underwent routine pre- and post-contrast MRI and DKI. The
imaging protocol included pre-contrast, including axial spin-
echo T1-weighted images, fast spine-echo T2-weighted im-
ages, fluid-attenuated inversion recovery T2-weighted im-
ages, sagittal spin-echo T1-weighted images, DKI, and subse-
quent contrast-enhanced axial/sagittal/coronal spin-echo T1W
images. The DKI dataset was acquired using a spin-echo dif-
fusion-weighted echo-planar imaging sequence in two blocks:
a main bock with three b values (b=0 s/mm2, 1,000 s/mm2 and
2,000 s/mm2) and averages=1 and a secondary block with b=0
s/mm2 and averages=9 [8, 18]. The other parameters for the
two blocks were as follows: TR=6,000 ms, TE=98ms, field of
view=222×222 mm2, acquisition matrix=74×74, number of
slices=40, slice thickness=3 mm, inter-slice gap=0, and gradi-
ent directions=30. The total acquisition times for the two
blocks were 6 min 26 s and 1 min 14 s, respectively.
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MRI data processing and histogram analysis

The DKI data were processed using the Diffusion Kurtosis
Estimator (DKE) [9] (version 2.6.0, http://academicdepartments.
musc.edu/cbi/dki/dke.html). Before DKI parameter
estimation, we evaluated all the diffusion images to
ensure no significant image distortion, and the DKI data
were corrected for head motion and eddy current
distortions using the Beddy_correct^ tool in FMRIB's
Diffusion Toolbox (FDT) that was listed in the FMRIB
Software Library (FSL) (https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FSL). DKE was used for spatial smoothing using
a Gaussian filter with a full width at half maximum
(FWHM) value of 3.75 mm (an isotropic FWHM approx-
imately 1.25 times the voxel size is recommended by the
software) and rigid-body co-registration for the DKI data,
and parametric maps were obtained that included the MD,
MK, FA, and KFA values estimated by DKE. Based on
conventional MR images (pre- and post-contrast) and DK
sequence (b=0 s/mm2) images, regions of interest (ROIs)
were manually drawn on MD maps in slices where in the
solid region of the tumours was maximum, and then au-
tomatically projected onto the other parametric maps
(MK, FA, and KFA maps). Solid portions of the tumours
were selected as ROIs, while regions of peritumoural oe-
dema, haemorrhage, cystic change, and necrosis were ex-
cluded (Figs. 1 and 2). The ROIs were drawn using Image
J software (version 1.51d, National Institutes of Health,
Bethesda, MD, USA), and the following parameters were
derived from the DKI parameter map histograms: mean,
minimum, maximum, median, skewness, and kurtosis.

Statistical analysis

All statistical analyses were performed using the SPSS
statistical package for Windows (version 16.0, Chicago,
IL, USA), and all quantitative parameters are reported as
‾x± SD and qualitative parameters are reported as
frequency and percentage. Univariate linear modelling,
including age as a covariate, was used to test differences
in metrics in the solid regions between glioma grades, the
partial correlation adjusted by age to analyse the
dependence of the relationship between FA and KFA in
the solid regions of the tumours. and logistical regression
was used to identify the best independent predictors of
grade among mean DKI parameters adjusted by age.
Receiver operating characteristic (ROC) curves were con-
structed to assess the area under the receiver operating char-
acteristic curve (AUC) and determine the optimum thresh-
old for each histogrammetric to differentiate low- and high-
grade gliomas. We selected the best Youden index as the
best cut-off point. P <0.05 were considered significant.

Results

Comparisons of DKI histogram parameters between low-
and high-grade gliomas

Comparisons of DKI histogram parameters adjusted by age
between low- and high-grade gliomas are shown in Table 1.

Correlation between mean FA and mean KFA

The partial correlation coefficient between the mean FA and
mean KFA values of the solid portions gliomas, which were
adjusted by age, was 0.675 (P<0.001).

Logistical regression analysis of mean DKI parameters
adjusted by age between low- and high-grade gliomas

Logistical regression analysis showed that only the mean MK
value was the best independent predictor of differentiating
glioma grades (Table 2).

Evaluation of the diagnostic efficiency of partial DKI
metrics histogram parameters in differentiating low-
and high-grade gliomas

The ROC analysis showed that mean MD and mean MK
could effectively distinguish between low- and high-grade
gliomas, particularly MK. The AUC of the mean MK was
0.925, and the sensitivity and specificity were 88.5% and
84.6%, respectively. (Table 3, Fig. 3).

Discussion

Histogram analysis based on pixel distribution can provide
more quantitative information regarding tumour heterogeneity
by yielding additional parameters that depict the distribution
of signal intensity, such as kurtosis and skewness, both of
which can reflect the histogram’s deviation from normal dis-
tribution. Histogram analysis of DWI, DTI, and DCE demon-
strated their potential for glioma grading [4, 19, 20]. However,
to the best of our knowledge, our study was the first to use
histogram analysis of DKI to differentiate high- and low-grade
gliomas. The results showed that the histogrammetrics ofMD
and MK were significantly different between high- and low-
grade gliomas, and the mean MK showed higher values for
differentiating high- and low-grade gliomas.

Previous studies have indicated that the apparent diffusion
coefficient (ADC) obtained from DWI and the MD obtained
from DTI are helpful in the preoperative grading of gliomas.
Some studies have reported that the ADC and MD values of
high-grade gliomas were significantly lower than those of
low-grade gliomas [4, 6, 21]. Xiao et al. [6] and Alexiou
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et al. [3] showed that the mean 10% ADC value or the relative
ADC (rADC) value provided the best differentiation between
low- and high-grade astrocytomas. In the present study, the aver-
age MD value of low-grade gliomas (1.62) was significantly
higher than that of high-grade gliomas (1.23), which was lower
than those found in previous studies (1.64 and 1.40, respectively)
[21]. These findings likely reflect the pathological characteristics
of the gliomas. Cell density and cell composition of gliomas are
key factors that determine their pathological grade [3–6, 21];
higher tumour grades exhibit an increased quantity and density
of tumour cells; nuclear atypia; and increased polykaryocyte,
megakaryocyte and caryoplasm ratios, which restrict the diffusion
of water molecules and decrease the ADC/MD values. Tumour
grades were reportedly positively correlated with cell density,
while ADC values were negatively correlated with cell density
and the proportion of nuclei in tumours [22]. However, some
studies [7, 23] have shown that no significant difference between
the average ADC values of high- and low-grade gliomas exists.
This discrepancy may reflect differences in research methods,

scanning parameters, and sample sizes in different studies, and
the ADC values may also be affected by glioma vascularity.

In addition, the present study also showed that the mini-
mum, maximum and median MD values of solid regions in
low-grade gliomas were significantly higher than those in
high-grade gliomas, and the skewness MD values of low-
grade gliomas were significantly lower than those of high-
grade gliomas. These findings were partially consistent with
those of previous studies [6, 23]. Xiao et al. [6] reported that
the minimum ADC values of high-grade gliomas were signif-
icantly lower than those of low-grade gliomas. Kang et al. [23]
also showed that the skewness and kurtosis ADC values in
high-grade gliomas were higher than those of low-grade glio-
mas. These findings provide a more detailed distribution of
tumour cells in gliomas. The density and quantity of tumour
cells in high-grade gliomas are higher; as a result, the diffusion
of water molecules in tumours is more restricted, and the max-
imum, minimum and median ADC values are all decreased.
When the histogram distribution is skewed to the left, the

Fig. 1 A 33-year-old man with astrocytoma (WHO grade II). a: The
lesion shows low signal intensity on the axial T1-weighted image. b:
The lesion shows high signal intensity on the axial T2-weighted image.
c: The lesion shows a slight enhancement effect on axial T1-weighted
enhancement imaging. d: Pathological analysis confirmed astrocytoma

(WHO grade II) (haematoxylin and eosin, ×200). e-h: MD parameter
maps, MK parameter maps, FA parameter maps and KFA parameter
maps, respectively (the border of the ROI is outlined in yellow on each
parameter image). i-l: Histograms of the ROIs for MD, MK, FA, and
KFA, respectively
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Fig. 2 A 48-year-old man with glioblastoma (WHO grade IV). a: The
lesion shows heterogeneous signalling on axial T1-weighted images. b:
The lesion shows high heterogeneous signalling with a peripheral signal
on axial T2-weighted images. c: The lesion shows significant
inhomogeneous enhancement on axial T1-weighted enhancement imag-
ing. d: Pathological analysis confirmed glioblastoma (WHO grade IV)

(haematoxylin and eosin, ×200). e-h: MD parameter maps, MK
parameter maps, FA parameter maps and KFA parameter maps,
respectively (the border of the ROI is outlined in yellow on each
parameter image). i-l: Histograms of the ROIs for MD, MK, FA, and
KFA, respectively

Table 1 Comparisons of MKI
histogram parameters adjusted by
age between low- and high-grade
gliomas

Mean Minimum Maximum Median Skewness Kurtosis

MD Low-grade 1.62±0.32a 1.11±0.24a 2.09±0.30a 1.63±0.35a -0.12±0.52 0.58±1.33

High-grade 1.23±0.20a 0.89±0.18a 1.85±0.35a 1.21±0.22a 0.59±0.77 1.05±2.26

F value 19.127 11.426 6.598 19.095 6.193 0.182

P value <0.001** 0.002** 0.015* <0.001** 0.018* 0.672

MK Low-grade 0.49±0.11 0.31±0.06 0.83±0.16 0.48±0.11 0.90±0.75 1.24±2.69

High-grade 0.75±0.17 0.50±0.11 1.00±0.25 0.74±0.17 0.11±0.43 -0.11±1.36

F value 20.894 25.257 6.239 21.068 9.387 1.907

P value <0.001** <0.001** 0.017* <0.001** 0.004** 0.176

FA Low-grade 0.15±0.06 0.05±0.02 0.35±0.14 0.14±0.06 0.84±0.53 1.19±1.73

High-grade 0.17±0.05 0.06±0.02 0.38±0.12 0.17±0.05 0.65±0.59 0.67±1.63

F value 1.439 0.682 0.819 1.081 0.512 1.932

P value 0.238 0.414 0.372 0.305 0.479 0.173

KFA Low-grade 0.34±0.06 0.16±0.05 0.59±0.07 0.34±0.07 0.40±0.53 0.36±1.21

High-grade 0.30±0.08 0.14±0.04 0.53±0.09 0.30±0.08 0.43±0.50 0.14±1.18

F value 0.789 1.758 1.362 0.547 0.001 0.017

P value 0.380 0.193 0.251 0.464 0.980 0.897

Note: a ×10-3 mm2 /s * P<0.05 ** P<0.01
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skewness ADC values increase. In addition, when the data
distribution is steeper, the kurtosis ADC values increase.

The FAvalues in glioma grading showed considerable var-
iations from previously reported findings. Alexiou et al. [3]
and Liu et al. [7] showed that the FA values of low-grade
gliomas were significantly lower than those of high-grade
gliomas, and the FA values of tumours were positively corre-
lated with the Ki-67 index [3]. However, other studies have
shown that the FA values were not significantly different be-
tween low- and high-grade gliomas and could not be used to
distinguish low-grade gliomas from high-grade gliomas [4, 5,
10, 12, 21]. In the present study, the average, minimum, max-
imum, and median FA values of low-grade gliomas were
higher than those of low-grade gliomas, while the kurtosis
and skewness FA values were lower, although no significant
differences between the groups was observed, consistent with
the findings of later studies. The more significant increase in
FA values of high-grade gliomas may reflect their more com-
plex histopathological microstructures. The quantity and den-
sity of high-grade glioma cells are higher [3, 7]; specifically,
g l ioblas tomas of ten have pseudopal isad ing and
chrysanthemum-like structures, with obvious blood vessels
and vascular endothelial hyperplasia and more orderly ar-
ranged tumour cells, thereby resulting in increased FA values
[24].

DKI can quantify the degree of diffusion restriction or tis-
sue complexity [25], and more complex tissue structures are
correlated with higher MK values [8, 18]. Raab et al. [10]
showed that the average MK values of grade II astrocytomas,
grade III astrocytomas and glioblastomas were 0.48±0.02,
0.62±0.03, and 0.81±0.04, respectively, and significant differ-
ences between two of the groups were observed. Some studies
showed that the average MK values were significantly lower
in low-grade gliomas than those in high-grade gliomas [5, 12,

21, 26]. In the present study, the mean and medianMK values
of low-grade gliomas were significantly lower than those in
high-grade gliomas, and mean MK was the best independent
predictor of differentiating glioma grades (B=18.934,
P=0.002), which may be affected by age because the B value
was higher when adjusted by age. Thus, the true efficiency of
the mean MK value in differentiating glioma grades might be
partially decreased by age. Our findings were consistent with
those of previous studies [4, 27, 28], as van Cauter et al. [12]
and Falangola et al. [29] found a distinct decrease in mean
kurtosis with age. However, high-grade gliomas have more
complex tissue structures and higher MK values and are fre-
quently observed in older patients [1]. Those factors may be
the main reasons why age could decrease the true efficiency of
meanMK in differentiating glioma grades. More complex cell
structure, higher cell densities, and more striking nuclear
atypia and nuclear pleomorphism, which is associated with
greater angiogenesis and tissue necrosis, are observed in
high-grade gliomas [10, 12]. Thus, the mean, minimum, max-
imum, and median MK values of high-grade gliomas were
higher than those of low-grade gliomas. Gliomas are frequent-
ly observed in white matter, and previous studies [5, 10, 12]
have shown that the MK values increase with increasing gli-
oma grade but remain lower than those of normal white mat-
ter. In other words, the complexity of the glioma structure
increases with increasing glioma grade, and the MK value is
closer to that of normal white matter; thus, the histogram dis-
tribution of the MK values of high-grade gliomas is skewed to
the right, with skewness closer to 0 (skewness of normal dis-
tribution is 0).

KFA is mathematically analogous to FA and represents a
parameter of kurtosis tensor and an extension of fractional
anisotropy in kurtosis tensor. Similar to FA, lower KFAvalues
are correlated with higher isotropic diffusion. Previous studies
have shown that KFA provides additional diffusion informa-
tion and can better assess the complexity of tissue structures
[30, 31]. KFA is currently not used for glioma grading. In the
present study, the histogram parameters of KFAwere not sig-
nificantly different between high- and low-grade gliomas,
which was similar to the results of a previous report by
Stadlbauer et al. [32]. In addition, the KFA value of the solid
regions of gliomas was significantly higher than the FAvalue,
which is consistent with the results obtained from the analysis
brains from healthy volunteer and rats [30, 31]. We also

Table 3 ROC results of partial DKI metrics histogram parameters

Diagnostic index AUC Cutoff value Se (%) Sp (%) PPV (%) NPV (%) Accuracy (%)

MD_mean 0.870 1.29 92.3 (12/13) 65.4 (17/26) 57.1 (12/21) 94.4 (17/18) 74.4 (29/39)

MD_min 0.796 0.94 92.3 (12/13) 65.4 (17/26) 57.1 (12/21) 94.4 (17/18) 74.4 (29/39)

MK_mean 0.925 0.63 88.5 (23/26) 84.6 (11/13) 92.0 (23/25) 78.6 (11/14) 87.2 (34/39)

MK_min 0.926 0.42 84.6 (22/26) 100.0 (13/13) 100.0 (22/22) 76.5 (13/17) 89.7 (35/39)

Table 2 Logistical regression analysis of mean MK

B SE Wald P

Model 1

mean MK 18.93 6.21 9.31 0.002

Model 2

mean MK* 22.24 8.82 6.35 0.012

*adjusted by age
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observed a positive correlation between FA and KFA, with a
partial correlation coefficient of 0.675 (P<0.001). The KFA
value of high-grade gliomas was lower than that of low-grade
gliomas, while the opposite was observed for FA (the FAvalue
of high-grade gliomas was higher than that of low-grade gli-
omas). Thus, these results require further study.

Previous studies [12, 29] have shown that the diagnostic
efficiency of MD, MK, and FA may be affected by age. In the
present study, the age span of the patient group with high-
grade gliomas was larger than that of the low-grade glioma
group. Hence, to eliminate age-related influences on parame-
ter estimation, we also used a univariate linear modelling anal-
ysis that included age as a covariate to test the differences of
mean DKI parameters between glioma grades, which made
the parameters dependent on tissue properties related to the
disease and not age. We found significant differences in the
abilities of mean MD and mean MK to differentiate glioma
grades (F=19.127, P<0.001 and F=20.894, P<0.001, respec-
tively), which is consistent with the results of previous studies.

Tietze et al. [26] reported the higher diagnostic value of
MK and MD when optimum diagnostic thresholds of MK
and MD were 0.58 and 1.46×10-3 mm2/s, respectively. The
results of the present study are consistent with those of previ-
ous studies. We observed the AUC and cut-off value of the
mean MD to be 0.870 and 1.29×10-3 mm2/s, respectively, and
the sensitivity, specificity and accuracy were 92.3%, 65.4%,
and 74.4%, respectively. The AUC and cut-off value of the
mean MKwere 0.925 and 0.63, respectively, and the sensitiv-
ity, specificity, and accuracy were 88.5%, 84.6%, and 87.2%,
respectively. The specificity and accuracy of the mean MK
were higher than those of the mean MD [5, 27]. In addition,
the minimum MK values showed high diagnostic efficiency,
which was close to those of mean MK.

The present study also had some limitations. Although we
optimised the DKI scanning protocol based on previous stud-
ies, the scan time and data post-processing time were still
relatively long. Tietze et al. [26] proposed a new and faster
DKI method, with scanning and data post-processing times of
166 s and 3-5 s, enabling larger-scale implementation in clin-
ical studies. Furthermore, the number of low-grade glioma
patients was relatively small, and the reliability of the results
should be confirmed in larger patient samples by prospective
studies.

In conclusion, the present study demonstrated significant
differences in the DKI parameters between high- and low-
grade gliomas using the histogram analysis of DKI-derived
maps. Mean MKwas the best independent predictor of differ-
entiating glioma grades.
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Methodology
• retrospective
• diagnostic or prognostic study
• performed at one institution
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