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MRI features can predict EGFR expression in lower grade
gliomas: A voxel-based radiomic analysis
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Abstract
Objective To identify the magnetic resonance imaging (MRI)
features associatedwith epidermal growth factor (EGFR)expres-
sion level in lower grade gliomas using radiomic analysis.
Methods 270 lower grade glioma patients with known EGFR
expression status were randomly assigned into training (n=200)
and validation (n=70) sets, and were subjected to feature extrac-
tion. Using a logistic regression model, a signature of MRI
features was identified to be predictive of the EGFR expression
level in lower grade gliomas in the training set, and the accuracy
of prediction was assessed in the validation set.
Results A signature of 41 MRI features achieved accuracies of
82.5% (area under the curve [AUC] = 0.90) in the training set
and 90.0% (AUC = 0.95) in the validation set. This radiomic
signature consisted of 25 first-order statistics or related wavelet

features (including range, standard deviation, uniformity, vari-
ance), one shape and size-based feature (spherical dispropor-
tion), and 15 textural features or related wavelet features (includ-
ing sum variance, sum entropy, run percentage).
Conclusions A radiomic signature allowing for the prediction
of the EGFR expression level in patients with lower grade
glioma was identified, suggesting that using tumour-derived
radiological features for predicting genomic information is
feasible.
Key Points
• EGFRexpression status is an important biomarker forgliomas.
• EGFR in lower grade gliomas could be predicted using
radiogenomic analysis.

• A logistic regression model is an efficient approach for
analysing radiomic features.
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Abbreviations
AUC Area under the curve
EGFR Epidermal growth factor receptor
MRI Magnetic resonance imaging
ROC Receiver operating characteristic

Introduction

Gliomas are the most common primary brain malignancies in
adults. Lower grade gliomas refer to World Health
Organization (WHO) grade II and III gliomas [1], and the
response to treatment and survival of these patients differs
significantly due to genetic differences between lower grade
gliomas [2]. Recently, the use of individualised cancer therapy
has attracted considerable interest and has been extensively
investigated. Molecular biomarkers reflect the genetic back-
ground of the tumour and provide potential targets for the
development of individualised treatments for patients with
gliomas.

Epidermal growth factor receptor (EGFR) is a key glioma
molecular biomarker. EGFR overexpression can promote ma-
lignant proliferation of tumour cells, and a number of studies
have focused on suppressing malignant proliferation by
inhibiting its activity [3]. Nimotuzumab, one EGFR-targeted
drug, has already been approved for the treatment of oesoph-
ageal cancer [4], advanced head and neck cancer [5–7] and
glioma [8] in 30 countries worldwide [9]. Studies have shown
that the EGFR variant III mutation may significantly influence
tumour microenvironment changes and invasion. Hence, de-
tection of EGFR overexpression is especially important for the
personalised treatment of glioma patients. Conventional
methods for detecting the EGFR expression status include
immunohistochemistry and polymerase chain reaction, which
are invasive assays based on craniotomy.

Magnetic resonance imaging (MRI) is capable of detecting
brain malignancy characteristics non-invasively. Preliminary
studies suggest that MRI features (e.g. relative cerebral blood
volume and tumour blood flow) are associated with EGFR
expression in gliomas [10, 11]. Radiogenomics is a new field
investigating the relationships between radiological features
and genomic data [12] and allows radiological data to be
transformed into high-dimensional information and features,
thereby greatly enriching the quantitative information of the
radiological features. Consequently, this helps analyse the re-
lationships between radiological features and gene pheno-
types. For instance, the O6-methylguanine-DNA-methyltrans-
ferasemethylation status in glioblastoma can be predicted by a
set of radiological texture features [13, 14].

In the present study, the texture features of gliomas were
extracted from MRI data, and radiological features predicting
the EGFR expression status were identified.

Materials and methods

Patients

A total of 270 patients with pathologically confirmed grade II
or III glioma and available MRI and EGFR expression status
data who were treated at our hospital between August 2005
and August 2012 were included in this study. The inclusion
criteria were as follows: (1) pathologically confirmed lower
grade glioma with no previous diagnosis of any type of brain
tumour; (2) available EGFR expression status based on im-
munohistochemistry; (3) high-resolution pre-surgical T2-
weighted MR images; (4) available clinical characteristics.
Patients who had undergone preoperative treatment, those
with other pathological types, or those with incomplete
EGFR, imaging or clinical data were excluded. The patients
were randomly assigned into training (n=200) and validation
sets (n=70). The study was reviewed and approved by the
institutional review board.

Immunohistochemistry of EGFR

Identification of EGFR amplification was conducted using
standard immunohistochemical methods. First, the glioma
specimens were fixed in formalin, after which they were rou-
tinely processed and paraffin-embedded. Five-micron-thick
sections were created, and antibodies specific for EGFR
(Santa Cruz Biotechnology, Santa Cruz, CA, USA) were used
to perform the immunohistochemical staining. All samples
were analysed by two pathologists with experience in scoring
central nervous system tumours. Less than 5% positive stain-
ing was identified as negative expression, while 6–100% pos-
itive staining was identified as positive expression. High and
low EGFR expressions were defined as >30% and ≤30% pos-
itive cells, respectively [15].

Tumour segmentation

T2-weighted MR images were used for the extraction of
radiomics features, as these images arewell accepted in the iden-
tification of abnormal hyperintense signals that represent the in-
volved regionsof low-gradegliomas [16–18].MostT2-weighted
images were obtained with a Trio 3.0T scanner (Siemens,
Erlangen, Germany). The T2-weighted image parameters were
as follows:TR=5800ms;TE=110ms; flip angle=150°; fieldof
view = 240×188 mm2; voxel size = 0.6×0.6×5.0 mm3; matrix =
384×300. Lesions were delineated on the MR image by two ex-
perienced neurosurgeons who were blinded to the clinical
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information of the patients usingMRIcron software (http://www.
mccauslandcenter.sc.edu/mricro/mricron). Abnormal
hyperintense signals on the T2-weighted images were identified
as the tumour areas,while carewas taken to avoid the cerebrospi-
nal fluid signal, which may mask the tumour margins. A senior
neuroradiologist re-evaluated the lesions afterwards. If the dis-
crepancy was ≥5%, the senior neuroradiologist decided on the
tumour borders [19].

Extraction of texture features

Quantitative radiological feature extraction was conducted, as
previously described [20]. 431 texture features that could be
assigned into four groups were extracted from each tumour
(Fig. 1). Group 1 (first order statistics) consisted of 14 descrip-
tors that quantitatively delineate the distribution of voxel in-
tensities within the MR image through commonly used and
basic metrics. Group 2 (shape- and size-based features)
contained eight three-dimensional features that reflect the
shape and size of the tumour region. Calculated from grey
level run-length and grey level co-occurrence texture matrices,
33 textural features that can quantify intra-tumour heteroge-
neity differences were classified into group 3 (texture fea-
tures). Finally, group 4 (wavelet features) included the inten-
sity and texture features derived from wavelet transformation
of the original image (group 1 and group 3 features). These
four groups of features are listed in Supplementary Table 1.

Texture-based EGFR prediction

A logistic regression model (Y = X1×β1 + X2×β2 + … +
Xn×βn + k) was created using MATLAB (2014a) software.

Here, Y is the estimated value of EGFR status (high expres-
sion is defined as 1, while low expression is defined as 0); X
represents the value of each radiological feature; β is the un-
known coefficient; and k is the unknown constant. Receiver
operating characteristic (ROC) curve analysis was conducted
to evaluate the prediction results. The logistic model was re-
peated and the variable that had the smallest predictive value
for the EGFR expression level was excluded each time, until
the smallest number of features that provided an area under the
curve (AUC) of at least 0.9 remained. These radiomics fea-
tures, selected from the training set, were defined as a signa-
ture and were subsequently evaluated in the validation set.

Statistics

The logistic regression model was established using
MATLAB (2014a) software. The clinical characteristics of
the two groups were compared using Student’s t test and the
Chi-square test. The differences were considered significant at
p < 0.05. ROC curve analysis was utilised to illustrate the
prediction performance of the radiomic signature. The optimal
cutoff value was selected as the point when the sensitivity plus
specificity was maximal. The AUC and prediction accuracy
were calculated in both the training and validation sets.

Results

Patient demographic characteristics

High EGFR expression was detected in 49.0% (98/200) of
patients in the training set, and in 48.6% (34/70) in the

Fig. 1 The workflow of the radiogenomic analysis in lower grade gliomas. A set of textural features on magnetic resonance imaging (MRI) was
identified as an epidermal growth factor receptor (EGFR)-associated radiological signature in the training set and was further tested in the validation set
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validation set. No significant difference was found between
patients with low or high EGFR expression with respect to
age, sex orWHO grade in both the training and validation sets
(p > 0.05). The detailed patient demographic characteristics
are listed in Table 1.

Texture analysis

The texture features were extracted through the method de-
scribed above, resulting in 431 texture features being obtained
from each patient, including 14 first-order statistics, eight
shape- and size-based features, 33 textural features, and 376
wavelet features derived from the first-order statistics (group
1) and textural features (group 3). These are shown in
Supplementary Table 1.

Texture-based EGFR prediction

Training set The logistic regression model was utilised to
perform linear regression of the 431 texture features of the
200 patients in the training set. Variables that contributed less
to the regression equation than others were excluded one by
one. Next, the estimated value of the regression equation was
used to predict the EGFR expression status, and a ROC curve
was delineated. When there were 41 textural features left, the
distribution of the estimated values of patients could be dif-
ferentiated significantly (Fig. 2a). In the ROC curve analysis,
the AUC was 0.90, and the optimal cutoff value (0.3934)
exhibited a sensitivity, specificity and accuracy of 94.9%,
70.6% and 82.5%, respectively (Fig. 2b).

The identified 41 EGFR-related radiological features could
be regarded as a radiomic signature, comprising 25 first-order
statistics or related wavelet features (such as range, standard
deviation, uniformity, variance), one shape- and size-based
feature (spherical disproportion), and 15 textural features or
related wavelet features (such as sum variance, sum entropy,
run percentage). All of these features are listed in Table 2.

Validation set Next, these 41 features were applied to the
validation set to predict the EGFR expression status. As a
result, the distribution of the estimated values could be differ-
entiated with high efficiency (Fig. 3a). In the ROC curve anal-
ysis, which was conducted for the evaluation of the prediction
efficiency, the AUC was 0.95, and the optimal cutoff value
(0.4334) exhibited a sensitivity, specificity and accuracy of
94.1%, 86.1% and 90.0%, respectively (Fig. 3b).

Discussion

In this study, EGFR-associated radiomic features were studied
based on a large-scale imaging and genetics database.
Through radiological feature extraction, feature selection and
model construction, a set of radiological signatures that could
reflect the EGFR expression level was established. A
radiogenomic signature allowing for the prediction of the
EGFR expression level in patients with lower grade glioma
was identified. In the future, using non-invasive radiological
information could provide crucial clinical information for the
development of individualised treatment targeting EGFR in
the future.

Radiogenomics is an emerging field that explores the asso-
ciations between radiological features on MRI and genetic
characteristics of tumours. Many oncological studies have
successfully linked radiological features with gene expression
patterns [21]. For example, an 11-feature radiomic signature
that could successfully stratify the survival of glioblastoma
patients was selected from 12,190 features extracted from
multiparametric and multiregional tumour volumes [22].
Additionally, using a random forest algorithm and a total of
2,970 features extracted from multimodal MR images of gli-
oma patients, the isocitrate dehydrogenase mutation status of
the patients was effectively predicted in one previous study
[23]. Furthermore, radiogenomics can be applied to many oth-
er types of tumours. In an early classical study, neural network

Table 1 Clinical characteristics of the training and validation sets

Training set Validation set

Low EGFR (n=102) High EGFR (n=98) p value Low EGFR (n=36) High EGFR (n=34) p value

Age

Mean (SD), years 39.2 (11.9) 40.6 (9.3) 0.354a 41.0 (12.2) 42.1 (9.5) 0.676a

Sex

Male/Female 67/35 57/41 0.273b 22/14 25/9 0.269b

WHO grade

II/III 63/39 69/29 0.197b 22/14 24/10 0.404b

EGFR epidermal growth factor receptor, SD standard deviation, WHO World Health Organization
a Student’s t test
b Chi-square test
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machine learning was used in patients with liver cancer to
determine the association between texture features extracted
from enhanced CT scans and gene expression patterns [24].

Further, arterial spin-labelling cerebral blood flow maps
have been found to relate to EGFR variant III expression in
gliomas [25]; a higher median relative cerebral blood volume
has been shown to be associated with high EGFR expression
[10]; maximum tumour blood flow and relative tumour blood
flow have been shown to significantly and positively correlate
with EGFR expression status [11]; and relative tumour blood
volume, an MR-perfusion-weighted imaging-derived param-
eter, has been found to be significantly related to the EGFR
variant III expression status [26]. Taken together, these find-
ings suggest that the EGFR expression status and MRI fea-
tures are closely related. These previous studies, however,
only indicated that these parameters were related to EGFR
expression instead of predicting it, owing to the lack of inde-
pendent validation sets.

In the current study, 41 out of a total 431 texture features
were screened by using a logistic regression model.
Consequently, the EGFR expression status could be predicted
efficiently in the training set. Next, these 41 features were
applied to the validation set, and the equation derived from
the linear regression was found to still be effective in
predicting the expression of EGFR. These results indicated
that these 41 texture features correlate with the EGFR expres-
sion in lower grade gliomas. This is an improvement over the
previous studies analysing individual imaging parameters as-
sociated with the EGFR expression status.

The 41 texture features obtained by the logistic regression
model are also related to the expression status of EGFR theo-
retically. For example, as one component of this signature,
Spherical Disproportion = A/4πR2. Here, A refers to the sur-
face area of the tumour, while R is the radius of the sphere that
has the same volume as the tumour [20]. This index quanti-
tates the differentiation between the tumour shape and sphe-
ricity. Recently, EGFR expression status was demonstrated to

Fig. 2 Efficiency of EGFR prediction using radiomic analysis in the
training set. (a) When 41 features remained, patients with different
EGFR status could be differentiated effectively by the estimated values.
The green line refers to the true values of the patients. The blue and red
dots refer to the estimated values of the low and high EGFR expression

groups, respectively. (b) In the receiver operating characteristic (ROC)
curve analysis, the area under the curve (AUC) was 0.90. Using the
optimal cutoff value, determined as the point when the sensitivity plus
specificity was maximal (red dot), the sensitivity, specificity and accuracy
were 94.9%, 70.6% and 82.5%, respectively

Table 2 MRI radiological features for epidermal growth factor receptor
(EGFR) expression prediction

No. Feature

1 Maximum
2 Maximum_2
3 Mean Absolute Deviation_2
4 Mean_2
5 Median
6 Median_1
7 Median_3
8 Median_4
9 Median_7
10 Median_8
11 Minimum_7
12 Range
13 Range_5
14 Range_7
15 Root Mean Square_2
16 Root Mean Square_4
17 Skewness_5
18 Standard Deviation_2
19 Standard Deviation_4
20 Uniformity_2
21 Uniformity_3
22 Variance (Group 1)
23 Variance_2(Group 1 derived)
24 Variance_5(Group 1 derived)
25 Variance_7(Group 1 derived)
26 Spherical Disproportion
27 Run Percentage_6
28 Short Run Emphasis_6
29 Low Grey Level Run Emphasis_7
30 Run Length Non-Uniformity_3
31 Maximum Probability_7
32 Variance_6
33 Variance_7
34 Sum Variance
35 Sum Entropy_1
36 Sum Variance_7
37 Short Run High Grey Level Emphasis
38 Variance (Group 3)
39 Short Run High Grey Level Emphasis_1
40 Short Run High Grey Level Emphasis_5
41 Short Run Low Grey Level Emphasis_1
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correlate with this shape characteristic in lung cancers, with
this shape characteristic showing a strong ability to identify
patients with the strongest EGFR immunostaining.

Previous authors have speculated that the malignant prolif-
eration of tumour cells and angiogenesis caused by high
EGFR expression might contribute to the increased shape ir-
regularity [27]. Additionally, as two group 1 features in this
signature, the index Range refers to the range of voxel inten-
sity values of the tumour, and the Variance refers to the voxel
intensity value variability of the tumour. These two indicators
may be associated with the non-uniformity levels within the
tumour. Moreover, it has recently been reported that, in a
murine glioma model, high EGFR expression related to in-
creased tumour cell proliferation, reduced tumour cell adhe-
sion to the extracellular substrate, and altered progenitor cell
phenotype, suggesting that the EGFR expression status and
tumour heterogeneity are indeed closely related [28].
Therefore, the Range and Variance may reflect the EGFR
expression status. Of note, as glioblastomas (WHO grade
IV) have distinct genetic characteristics from lower grade gli-
omas (WHO grade II and III), the radiomics features that
associate with the EGFR expression level in glioblastomas
are an interesting topic for further investigations.

A logistic regressionmodel is a regressionmethod in which
the variables that contribute little to the linear model are elim-
inated. It is a simple and efficient method for reducing dimen-
sionality. In this research, a single-mode quantitative imaging
sequence was used for the prediction of the EGFR expression
level. This radiomic-based prediction was found to be more
effective than prediction based on traditional qualitative imag-
ing, as the latter is descriptive rather than quantitative.

Lastly, the EGFR overexpression level in lower grade gli-
omas remains controversial. A previous study showed that
EGFR amplification (a minimum average EGFR gene copy
number of 7 per genome) was identified in 40–50% of glio-
blastomas and in about 10% of anaplastic gliomas, but was
rare inWHO grade II gliomas [29]. On the other hand, another
study showed that EGFR overexpression (defined as >25%

positive cells on immunohistochemistry) was observed in
40% of grade II gliomas and 78.4% of grade III gliomas
[30]; these proportions of high EGFR expression were similar
to the proportion detected in the current study. The inconsis-
tencies in the EGFR expression level may result from differ-
ences in the patient populations and the definition of EGFR
expression used among the different previous studies.

We recognise some limitations to this study. First, our mod-
el was generated based on retrospectively collected data. The
current study, therefore, needs to be prospectively evaluated.
Second, it should be noted that multi-modal radiological data
were not included in this research, and radiological informa-
tion reflecting tumour perfusion (such as perfusion-weighted
imaging, arterial spin-labelling, etc.) will be added for the
optimisation of this prediction model in the future.
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Methodology
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• diagnostic or prognostic study
• performed at one institution

Fig. 3 Efficiency of EGFR prediction using radiomic analysis in the
validation set. (a) Patients with different EGFR status could also be
differentiated effectively using the 41 features. The green line refers to
the true values of the patients. The blue and red dots refer to the estimated

values of the low and high EGFR expression groups respectively. (b) In
the ROC curve analysis, the AUC was 0.95. Using the optimal cutoff
point identified in the training set (red dot), the sensitivity, specificity and
accuracy were 94.1%, 86.1% and 90.0%, respectively
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