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Abstract
Objectives To evaluate the utility of diffusion kurtosis imag-
ing (DKI) of patients with thyroid nodules and to assess the
probable correlation with histopathological factors.
Methods The study included 58 consecutive patients with thy-
roid nodules who underwent magnetic resonance imaging
(MRI) examination, including DKI and diffusion-weighted
imaging (DWI). Histopathological analysis of paraffin sec-
tions included cell density and immunohistochemical analysis
of Ki-67 and vascular endothelial growth factor (VEGF).
Statistical analyses were performed using Student’s t-test, re-
ceiver operating characteristic (ROC) curves and Spearman’s
correlation.
Results The diffusion parameters, cell density and immuno-
histochemistry analysis between malignant and benign lesions
showed significant differences. The largest area under the
ROC curve was acquired for the D value (AUC = 0.797).
The highest sensitivity was shown with the use of K (thresh-
old = 0.832, sensitivity = 0.917). The Ki-67 expression gener-
ally stayed low. A moderate correlation was found between

ADC, D and cell density (r = −0.536, P = 0.000; r = −0.570,
P = 0.000) and ADC, D and VEGF expression (r = −0.451,
P = 0.000; r = −0.522, P = 0.000).
Conclusion The DKI-derived parameters D and K demon-
strated an advantage compared to conventional DWI for thy-
roid lesion diagnosis. While the histopathological study indi-
cated that the D value correlated better with extracellular
change than the ADC value, the K value probably changed
relative to the intracellular structure.
Key Points
• DWI and DKI parameters can identify PTC from benign
thyroid nodules.

• Correlations were found between diffusion parameters and
histopathological analysis.

• DKI obtains better diagnostic accuracy than conventional
DWI.
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Introduction

Reported thyroid malignancies have significantly increased in
the last few decades [1]. Most thyroid malignancies include
papillary (PTC), follicular (FTC), medullary (MTC) and ana-
plastic (ATC) thyroid carcinomas. Imaging modalities, includ-
ing ultrasonography (US), computed tomography (CT) and
magnetic resonance imaging (MRI), have been widely used
for patients with thyroid lesions. Ultrasound is the most com-
mon imaging modality due to its convenience, but diagnosis
varies according to the examining physician. Several guide-
lines have been published utilizing ultrasound criteria for the
management of thyroid nodules that on morphological fea-
tures [2]. However, as an imaging modality, MRI provides
high soft tissue resolution, and various quantitative parameters
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have already been used in thyroid lesion studies. However,
most of the thyroid MRI studies concentrated on diffusion-
weighted imaging (DWI) [3–9].

DWI has been widely used in clinical oncological diagno-
sis to indicate the conspicuity of the neoplasm against a fading
background signal intensity (SI), especially in high b-value
images [10]. The acquired DWI images were often post-
processed using the standard monoexponential fit, which ap-
plies a linear shape to obtain apparent diffusion coefficient
(ADC) maps. Quantitative ADC values were considered to
reflect the tissue cell size and density, extracellular space vis-
cosity and the cell framework, which limits the cellular move-
ment of water. However, the SI decay does not fit a linear form
at b values less than 200 [11, 12] or over 1,000 s/mm2 [13, 14].
Accordingly, the non-Gaussian water diffusivity analysis
using diffusion kurtosis imaging (DKI) more appropriately
reflected the SI decay. Two parameters, D and K, which are
produced from the DKI model, represented the diffusion co-
efficient and the diffusional kurtosis, respectively, and they
provided more information on the tissue structure than DWI.
D was assumed to be more accurate than ADC for tissue
diffusion due to its correction for non-Gaussian diffusion be-
haviour. The parameter K was supported by observations of
the DKI model fitting the SI decay at ultrahigh b values.
Increased K values were suggested to be sensitive to more
irregular and heterogeneous cellular environments, including
the intracellular architecture, but less sensitive to cell density

[14]. Research still needs to be conducted to completely un-
derstand the biophysics of K values in tissue. The DKI model
was first represented in brain imaging but has been gradually
applied to extracranial organs [15–19]. Recently, DKI studies
performed for head and neck cancers [16] suggested that the
DKI-derived parameters were superior to conventional
monoexponential DWI for differentiating between benign
and malignant neoplasms and predicting treatment response.
However, DKI studies have not been performed for thyroid
lesions.

The purpose of this study was to investigate not only the
utility of DKI in thyroid lesions compared to DWI but also the
association of DKI parameters with histopathological factors
and laboratory biomarkers.

Materials and methods

Patient selection

This prospective study was approved by the local institutional
review board, and written informed consent was obtained
from patients. Between October 2015 and June 2016, 60 con-
secutive patients with thyroid nodules detected by US and
diagnosed as Thyroid Imaging Report and Data System (TI-
RADS) category 4 in our institution who were reluctant to
undergo biopsy were selected to undergo the MRI

Table 1 Imaging protocol of
conventional diffusion-weighted
imaging (DWI) and diffusion
kurtosis imaging (DKI)

Parameter DWI DKI

Pulse sequence Single-shot echo planar Single-shot echo planar

TR (ms) 3046 3046

TE (ms) 83 83

Field of view (mm2) 270 × 206 270 × 206

Acquisition matrix 136 × 133 136 × 133

Bandwidth (Hz/voxel) 1,812 1,812

Slice thickness (mm) 4 4

b values (s/mm2) 0, 750 0, 500, 1,000, 1,500, 2,000

Averages 4 4 (0, 500), 6 (1,000–2,000)

Table 2 Characteristics of the
patients and lesions N Gender (F/M) Age (years) Size (mm, mean ± SD)

Malignant (PTC) 24 20/4 42.79 ± 11.68 13.75 ± 6.07

LN metastasis 9 8/1 35.33 ± 4.98 16.44 ± 8.56

None metastasis 15 12/3 46.75 ± 12.11 13.06 ± 4.93

Benign 34 27/7 51.76 ± 13.55 19.85 ± 6.44

Adenoma 21 16/5 48.24 ± 15.12 19.48 ± 6.04

Nodular goitre 7 6/1 58.00 ± 10.10 22.00 ± 6.73

Hashimoto thyroiditis 6 5/1 56.83 ± 5.38 18.67 ± 8.04

PTC papillary thyroid carcinoma
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Table 3 Apparent diffusion coefficient (ADC) and diffusion kurtosis imaging (DKI) parameters and pathology results for each group

ADC (10-3 mm2/s) DKI D (10-3 mm2/s) DKI K Cell density Ki-67 No. (+) VEGF No. (+)

Malignant (PTC) 0.99 ± 0.27* 1.33 ± 0.44* 1.44 ± 0.51* 1444.38 ± 292.46* 6.49 ± 9.46* 1440.11 ± 302.96*

P = 0.001 P = 0.000 P = 0.014 P = 0.000 P = 0.014 P = 0.000

Lymph node metastasis 0.97 ± 031 1.26 ± 0.48 1.33 ± 0.43 1431.62 ± 182.82 10.16 ± 11.63 1431.62 ± 182.82

None metastasis 1.02 ± 0.26 1.36 ± 0.42 1.52 ± 0.54 1404.73 ± 385.94 4.03 ± 7.30 1357.75 ± 495.25

Benign 1.29 ± 0.33 2.13 ± 0.77 1.09 ± 0.53 663.64 ± 251.34 1.17 ± 3.42 263.87 ± 327.37

Adenoma 1.39 ± 0.27¶ 2.39 ± 0.72§ 0.92 ± 0.40 670.05 ± 174.35 1.74 ± 4.28 393.86 ± 350.88Φ

Nodular goitre 1.24 ± 0.38 1.67 ± 0.50 1.31 ± 0.67 414.17 ± 102.12ø 0.14 ± 0.15 11.49 ± 5.51

Hashimoto thyroiditis 0.99 ± 0.29 1.77 ± 0.88 1.44 ± 0.58 932.27 ± 330.04 0.37 ± 0.20 103.37 ± 154.22

All data are given mean ± standard deviation

* Compared to benign groups

¶ Compared to Hashimoto thyroiditis P = 0.015

§ Compared to Nodular goitre P = 0.044

Ø Compared to Hashimoto thyroiditis P = 0.002

Φ Compared to Nodular goitre P = 0.022

PTC papillary thyroid carcinoma

Fig. 1 Images from a 35-year-old male patient with papillary thyroid
carcinoma (PTC) in the right lobe. a T2-weighted image. b Diffusion-
weighted imaging (DWI) image (b = 0). c DWI image (b = 750). d
Apparent diffusion coefficient (ADC) map, ADC value = 0.786°10-
3 mm2/s. e D map, D value = 1.329°10-3 mm2/s. f K map, K value =

1.045. g Histopathological Ki-67 expression image (total magnification,
100), Cell densi ty = 1,511.2, Ki-67 (+) cel l No. = 24.4. f
Histopathological vascular endothelial growth factor (VEGF) expression
image (total magnification, 100), VEGF (+) cell No. = 1,511.2
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examination. None of the patients had other head and neck
disease. Thyroidectomy was performed within 5 days after
MRI. Two patients were excluded due to motion artefacts.

MR imaging

Thyroid MRI was performed with a 3.0 T unit (Ingenia,
Philips Healthcare, Best, The Netherlands) and a pair of ds
FlexM circular coils. Velcro straps were used to affix the coils
to the anterior portion of the neck while the patient was in a
comfortable supine position. The images obtained included
axial T1, T2-weighted imaging, conventional DWI with b
values of 0 and 750 s/mm2 and DKI with b values of 0, 500,
1,000, 1,500 and 2,000 s/mm2. The chosen b values were
established by pretesting for sufficient signal-to-noise ratio
(SNR) to observe the thyroid even in the image acquired at
the highest b value. A calibration scan was performed before
scanning to reduce Nyquist (N/2) ghosting artefacts. The pa-
rameters of two diffusion sequences are summarized in
Table 1.

Image analysis

DWI sequence post-processing was completed at the worksta-
tion (IntelliSpace Portal, Philips Healthcare). ADCmaps were
generated from conventional DWI sequences with two b
values that fit the monoexponential model. DKI images were
transferred to a PC and post-processed using in-house soft-
ware written in Matlab (version R2014b; MathWorks,
Natick, MA, USA). The multi-b DWI images fitted the DKI
signal decay equation: S(b)=S0·exp(-b·D+1/6·b

2D2K). A
nonlocal-means filter for image denoising was employed be-
fore curve fitting to improve SNR. In this equation, So is the SI
when b = 0 s/mm2; S(b) is the SI measured at the correspond-
ing b value; D is the diffusion coefficient; and K is kurtosis,
which suggest that the status of water molecular motion devi-
ates from a Gaussian distribution. A minimum K value
showed that the curve fit closely to a Gaussian distribution.
However, increased K indicated increased contributions of the
lesion area attributable to kurtosis behaviour.

All images were separately analysed by two radiologists
who specialized in head and neck imaging (one with 2 years’

Fig. 2 Images from a 41-year-old female patient with adenoma in the
right lobe. a T2-weighted image. b Diffusion-weighted imaging (DWI)
image (b = 0). c DWI image (b = 750). d Apparent diffusion coefficient
(ADC) map, ADC value = 1.515°10-3 mm2/s. e D map, D value =
2.010°10-3 mm2/s. f K map, K value = 0.779. g Histopathological Ki-67

expression image (total magnification, 100), cell density = 817.6, Ki-67
(+) cell No. = 0.4. f Histopathological vascular endothelial growth factor
(VEGF) expression image (total magnification, 100), VEGF (+) cell
No. = 817.6
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and another with 7 years’ experience) blinded to the clinical
and ultrasound diagnosis. The region of interest (ROI) was
drawn on ADC maps and copied to D maps and K maps for
each lesion, avoiding obvious cysts, calcifications and the
margins of the lesion.

Histopathological analysis

The pathological diagnosis was based on a haematoxylin and
eosin (HE)-stained section. VEGF (1/200 dilution, Thermo
Fisher, Waltham, MA, USA) and Ki-67 (1/200 dilution,
Dako, Demark) staining for immunohistochemical analysis
were performed on 4-μm sections of paraffin-embedded tis-
sues to observe protein expression levels. Positive and nega-
tive controls were used for the tested antibodies. Images of
five randomly high-power fields (HPFs, magnification × 400)
in the lesion area were selected to count total cells and posi-
tively stained cells. Cell numbers were calculated as the aver-
age of five HPFs for statistical analysis. All the histopatholog-
ical section analyses were performed using a microscope (Carl

Zeiss, Jena, Germany) by one pathologist with 10 years of
experience in pathological diagnosis.

Statistical analysis

An independent samples t-test was used to compare the ADC,
D and K values of benign lesions with malignant lesions. One-
way analysis of variance (ANOVA) with Tukey's honest sig-
nificance test as a post hoc analysis was used to analyse the
variance of ADC, D and K among subgroups. The receiver
operating characteristic (ROC) curve analysis was used to
determine the threshold values of ADC, D and K to differen-
tiate between benign and malignant thyroid lesions. Pearson’s
correlation analysis was used to evaluate the association of
diffusion parameters with histopathological factors. A P-
value less than 0.05 was considered statistically significant.
The previously mentioned statistical analyses were performed
with IBM SPSS Statistics 22.0 software. The inter-observer
agreements between two observers were described on Bland-
Altman plots using Medcalc software (Medcalc Version 17.2,
Medcalc Software, Ostend, Belgium).

Fig. 3 Images from a 65-year-old female patient with nodular goitres in
both lobe. a T2-weighted image. b Diffusion-weighted imaging (DWI)
image (b = 0). c DWI image (b = 750). d Apparent diffusion coefficient
(ADC) map, ADC value = 1.885°10-3 mm2/s. e D map, D value =
2.296°10-3 mm2/s. f K map, K value = 0.490. g Histopathological Ki-67

expression image (total magnification, 100), Cell density = 313.8, Ki-67
(+) cell No. = 0.2. f Histopathological vascular endothelial growth factor
(VEGF) expression image (total magnification, 100), VEGF (+) cell
No. = 17
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Results

Of the 58 patients (mean age 48.05 ± 13.46 years), 58 lesions
(mean size 17.33 ± 6.93mm) were found, including 24 PTC, 21
adenomas, seven nodular goitres and six cases of Hashimoto’s
thyroiditis. In the 24 PTC cases, nine patientswere found to have
lymph node metastasis. The characteristics of the remaining 58
patients and the lesions are summarized in Table 2. The three
diffusion parameters and the histopathological factors of each
group are shown in Table 3. The average ADC values and D
values of malignant lesions were significantly lower than those
of benign ones (P < 0.001, P < 0.001). Malignant lesions have
significantly higher average K values than benign lesions
(P = 0.014). Cell density and the number of positively stained
VEGF cell numbers were significantly higher in the malignant
group (P < 0.001, P < 0.001). The positively stained Ki-67 cell
numbers were significantly higher in the malignant group
(P = 0.004).However,eveninthemalignantgroup,Ki-67expres-
sionlevelswere toolowtomeet theclinical thresholdvalueof5%.
In the subgroup analysis of themalignant lymph nodemetastasis

and no metastasis groups, no statistically significant differences
were found for any parameters. The statistical analysis of the
benign groups was relatively complicated. The ADC value of
the adenoma group was significantly higher than the
Hashimoto’s thyroiditis group (1.39 ± 0.27 vs. 0.99 ± 0.29,
P = 0.015); the D value of the adenoma group was significantly
higher than the nodular goitre group (2.39 ± 0.72 vs. 1.67 ± 0.50,
P = 0.044); the cell density of the nodular goitre group was
significantly lower than the Hashimoto’s thyroiditis group
(414.17 ± 102.12 vs. 932.27 ± 330.04, P = 0.002); and the
positively stained VEGF cell number of the adenoma group was
significantly higher than the nodular goitre group (393.86 ±
350.88 vs. 11.49 ± 5.51, P = 0.022). Four samples of PTC,
adenoma, nodular goitre and Hashimoto’s thyroiditis cases are
shown in Figs. 1, 2, 3 and 4.

The results of ROC analyses for differentiating malignant
thyroid lesions from benign ones using three diffusion param-
eters are summarized in Fig. 5 and Table 4. The area under the
curve (AUC) for D (0.797) was significantly greater than the
AUC for K (0.797 vs. 0.701, P = 0.0218), and the AUC of

Fig. 4 Images from a 48-year-old female patient with Hashimoto
thyroiditis in both lobe. a T2-weighted image. b Diffusion-weighted
imaging (DWI) image (b = 0). c DWI image (b = 750). d Apparent
diffusion coefficient (ADC) map, ADC value = 0.735°10-3 mm2/s. e D
map, D value = 1.145°10-3 mm2/s. f K map, K value = 1.065. g

Histopathological Ki-67 expression image (total magnification, 100),
cell density = 1,132, Ki-67 (+) cell No. = 0.6. f Histopathological
vascular endothelial growth factor (VEGF) expression image (total
magnification, 100), VEGF (+) cell No. = 17.6
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ADC was between those of D and K. The greatest sensitivity
was obtained for K (0.917), while the greatest specificity was
shown for ADC (0.676).

The correlation of diffusion parameters and histopatholog-
ical factors are summarized in Table 5 and Fig. 5. Pearson’s
correlation coefficient between D and cell density was

relatively greater (−0.570, P < 0.001); the correlation between
D and the number of positively stained VEGF cells is −0.522
(P < 0.001); the correlation coefficient between ADC and cell
density was −0.536 (P < 0.001). Bland-Altman plots for ADC,
D and K value of all patients are shown in Fig. 6 and indicate
good inter-observer agreement.
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Discussion

DWI has been used for decades to differentiate thyroid
malignancies from benign lesions [5, 9, 20–32]. Most
previous studies indicated that the ADC value decreased in
malignant lesions and showed considerable diagnostic
accuracy. In recent years, researchers have also tried to
improve the image quality for DWI images [4]. In our study,
we selected flex coils with fixed straps and performed a B1
calibration scan before scanning. Additionally, we added
averages of high b values to reduce artefacts and obtain
sufficient SNR. Before DKI curve fitting, we used a
nonlocal-means filter to further improve SNR. Thus, DKI
analysis of the thyroid was manageable. We also analysed
the inter-observer variability by using Bland-Altman plots
for ADC- and DKI-deprived parameters between two ob-
servers. The good inter-observer agreement enhanced the
credibility of the study.

Our study indicated that quantitative DKI was superior to
conventional DWI because the D corrected by the DKI model
showed greater AUC than ADC, and K showed higher
sensitivity than the ADC value. The combination of multiple
parameters would provide higher diagnostic accuracy. Our
study also compared the subgroups of malignancies and
benign lesions and reached interesting results: In the
ma l i gnan t g roup , the d i f fu s ion pa r ame t e r and
histopathological factors showed no statistically significant
differences between the two subgroups with or without
lymph node metastasis; in the benign group, the ADC value

of Hashimoto’s thyroiditis was significantly lower than
adenoma, but this difference was not shown in the D values.
For the three diffusion parameters, the highest sensitivity was
acquired at K. The combination of D and K in DKI would
obtain better diagnostic accuracy than conventional DWI.

Current research appears to validate the view that DWI
and ADC values reflect the histopathological changes of
thyroid tissue [5, 8, 9]. Shi et al. [9] proved the correlation
between cell density and relatively severe desmoplastic
response with ADC values in thyroid cancer. Lu et al. [5]
used DWI to predict the aggressiveness of histological fea-
tures in PTC and found that patients with extrathyroidal
extension (ETE) showed significantly lower ADC values
than PTCs without ETE. Schob et al. [8] analysed the sub-
types of thyroid carcinoma with readout-segmented
multishot EPI sequence DWI and compared them with cell
density, Ki-67 index and p53 index. In our study, we also
performed histopathological studies to explore the associ-
ation of the lesion structure with diffusion parameters.
Increased cell density in lesions restricted water diffusion
in the extracellular space. Ki-67 is a cell proliferation pro-
tein that is considered a neoplastic marker to help diagnose
differentiated thyroid carcinoma (DTC) [33] as well as
predict disease-free survival (DFS) and cause-specific sur-
vival (CSS) in patients [34]. VEGF is a cytokine that in-
duces angiogenesis and is related to lymphangiogenesis.
The high expression of VEGF indicated the growth of
tumour-associated vessels and lymph node metastasis
[35, 36].

In our study, we analysed the cell density and the expres-
sion of Ki-67 and VEGF compared with the DWI and DKI
parameters. The cell density, Ki-67 and VEGF expression of
the malignant group were significantly higher than the benign
group. However, in all the PTC cases, the Ki-67 labelling
index was too low (less than 10%) to be considered to repre-
sent strong expression. This expression level was lower than
in some previous studies [8, 33] but was similar to the study
by Radu et al. [37]. No significant differences were found in
all the parameters when comparing the PTC and the lymph
node metastasis group with the no metastasis group. In the
benign group, Hashimoto’s thyroiditis lesions showed signif-
icantly lower ADC values compared to the adenoma group for
the relative cell density and abundant irregular lymphocytes;
the Ki-67 expression stayed low in all groups, and the expres-
sion of VEGF in adenoma was significantly higher compared
with nodular goitre.

The correlations evaluated between diffusion parame-
ters and histopathological parameters were as follows:
there were moderate correlations between cell density and
diffusion parameters, especially D values; the correlation
of D and VEGF was also the highest among the three dif-
fusion parameters with VEGF analysis. K showed a low
correlation with cell density and VEGF expression. These

Table 4 Area under the receiver operating characteristic curve (AUC),
threshold, sensitivity and specificity of ADC, DKI D, and DKI K

Parameter AUC Threshold Sensitivity Specificity

ADC 0.762 ≤1.207 0.792 0.676

DKI D 0.797 ≤1.676 0.875 0.647

DKI K 0.701 ≥0.832 0.917 0.471

ADC apparent diffusion coefficient, DKI diffusion kurtosis imaging

Table 5 Correlation coefficient of diffusion parameters with
histopathological results

Cell density Ki-67 No. (+) VEGF No. (+)

ADC -0.536* -0.081 -0.451*

P = 0.000 P = 0.547 P = 0.000

DKI D -0.570* -0.158 -0.522*

P = 0.000 P = 0.236 P = 0.000

DKI K 0.370* -0.154 0.326*

P = 0.004 P = 0.248 P = 0.012

VEGF vascular endothelial growth factor, ADC apparent diffusion
coefficient, DKI diffusion kurtosis imaging
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phenomena (ADC and D) were correlated with extracellu-
lar changes; K was more sensitive to intracellular architec-
ture but not overall cell density [14]. This presumed result
still requires more studies to understand the mechanisms.

Our study has a few limitations. First, this is a preliminary
study, and only a small number of PTCs, especially cases with
metastasis, Hashimoto’s thyroiditis and other kinds of malig-
nant thyroid carcinoma, were included. Second, the single-
shot echo planar imaging-based DWI adopted in our study is
the most commonly used technique in the clinical setting.
Although we have attempted methods to improve SNR, alter-
native techniques, such as multiple-shot spin echo DWI and
readout-segmented multi-shot echo planar imaging, can re-
duce the artefacts. Third, since b values less than 200 s/mm2

were not adopted in the diffusion sequence, the biexponential
model cannot be compared to the DKI model and histopatho-
logical results. Finally, the immunohistochemical analysis of
thyroid lesion may provide an explanation to a certain extent,

but further research still needs to be conducted to understand
the meaning of the DKI model.

In conclusion, the DKI-derived parameters D and K dem-
onstrated advantages compared to conventional DWI for thy-
roid lesion diagnosis. While the histopathological study indi-
cated that the D value corrected by DKI model correlated
better with extracellular changes than ADC values, the chang-
es in K values related to the intracellular structure still require
further study.
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