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Abstract
Objectives The purpose of this study was to investigate the
robustness of different PET/CT image radiomic features over
a wide range of different reconstruction settings.
Methods Phantom and patient studies were conducted, in-
cluding two PET/CT scanners. Different reconstruction
algorithms and parameters including number of sub-itera-
tions, number of subsets, full width at half maximum
(FWHM) of Gaussian filter, scan time per bed position
and matrix size were studied. Lesions were delineated
and one hundred radiomic features were extracted. All
radiomics features were categorized based on coefficient
of variation (COV).
Results Forty seven percent features showed COV ≤ 5% and
10% of which showed COV> 20%. All geometry based, 44%
and 41% of intensity based and texture based features were
found as robust respectively. In regard to matrix size, 56% and
6% of all features were found non-robust (COV> 20%) and
robust (COV ≤ 5%) respectively.

Conclusions Variability and robustness of PET/CT image
radiomics in advanced reconstruction settings is feature-de-
pendent, and different settings have different effects on differ-
ent features. Radiomic features with low COV can be consid-
ered as good candidates for reproducible tumour quantifica-
tion in multi-center studies.
Key Points
• PET/CT image radiomics is a quantitative approach
assessing different aspects of tumour uptake.

• Radiomic features robustness is an important issue over
different image reconstruction settings.

• Variability and robustness of PET/CT image radiomics in
advanced reconstruction settings is feature-dependent.

• Robust radiomic features can be considered as good candi-
dates for tumour quantification
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Abbreviations
PET Positron Emission Tomography
CT Computed Tomography
SUV Standard Uptake Value
NSCLC Non-Small Cell Lung Carcinoma
MRI Magnetic Resonance Imaging
NEMA National Electrical Manufacturers Association
FDG Fluoro-Deoxy-Glucose
KBq Kilo-Becquerel
MBq Mega-Becquerel
LBR Lesions to Background Ratio
GE General Electric
OSEM Ordered Subset Expectation Maximization
PSF Point Spread Function
TOF Time of Flight
FWHM Full Width at Half Maximum
VOI Volume of Interest
GLCM Gray Level Co-occurrence Matrix
GLRLM Gray-Level Run-Length Matrix
GLSZM Gray-Level Size Zone Matrix
NGLD Neighboring Gray Level Dependence
NGTDM Neighborhood Gray-Tone Difference Matrix
TFC Texture Feature Coding
TS Texture Spectrum
COV Coefficient Of Variation
ICC Inter-Class Correlation
FBP Filtered Back Projection
RECIST Response Evaluation Criteria in Solid Tumours
PERCIST PET Response Criteria in Solid Tumours

Introduction

As an oncological imaging modality, PET/CT plays a vital
role in evaluation and management of cancer [1, 2]. PET/CT
image assessment has been primarily constrained to qualita-
tive assessment, with some limited quantification, such as the
use of SUVmax, to quantify tumour burden [2]. At the same
time, there is growing interest in using mineable extracted
image features in the emerging so-called field of radiomics
[3–8]. PET/CT image radiomics is a new quantitative imaging
approach to non-invasively assess different aspects of tumours
such as intra-tumoral heterogeneity [9–14]. In this method,
extracted features from images can be used for diagnosis,
prognosis and prediction of response to therapy [15, 16]. In
addition, recent scientific studies have shown radiomic fea-
tures have strong correlations with biological and clinical find-
ings which can be used as biomarkers [17]. It was specifically
determined that texture features can predict outcome in pa-
tients with NSCLC treated by stereotactic body radiation ther-
apy. In a recent study, joint PET/MRI textural features of soft
tissue sarcoma were used as imaging biomarkers to predict
lung metastases [18]. In addition, multiple attempts have been

made to correlate PET/CT image radiomic features against
genomics biomarkers. Moreover, studies made use of a num-
ber of radiomic features towards improved prognosis, classi-
fication and prediction of therapy for different cancers [3, 4,
14, 19, 20]. Commonly used standardized uptake value (SUV)
features including SUVmax, SUVpeak and SUVmean do not
thoroughly characterize tumour uptake, and some studies have
shown that their value can be surpassed or complementedwith
new radiomic features [20].

When aiming to use radiomic features as imaging bio-
markers, it is important that these features accurately quantify
tumour heterogeneity, and changes in feature values are not
due to image generation parameters, e.g., as arising from dif-
ferent protocols or scanners. Although diagnostic, prognostic
and predictive values of many radiomic image features have
been evaluated, there is evidence that the accuracy and vari-
ability of these features vary over different imaging protocols.

Previous studies have shown that conditions such as image
acquisition [20] reconstruction [21, 22], pre-processing [23],
segmentation [24] and respiratory motion [5, 25]could affect
radiomic features. In a few studies, the effect of different im-
aging parameters including reconstruction algorithm, matrix
size, iteration number, number of subsets and post-filtering
have been tested on radiomic image features. In these studies,
the reproducibility, repeatability and variability of features ex-
tracted from patient and phantom images were tested over
different reconstruction settings using different statistical
parameters.

Advances in PET scanner, image reconstruction and devel-
oping new algorithms and considering this fact that radiomic
feature are useful when they have reliable values; there is a
need to test radiomic feature robustness against such issues.
Therefore, the aim of this study was to assess the variability
and robustness of different radiomic features extracted from
phantom and patient PET/CT images over a wide range of
different reconstruction settings in the context of multi-
center subjects.

Material and methods

Figure 1 shows the overall framework of this study in different
phases. Below we outline the various aspects and steps.

Data acquisition (phantom)

In this study, an in-house developed NEMA body phantom
was used for all measurements. This phantom has the follow-
ing characteristics: 9.6 liter volume, 180 mm interior height,
six inserts with internal diameters of 10, 13, 17, 22, 28, 37mm
and a cylindrical insert filled with low atomic- number mate-
rial (density = 0.3 ± 0.1 g/ml). The phantom and the spheres
were filled with a solution of water and 18F-FDG. Activity
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concentrations of 5.3 and 2.65 KBq/ml, equivalent to 370 and
185 MBq injected in a 70-kg patient, were chosen to simulate
liver and lung lesions, respectively. For each background lev-
el, two lesions to background ratio (LBR) of 4:1 and 2:1 were
obtained (four acquisitions mode).

Data acquisition (patients)

Clinical data were obtained using two PET/CT scanners: GE
Discovery 690 and Siemens Biograph 6 True point. All image
data were acquired in the following protocol: 25 patients
fasted for at least 6 h prior to scan and then were injected with
333.0 ± 62.9MBq18F-FDG after 60min uptake. The PET data
acquisitions were obtained from the mid-thigh to the base of
skull for 3 min per bed position. Blood glucose levels were
under 150 mg/dL (8.3 mmol/L). Furthermore, low dose CT
images without contrast were obtained for attenuation correc-
tion and anatomical localization. The study included patients
with lung, head and neck and liver cancers (mean age: 60 ± 6
y, age range, 39-70 y; 15 men, ten women).

Reconstruction

To study the impact of reconstruction settings on image fea-
tures, in each acquisition mode (four modes), the effect of
different parameters including four different reconstruction
algorithms, specifically ordered subset expectation maximiza-
tion (OSEM), with or without point spread function (PSF)
modeling [26–28] and/or time of flight (TOF) [29–32].
Furthermore, number of sub-iterations, number of subsets, full
width at half maximum (FWHM) of Gaussian filter, scan time

per bed position, and matrix size were studied. All these pa-
rameters are listed in Tables 1 and 2, and resulted in 654 and
60 reconstructed images for phantom and patient studies,
respectively.

Segmentation

All segmentations were performed using the OSIRIX soft-
ware. Specifically, lesion VOI was delineated using a 42%
threshold of the maximum SUV. Necrotic regions of tumours
were also added into the segmentation. To minimize the im-
pact of segmentation on our results, the same VOI was delin-
eated on the OSEM+ PSF with two iterations, 21 subsets and
5 mm FWHM,where matrix size of 256 × 256 was used as the
reference image and copied on all the other images.

18F-FDG PET/CT image radiomic features

One hundred radiomic features from three main categories
including texture-based, geometry-based and intensity-based
features were extracted using developed MATLAB codes. All
extracted image features are shown in Table 3. In brief, fea-
tures including SUV and intensity histogram (n = 37), shape
(n = 4), gray level co-occurrence matrix (GLCM, n = 7), gray-
level run-length matrix (GLRLM, n = 11), neighborhood
gray-tone difference matrix (NGTDM, n = 5), gray-level size
zone matrix (GLSZM, n = 11), normalized GLCM (n = 6),
neighboring gray level dependence (NGLD, n = 5), texture
feature coding (TFC, n = 4), TFC GLCM (n = 8) and texture
spectrum (TS, n = 2) were extracted.

Fig. 1 Framework of present study
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Data analysis

For analysis of phantom images, the five largest lesions with
three background spheres of 15, 20 and 22 mm in diameter
were included in the study. The background VOIs had a dis-
tance of 15 mm from phantom edges and spheres. Lesions
smaller than 5 cm3 were not analyzed due to the partial vol-
ume effect (PVE). The effect of PVE was not analyzed in this
study.

Inter-setting coefficient of variation (COV) was calculated
for each image feature over the different reconstruction set-
tings, via the following equation:

COV ¼ SD
Mean

� 100

Where the SD is the standard deviation of feature value and
Mean is its mean over applying different reconstruction set-
tings. To categorize variations, four groups including a very

Table 2 Image reconstruction
setting in patient study, OSEM:
ordered subset expectation
maximization, PSF: point spread
functions, TOF: time of flight

Studied or analyzed parameter Variation Constant

Variation over reconstruction OSEM

OSEM+PSF

OSEM+TOF

OSEM+PSF + TOF

Iteration = 2

Subset = 21

FWHM= 5 mm

Matrix = 256

Sub-Iteration (subset × iteration) 2 × 16, 3 × 16, 4 × 16, 5 × 8, 2 × 21, 3 × 21, 4 × 21 Subset = 21

FWHM= 5 mm

Matrix = 256

Subset 8, 16, 21, 24 Iteration = 2

FWHM= 5 mm

Matrix = 256

Filter 3, 4, 5, 6, 7 Iteration = 2

Subset = 21

Matrix = 256

Matrix 128, 168, 256, 336 Iteration = 2

Subset = 21

FWHM= 5 mm

Table 1 Image reconstruction
settings in phantom study,
OSEM: Ordered Subset
Expectation Maximization, PSF:
Point Spread Functions, TOF:
Time Of Flight

Studied or analyzed parameters Variations Constants

Reconstruction algorithm OSEM

OSEM+ PSF

OSEM+TOF

OSEM+ PSF + TOF

Iteration = 2

Subset = 21

FWHM= 5 mm

Matrix = 256

Time per bed = 10 min
Sub-Iteration (subset × iteration) 15, 18, 24, 27, 36, 40, 48, 54, 64, 72 FWHM= 5 mm

Time per bed = 10 min

Matrix = 256
Subset 4, 6, 8, 9, 12, 16, 18, 24, 32 Iteration = 2

FWHM= 5 mm

Matrix = 256

Time per bed = 10 min
Filter (FWHM in mm) 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7 Iteration = 2

Subset = 24

Matrix = 256

Time per bed = 10 min
Time per bed position 1 min, 2 min, 3 min, 5 min, 10 min Iteration = 2

Subset = 21

FWHM= 5 mm

Matrix = 256
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small (COV ≤ 5%), small (5% < COV ≤ 10%), intermediate
(10% <COV ≤ 20%) and large (COV > 20%) were assessed.
The hierarchical cluster tree of the radiomics features across
COV of image reconstruction settings was created as a vari-
ability heat map. All data were analyzed using the R program
(r-project.com).

Table 3 Radiomics features

Feature
category

Feature Feature name

Texture GLCM
Gray level Co-occurrence

matrix

Second angular moment
(SAMglcm)

Contrast
Entropy
Homogeneity
Correlation
Dissimilarity
Inverse difference moment

(IDMglcm)
GLRLM
Gray level run-length matrix

Short run emphasis (SRE)
Long run emphasis (LRE)
Intensity variability (IV)
Run-length variability (RLV)
Run percentage (RP)
Low-intensity run emphasis

(LIRE)
High-intensity run emphasis

(HIRE)
Low-intensity short-run

emphasis (LISRE)
High-intensity short-run

emphasis (HISRE)
Low-intensity long-run

emphasis (LILRE)
High-intensity long-run

emphasis (HILRE)
NGTDM
Neighborhood gray tone

difference matrix

Coarseness
Contrast
Busyness
Complexity
Strength

GLSZM
Gray level size zone matrix

Short-zone emphasis (SZE)
Large-zone emphasis (LZE)
Intensity variability (IV)
Size-zone variability (SZV)
Zone percentage (ZP)
Low-intensity zone emphasis

(LIZE)
High-intensity zone emphasis

(HIZE)
Low-intensity short-zone

emphasis (LISZE)
High-intensity short-zone

emphasis (HISZE)
Low-intensity large-zone

emphasis (LILZE)
High-intensity large-zone

emphasis (HILZE)
NGLCM
Normalized Co-occurrence

Second angular moment
(SAMnglcm)

Contrast
Entropy
Homogeneity
Dissimilarity
Inverse difference moment

(IDMnglcm)
NGLD
Neighboring gray level

dependence

Small number emphasis (SNE)
Large number emphasis (LNE)
Number non-uniformity

(NNU)
Second moment (SM)
Entropy

TFC
Texture Feature Coding

Homogeneity
Mean convergence
Variance
Coarseness
second angular moment

(SAMcglcm)
GLCM-coding
Texture Feature Coding

Co-occurrence

Entropy
Homogeneity
Intensity
Code Entropy (CE)
Contrast
Inverse difference moment

(IDMcglcm)

Table 3 (continued)

Feature
category

Feature Feature name

Second angular moment
(SAMcglcm)

Code Similarity (CS)
TS
Texture Spectrum

Max spectrum (MS)
Black-white symmetry (BWS)

Intensity

SUVand Intensity histogram Minimum SUV (SUVmin)
Maximum SUV (SUVmax)
Mean SUV (SUVmean)
SUV Variance (SUVvar)
SUV SD (SUVsd)
SUV Skewness (SUVskew)
SUV Kurtosis (SUVkurt)
SUV bias-corrected Skewness

(SUVbcs)
SUV bias-corrected Kurtosis

(SUVbck)
Entropy
SULpeak (standard uptake lean

body mass)
Surface mean SUV 1 (SMV1)
Surface total SUV 1 (STS1)
Surface SUVentropy 1 (SSE1)
Surface SUV variance 1(SSV1)
Surface SUV SD 1 (SsuvSD1)
Surface SUV NSR 1

(SsuvNSR1)
Surface mean SUV 2 (SMsuv2)
Surface total SUV 2 (STsuv2)
Surface SUVentropy 2

(SsuvE2)
Surface SUV variance 2

(SsuvV2)
Surface SUV SD 2 (SsuvSD2)
Surface SUV NSR 2

(SsuvNSR2)
Surface mean SUV 3 (SMsuv3)
Surface total SUV 3 (STsuv3)
Surface SUVentropy 3

(SsuvE3)
Surface SUV variance 3

(SsuvV3)
Surface SUV SD 3 (SsuvSD3)
Surface SUV NSR 3

(SsuvNSR3)
SUVmean prod asphericity

(SUVmpa)
SUVmax prod asphericity

(SUVmxpa)
Entropy prod asphericity (EPA)
SULpeak prod asphericity

(SUlpeakPA)
SUVmean prod surface area

(SUVmpsa)
SUVmax prod surface area

(SUVmxpsa)
Entropy prod surface area

(Epsa)
SULpeak prod surface area

(SULppsa)
Geometry Shape TLG

Tumour volume
Surface area
Asphericity
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Results

Impact of reconstruction, number of sub-iterations,
number of subsets, and post-smoothing

As shown in much of the literatures reconstruction settings
affect both qualitative and quantitative PET/CT images. The

results describing the impact of reconstruction settings, num-
ber of sub-iterations, number of subsets and FWHM of a
Gaussian filter are presented in Fig. 2 and also supplementary
Tables 1 to 12. In the radiomics heat map of Fig. 2, the effects
of different parameter settings on variability are depicted for
both patient and phantom studies as quantified using the
above mentioned COV. The effects of matrix size and scan

Fig. 2 Heat map of Variability of
features against different settings,
1 =Very small variability, 2 =
Small variability, 3 = Intermediate
variability, 4 = High variability
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time per bed were only mapped for phantom or patient studies
respectively (Fig. 2).

In supplementary Table 1, we show the most robust fea-
tures (COV ≤ 5%) over applying different reconstruction set-
ting. For example, a feature of NGLD (Entropy), two features
of GLCM (Homogeneity, Correlation), two features of
GLRLM (SRE, LRE) and 12 features of Intensity and SUV
(e.g., SUVmean, Entropy) were found to be robust against the
reconstruction algorithm.

Table 4 also depicts the most robust (COV ≤ 5%) features
over all reconstruction settings. Results of all reconstruction
settings, including phantom and patient data, were ranked
based on median of COV over all reconstruction settings.
Such robust fea tures included GLCM (Entropy,
Homogeneity, Dissimilarity, Correlation), GLRLM (SRE,
LRE, RLV, RP), GLSZM (SZE, IV, ZP), NGLCM (Entropy,
Homogeneity, Dissimilarity), Intensity and SUV (SUVmean,
Entropy, SULpeak and 16 other features), NGLD (SNE,
NNU, SM, Entropy), TFC (Homogeneity) GLCM-coding
(Entropy, Homogeneity, Intensity, IDMcglcm, CE). In addi-
tion, there were no NGTDM and TS texture features that were
robust as such.

Our result showed features including LIRE, LISRE,
LILRE (GLRLM), LISZE, LILZE (GLSZM), CS (GLCM
Coding), Coarseness (TFC), Intensity and SUVvar, SSV1,
SsuvV2 (SUV) to have the greatest variability (COV > 20%).

Features including Homogeneity (GLCM), SRE (GLRLM),
SZE/ZP GLSZM, Entropy (NGLCM), Entropy (NGLD),
Homogeneity (TFC), Entropy/CE/Intensity/Homogeneity
(GLCM coding), and TLG/TV/Surface area/Asphericity
(Shape) were found to be robust against changes in all
reconstruction settings in both phantom and patient studies
(COV ≤ 5% for all reconstruction settings except matrix size).

Impact of matrix size

The impact of matrix size on radiomic features were tested
with four different matrix sizes. As shown in the heat-map
and supplementary Table 13, it has the greatest impact on
image features. Figure 2 shows that 56% of all features are
very sensitive (COV ≥ 20%) to matrix size changes and only
six (6%) features (NGLCM (Entropy), Intensity and SUV
(SUVmax, Entropy, SULpeak), GLCM coding (Entropy,
CE)) had very small variability (COV ≤ 5%). All features
from NGTDM, GLRLM and GLCM (except correlation)
showed a large variation against matrix size change. SZE,
HISZE and HIZE textures from GLSZM had intermediate
COV, and other eight remaining textures have COV> 20.

Impact of time per bed position

Also, 52% of all features showed very small (COV ≤ 5%)
variability against time per bed position, 27% have small T
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(5% < COV ≤ 10%), 10% intermediate (10% <COV ≤ 20%)
and 11% of features have large (COV > 20%) variability
(supplementary Table 14). GLRLM (LIRE, LISRE, LILRE),
GLSZM (LIZE, LISZE, LILZE), intensity and SUV
(SUVskew, SUVbck), Coarseness, CS, BWS are the most
redundant features.

Differences in phantom and patient studies

To assess how reconstruction settings may have different im-
pacts on phantom and patient image features, we calculated
the differences between COVof such features and considered
<10% as most consistent. Results showed 95%, 92%, 88%
and 87% of all features had <10% differences between phan-
tom and patient studies, when COV was computed across
reconstruction, FWHM, sub-iteration and subset changes,
respectively.

Discussion

PET/CT image quantification using radiomic features has a
wide range of applications including tumour diagnosis, char-
acterization, prognosis and prediction of response to treatment
[33]. For years, SUVmetrics have been used most commonly,
but their accuracy and capabilities have limitations [34–36].
At the same time, recent scientific evidence points to certain
radiomic features as being susceptible to variability across
different imaging protocols particularly reconstruction set-
tings [8]. In this study, we aimed to investigate the impact of
reconstruction settings available in clinical practice on PET/
CT image features in a multi-scanner study involving both
phantom and patient studies.

Based on the radiomics literature, accuracy of features and
analysis procedures are main issues which determine the suc-
cess of radiomics in clinical research, and radiomic feature
accuracy depends on factors such as imaging protocol, scan-
ner type, and equipment accessories [37]. In this light, we
considered these factors and performed our studies in two
participating PET/CT centers having two different scanner
models.

Our results showed that the robustness of PET/CT image
radiomic features to advanced reconstruction settings is fea-
ture-dependent, and different settings have different effects on
radiomics features. For example, entropy from GLCM-
Coding vs. LISZE from GLSZM were robust vs. non-robust,
respectively, against all reconstruction settings, whilst coarse-
ness from NGDT had very small variability against time per
bed, small variability against subset/reconstruction algorithm,
intermediate variability against FWHM/sub-iteration and
large variability against matrix size.

We also assessed feature robustness in both phantom and
patient studies. Our results demonstrated that most features

had similar variability between the two kinds of studies, but
there were some differences. This is maybe due to biological
and physiological parameters such as proliferation, tumour
vasculature, metabolism, hypoxia condition and necrosis,
which contribute to intra-tumoral heterogeneity. Also, our
phantom was filled with a homogenous activity and there
was no heterogeneity. Although, whether the tumour being
quantified is homogeneous or heterogeneous, the values of
the radiomics features will obviously change, but the COV
variations will remain nearly the same. The other main param-
eter is motion (e.g., respiratory) which is absent in phantom
study. There are studies which suggested that the variability of
features is due to respiratory motion [25, 38].

Based on our results and in comparison with some other
studies (Fig. 3), the robustness of different radiomic features
are variable against different reconstruction settings. Although
these studies have been done on PET/CT image radiomic fea-
ture robustness, and because these studies were different in
segmentation, quantization and same feature names, they have
some differences in comparison with our results. Also, it
should be remembered that quality assurance (QA) has an
impact on image quality and quantity. In our work, before
any measurement, we assured the QA and validity of both
scanners.

For example, Doumou et al. investigated the effects of im-
age smoothing, segmentation and quantization on the hetero-
geneity features such as GLCM, GLRL, NGTDM and
GLSZM [39]. Their results demonstrated that smoothing and
quantization had small and large effects on the precision of
features, respectively. In our work, in comparison to Doumou
et al., about nine features (from 29 common features) have
good agreement in such as SRE, Entropy, Homogeneity, and
SZE; also ZP had the smallest variability and the LIZE feature
was found to be very variable against filter in both studies.

In a recent study, Yan et al. studied the effect of reconstruc-
tion settings on 55 texture and six first-order features and
reported different COVof features over changes of reconstruc-
tion settings [40]. For the 40 features in commonwith our own
study, 60%, 52%, 65% and 70% of them showed the same
COVs in reconstruction algorithms, FWHM, iterations and
matrix size, respectively. This may be due to differences in
data analysis. The analysis by Yan et al. was based on the
highest value of COV for ranking, whilst our results were
based on mean of COV.

Bailly et al. studied the robustness of 15 textural features
over the number of iterations, post-filtering level, noise, re-
construction algorithm and matrix size [41]. In comparison,
13 texture features of Bailly et al. were in common with ours,
and 61%, 61%, 53%, 69%, 38% and 61% of these features
had the same COVs against reconstruction algorithms, matrix
size, FWHM, iteration, time per bed and in overall, respec-
tively. RP (GLELM), entropy and homogeneity (GLCM), ZP
(GLSZM) have high robustness and LILZE (GLSZM) had
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low robustness and HISZE, HIZE from GLSZM and SAM-
GLCM had intermediate robustness in both studies.

In another similar study, Rodicioa et al. investigated the
sensitivity of 72 textural features to technical and biological
factors [42]. Their results showed that only eight texture fea-
tures had the highest robustness, and entropy exhibited good
correlation with all patient parameters. These findings have
68% agreement with our results, and all of the eight features
that they reported were consistent with our results.

Van Velden et al. assessed the impact of two reconstruction
settings and segmentation on the repeatability of 105 radiomic
features in non-small-cell lung cancer (NSCLC) [24]. Their
results showed that 63 features had a high level of repeatabil-
ity, but 25 and three features were sensitive to change in seg-
mentation and a change in reconstruction, respectively.

Forgacs et al. introduced a predefined strategy to identify
the most robust texture features, including volume indepen-
dency, reproducibility and accuracy over different reconstruc-
tion settings [43]. They found that entropy, homogeneity and
correlation features had the highest reproducibility, in good

agreement with our results. But, there were some features such
as SZE which had small variations (COV ≤ 5%) from our
results, but were found as non-robust by Forgacs et al. This
may be due to different sources of variability and statistical
assessment of robustness such as interclass correlation (ICC).

In the present work, we investigated the effect of new re-
construction algorithms, and did not study the effect of more
conventional (analytic) algorithms. But in a study by Galavis
et al. they showed the variations of different features over
changes to two reconstruction algorithms including filtered
back projection (FBP) and OSEM, and indicated that features
with large variations could not be selected for tumour segmen-
tation [44].

The present work has some limitations. At first, we did not
take into account the effect of quantization or segmentation
which may have considerable effects on radiomic features.
The effect of these parameters has been studied by Leijenaar
et al. [9, 23] and Lu et al. Also, we did not study the effect of
respiratory motion which can change the feature values. On
the other hand, further clinical studies are needed to test the

Fig. 3 Robustness of features, a
comparison with previous studies
(References: 39, 41-43, 45). R =
Reconstruction, F = FWHM, I =
iteration, O = overall, M =matrix
size, 0 = it is not calculated in that
study, 1 =Most robustness, 2 =
intermediate robustness, 3 = low
robustness
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biological mechanisms of these parameters. Also, new studies
may need to consider PVE on radiomic features.

In the present study, in comparison to previous studies, we
tested a wider range of radiomic features, and new features
were found as robust features. Intensity and SUV features
including SUVmpa, STsuv3, STsuv2, STS1, EPA,, SMsuv3,
SULpeakPA, SsuvE3, SSE1, SsuvE2, Epsa, SUVmpsa,
SMsuv2 and SMV1; GLCM-Coding including Entropy,
Homogeneity, Intensity, IDMcglcm and CE; TFC features in-
cluding Homogeneity and Mean convergence were new ro-
bust radiomic features.

In the present study, one of the main aims was to investi-
gate how newly advanced reconstruction algorithms such as
PSF and TOF, would change the radiomic feature values. In
this regard, we tested four different image reconstruction al-
gorithms including OSEM, OSEM+ PSF, OSEM+ TOF and
OSEM + TOF + PSF and other reconstruction parameters
such as iteration, number of subsets, FWHM and matrix size
were considered as fixed. By using such reconstruction set-
tings, we evaluated radiomic feature robustness (by COV). In
this light, our results show the net effects of different recon-
struction algorithms on the radiomic feature robustness. These
results have been shown in the supplementary tables 1, 5 and 9
separately.

Finally, we note that recent development in PET/CT image
radiomics has opened a new potential horizon towards im-
proved treatment response assessment in comparison to
existing criteria including Response Evaluation Criteria in
Solid Tumours (RECIST) [45] and PET Response Criteria in
Solid Tumours (PERCIST) [46]. In this new era of imaging
biomarker discovery, discovery of robust features is of partic-
ular of importance. In this light, the present work presents new
data which can be considered for screening of potential
radiomic features that are then subsequently evaluated in ther-
apy response assessment tasks of interest, and ultimately
established in multi-center studies.

Conclusion

We investigated the effect of different reconstruction settings,
including reconstruction algorithm, iterations, post-smooth-
ing, time per bed, and image matrix size on a wide range of
PET/CT image radiomic features. Variability and robustness
of PET/CT image radiomics in advanced reconstruction set-
tings is feature-dependent, and different settings have different
effects on different features. Radiomic features with low COV
can be considered as good candidates for reproducible tumour
quantification in multi-center studies. Features with interme-
diate COV should be usedwith caution, and features with high
COV should most likely be omitted (to reduce the number of
potential biomarkers for statistical purposes). In the present
study we also introduced some new radiomic features such

as Intensity and SUV, GLCM-Coding and TFC features as
robust features.
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