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Abstract
Purpose To evaluate the diagnostic relevance of T2-weighted
(T2W) MRI-derived textural features relative to quantitative
physiological parameters derived from diffusion-weighted
(DW) and dynamic contrast-enhanced (DCE) MRI in
Gleason score (GS) 3+4 and 4+3 prostate cancers.
Materials and Methods 3T multiparametric-MRI was per-
formed on 23 prostate cancer patients prior to prostatectomy.
Textural features [angular second moment (ASM), contrast,
correlation, entropy], apparent diffusion coefficient (ADC),
and DCE pharmacokinetic parameters (Ktrans and Ve) were
calculated from index tumours delineated on the T2W, DW,
and DCE images, respectively. The association between the
textural features and prostatectomy GS and the MRI-derived
parameters, and the utility of the parameters in differentiating
between GS 3+4 and 4+3 prostate cancers were assessed
statistically.
Results ASM and entropy correlated significantly (p < 0.05)
with both GS and median ADC. Contrast correlated moder-
ately with median ADC. The textural features correlated in-
significantly with Ktrans and Ve. GS 4+3 cancers had signifi-
cantly lower ASM and higher entropy than 3+4 cancers, but
insignificant differences in median ADC, Ktrans, and Ve. The

combined texture-MRI parameters yielded higher classifica-
tion accuracy (91%) than the individual parameter sets.
Conclusion T2W MRI-derived textural features could serve
as potential diagnostic markers, sensitive to the pathological
differences in prostate cancers.
Key Points
• T2W MRI-derived textural features correlate significantly
with Gleason score and ADC.

• T2W MRI-derived textural features differentiate Gleason
score 3+4 from 4+3 cancers.

• T2W image textural features could augment tumour
characterization.

Keywords Magnetic resonance imaging . Apparent diffusion
coefficient . DCE pharmacokinetic parameters . Texture
analysis . Gleason grading

Introduction

Prostate cancer (PCa) diagnosis and assessment has improved
significantly since the introduction of multiparametric-MRI
(mp-MRI) into its management [1, 2]. Combining multiple
MRI sequences such as T2-weighted imaging (T2WI),
diffusion-weighted imaging (DWI), spectroscopy, and dy-
namic contrast-enhanced (DCE) imaging provides comple-
mentary information for detection, localization, staging, and
grading of the disease, thereby improving accuracy, sensitiv-
ity, and specificity [1, 3, 4].

T2WIprovides anatomical images of the prostate at high spa-
tial resolution.DWIprobes the restrictionof freemotionofwater
molecules in tissue to derive the apparent diffusion coefficient
(ADC),whichprovides information about cell density and tissue
microenvironment [5, 6]. DCE-MRI enables pharmacokinetic
modelling of the dynamic uptake and extravasation of a contrast
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agent, and can be used to derive parameters such as the volume
transfer constant (Ktrans), extravascular-extracellular volume
fraction (Ve), andbloodplasmavolume fraction (Vp) [7–9], from
which tissue pathophysiology (e.g. perfusion, vascular perme-
ability) can be inferred [10].

The Gleason grading system [11, 12] is regarded as the
gold standard for PCa diagnosis and aggressiveness assess-
ment. However, PCa is a heterogeneous and multifocal dis-
ease; Gleason grading based on prostate biopsies, which only
samples a small portion of the gland, may, therefore, not pro-
vide a complete representation of the disease and tends to have
low specificity [13, 14], whereas prostatectomy Gleason grad-
ing is usually confined to intermediate- and high-risk patients.
Furthermore, the Gleason grading is qualitative, subjective,
and hence prone to intra and inter-observer variations.
Despite the improvements offered by mp-MRI incorporation,
the separation of Gleason score (GS) 3+4 cancers from GS 4+
3 cancers using conventional MRI parameters tends to be less
effective due to overlapping values [15, 16]. These two PCa
patterns account for the largest group at biopsy or prostatec-
tomy, and have significantly different prognoses irrespective
of having the same GS of 7 [17–20]. Hence, misclassification
could have serious clinical consequences. Accurate classifica-
tion of these twoGS patterns thus requires objective, sensitive,
and reproducible quantitative image analysis methods.

Texture analysis is a promising technique known to have
such attributes. It comprises the use of mathematical parame-
ters, derived as functions of the spatial distribution of pixel
intensities, to characterize the fundamental textures of objects
in an image [21]. The applicability of texture analysis in med-
ical image analysis has been demonstrated in several studies
[22–27], predominantly for characterizing disease types or
diseased from healthy tissues. Yet, unlike conventional quan-
titative MRI parameters such as ADC, Ktrans, and Ve [28, 29],
little is known about the pathophysiological semantics of tex-
tural features. This knowledge gap poses a challenge in the
development of texture-based computer-aided diagnosis tools
and their integration into clinical practice. The aim of this
study was to bridge this gap by evaluating how grey-level
co-occurrence matrix (GLCM) based textural features [30]
derived from T2WMRI relate to GS (3+4 vs. GS 4+3) cancer
patterns, and MRI-based physiological parameters (ADC,
Ktrans, and Ve). Furthermore, the study evaluated the utility
of these features/parameters as potential markers for
distinguishing between these two PCa patterns was evaluated.

Materials And Methods

Patient Cohort

The cohort of 23 PCa patients used in this retrospective study
was obtained from a previous (in 2011) prospective study of

30 patients approved by St. Olavs University Hospital,
Trondheim, Norway, and the Regional Committee for
Medical and Health Research Ethics, Central Norway. Each
patient gave a written informed consent for data usage.
Inclusion in the prospective study required that the patient
was initially confirmed by means of core needle biopsy to
have PCa, and was scheduled to undergo pre-operative mp-
MRI involving T2W, DWandDCE-MRI at least 4 weeks after
the last biopsy, followed by radical prostatectomy within 12
weeks after the mp-MRI.

MR Image Acquisition

All MRI were performed in feet first supine position, on a 3T
MRI system (Magnetom Trio; Siemens Medical Solutions,
Erlangen, Germany) using standard body and spine phased
array matrix coils for signal detection. Glucagon (Novo
Nordisk, Bagsværd, Denmark) was injected intramuscularly
prior to imaging to suppress bowel movements.

The T2W images were acquired with a turbo spin-echo
sequence (TR/TE 4000/101 ms; flip angle: 150°; FOV:
200×200; matrix: 320×320; slice thickness: 3 mm; interslice
gap: 0.6 mm), and the DW images with a single-shot echo-
planar imaging sequence, using four b-values: 0, 100, 400,
and 800 s/mm2 (TR/TE: 3300/60 ms; flip angle: 90°; FOV:
260×211; matrix: 160×130; slice thickness: 3.6 mm). A 3D
fast low-angle shot sequence (time-resolved imaging with
stochastic trajectories) was used for the DCE-MRI (TR/TE:
3.85/1.42 ms; flip angle: 12°; FOV: 260×260; matrix:
160×160; slice thickness: 3.6 mm). It included the acquisition
of pre-contrast T1W image scans using four variable flip an-
gles (2°, 5°, 10°, and 20°), followed by 70 dynamic scans at
4.22 s temporal resolution. After the third dynamic scan, the
gadolinium-based contrast agent gadoterate meglumine
(Dotarem®; Amersham Health, Oslo, Norway) was adminis-
trated intravenously by bolus injection (0.1 mmol/kg; rate: 2
mL/s) using a Spectris™ MR injection system (Medrad Inc.
PA, USA), followed by a 20-mL normal saline flush. The
images were oriented along the longest axis of the prostate,
perpendicular to the urethra to best match routine histologic
sectioning of the prostate and covered the entire prostate
volume.

Histopathology and Regions of Interest Delineation

After radical prostatectomy, the excised gland was fixed in
formalin and serially sectioned from the apex to the base into
4-mm axial slices, from which 3.5-μm sections were stained
with haematoxylin-erythrosine-saffron (HES). The HES-
stained slides were examined by an experienced pathologist
who outlined cancer foci, described cancer location, and grad-
ed all foci in accordance with the Gleason scoring system [11,
12].
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For each patient, the histopathology slide with the index
tumour—the largest histopathologically defined, clinically
significant (volume ≥ 0.5 cm3) cancer focus with the highest
GS—was selected. The best corresponding axial T2W image
slice was then identified with the guidance of anatomical land-
marks (Fig. 1a). To support region of interest (ROI) delinea-
tion in the T2W image, both images (histopathology and
T2W) were overlaid with a radial grid using the same anatom-
ical landmarks as reference, while taking into account the
offsets in orientation and distance between the urethra and
the base for the two images. Subsequently, a ROI replicating
the index tumour was manually outlined in the T2W image
based on the location in the histology section and its appear-
ance on the T2W image.

The delineated T2W image ROI was then transformed
(using Elastix toolbox [31]) to the corresponding DW and
DCE images (Fig. 1b) and their parametric maps (Fig. 1c)
via intensity-based rigid registration using the Mattes mutual
information similarity metric. To optimize the registration,
possible intensity-based artefacts due to artificial global inten-
sity inhomogeneity were corrected for according to Cohen
et al [32] prior to registration. The resulting registration trans-
formations were then applied to the original/unfiltered images
or ROIs. The quality of the inter-protocol ROI registrationwas
assessed visually in the three images together with the ADC
and Ktrans maps.

Quantitative Analysis

Haralick textural features [30] and MRI-based physiological
parameters consisting of ADC, Ktrans, and Ve were computed
from the respective delineated ROIs as follows:

Two-dimensional GLCM-based texture analysis [30] was
performed on the T2W image ROIs (mean area: 212 pixels,
range: 116–416 pixels) by first rescaling (histogram equaliza-
tion) the intensities within each ROI to a range of 0-255 grey
levels. The GLCM—a square matrix in which each element
GLCM(i,j) represents the number of times that a pair of pixels
with grey levels i and j co-occur at a specified distance and
direction in relation to each other [30]— was computed using
64 bins and at one pixel distance for each direction of 0°, 45°,
90°, and 135°. Haralick textural features were then calculated
from each GLCM, and the average of each parameter over the
four directions was obtained. A single value was computed for
each textural feature for a defined ROI. Haralick et al [30]
originally proposed fourteen GLCM textural features, most
of which are highly correlated and reflect similar information.
We therefore selected four distinct textural features—angular
second moment (ASM), contrast, correlation, and entropy—
based on the literature [26, 30, 33] for analysis. ASM mea-
sures homogeneity of an image; contrast measures local vari-
ations; correlation measures linear dependency of the grey-
levels; and entropy measures randomness or complexity

[30]. The mathematical expressions for these features are giv-
en in the appendix.

ADC maps were calculated voxel-wise from the DW im-
ages using b-values of 100, 400, and 800 s/mm2 by fitting the
DWI signal as a function of b-value to the monoexponential
decay model. The median ADC value for each ROI was
calculated.

The extended Tofts model [9] (two-compartment with
intravascular tracer contribution) was applied to the DCE-
MRI time series images for pharmacokinetic modelling.
Prior to parameter estimation, the DCE and the pre-contrast
T1W images were rigidly co-registered [31] in time as de-
scribed above to correct for possible patient motion during
imaging. Pre-contrast T1-maps were calculated (from the
pre-contrast images) for the conversion of signal intensity into
contrast agent concentration. Voxels with T1 values outside
[500–3000 ms] were excluded [34]. Fitting of image data to
the model was done on a voxel-by-voxel basis from which
maps of Ktrans, Ve, and Vp were computed. The population-
averaged arterial input function (AIF) reported by Parker et al
[35] was used, and the time delay of the tissue enhancement
curve relative to the AIF was accounted for. The contrast agent
relaxivity was 3.5 s-1mM-1. Voxels for which Ktrans < 0, Ktrans

> 10, Ve < 0, or Ve > 1 were also discarded, and the median
values computed for each ROI. Vp was not used for further
analysis.

Median T2W signal intensity (T2WSI) was also computed
for each ROI. First, the image intensities (original/non-scaled)
were corrected for nonstandardness by aligning the image
intensity histogram of each patient image to match the mean
intensity histogram across the different patients [36], thereby
ensuring that the image intensities are comparable and have
consistent tissue-specific meaning.

All the analyses were performed using MATLAB R2014a
(Mathworks, Natick, MA, USA).

Statistical Analysis

Point-biserial correlation coefficients (rpb) and Spearman cor-
relation coefficients (ρ) were calculated to quantify the rela-
tionships between the textural features and GS and between
the textural features and MRI-based physiological parameters
(ADC, Ktrans, and Ve), respectively.

Each computed parameter was tested for significant differ-
ences between GS 3+4 and GS 4+3 cancers using two-tailed
Mann-Whitney U tests. A generalized linear model with a
logistic regression model component was used to perform
receiver operating characteristic (ROC) analysis to classify
the two cancer patterns. The nonparametric approach by
DeLong et al [37] for comparing the areas under two or more
correlated ROC curves was further used to evaluate the clas-
sification capabilities of the parameters. p-values < 0.05 were
considered to be statistically significant. The p-values were
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adjusted for multiple testing using Benjamini and Hochberg’s
approach [38]. The statistical analyses were performed in
MATLAB.

Results

Patient Characteristics

Seven of the 30 patients were excluded from this retrospective
study due to unavailable histopathology (n = 5), poor MR
image quality, or histopathology-MRmatching (n = 2). A total
of 32 clinically significant (volume ≥ 0.5 cm3) cancer foci
according to the histopathology were present in the remaining
23 patients (details of patient and tumour exclusion are given
in Fig. 2). Twenty-three respective index tumours were
analysed (Table 1). Because of incomplete DCE data

acquisition, data sets for 20 patients were included in the sta-
tistical analysis of the DCE pharmacokinetic (Ktrans and Ve)
parameters.

T2W MRI-derived Textural Features Correlate
Significantly with GS and ADC

T2W image textural features ASM and entropy correlated sig-
nificantly (p < 0.05) with GS after multiple test correction.
ASM correlated moderately negatively (rpb = -0.52), and en-
tropy moderately positively (rpb = 0.49). ASM, entropy, and
contrast also correlated significantly (p < 0.05) with median
ADC. The correlations were highly positive (ρ = 0.82), high-
ly negative (ρ = -0.80) and moderately negative (ρ = -0.44),
respectively. None of the textural features correlated signifi-
cantly with median Ktrans or Ve (Table 2).

Fig. 1 (a)Histopathology slide spatially matched to T2-weighted (T2W)
image slice based on anatomical landmarks (e.g. urethra, ejaculatory
ducts, size/shape of the peripheral zone, apex/base proximity), (b) cancer
region of interest delineated in T2W image based on histology and rigidly

registered to diffusion-weighted (DW) and dynamic contrast-enhanced
(DCE) images, and (c) textural features, apparent diffusion coefficient
(ADC), volume transfer constant (Ktrans), and extravascular-extracellular
volume fraction (Ve) computation.
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T2WMRI-Derived Textural Features Distinguish GS 3+4
from 4+3 Cancers

Patients with GS 4+3 cancers had significantly lower T2W
image textural ASM and higher entropy than those with GS

3+4 cancers (Fig. 3), but no significant difference was found
for the conventional MRI parameters (Fig. 4). Table 3 depicts
the areas under the curves (AUCs) and 95% confidence inter-
vals (CIs) for the ROC analysis classification of the two can-
cer patterns using the individual parameters. ASM and entro-
py were the best performing individual parameters, whereas
correlation and contrast performed worst. The combined tex-
tural features resulted in a higher classification accuracy
(AUC = 82%, CI = 0.61–0.99, p < 0.05) than the MRI-
based physiological parameters combined (AUC = 75%, CI
= 0.52–0.98, p < 0.05). The highest classification accuracy
(AUC = 91%, CI = 0.75–0.99, p < 0.05) was however
achieved when all computed parameters were combined
(Fig. 5). The differences in AUCs were not significant.

Discussion

The clinical applicability of texture analysis remains limited de-
spite having been shown to have high accuracy and sensitivity in
classifying tumour patterns and discriminating healthy fromdis-
eased tissues [22–26, 39]. The latest prostate imaging reporting
anddata system(PI-RADS) [40] describes the texture ofprostate
tissue as an important feature for identifying prostate cancer,
especially in the transition zone (TZ), yet the evaluation proce-
dure is qualitative. Successful integration of texture-based com-
puter-aided diagnosis tools (i.e. texture analysis) into clinical
practice couldmake this process quantitative and less subjective.
However, texture analysis being a relatively new field inmedical

Fig. 2 Flowchart of patient and
tumour inclusion and exclusion.
PZ = peripheral zone; TZ =
transition zone. One cancer focus
per patient, i.e. the index tumour,
the largest histopathologically
defined, clinically significant
(volume ≥ 0.5 cm3) cancer focus
with the highest Gleason score
was considered for analysis.
Excluded multifocal cancers: two
3+3, three 3+4 and four 4+3 (two
from the same patient) Gleason
score cancers.

Table 1 Clinical and demographic characteristics of the patient cohort.

Number of patients (n) 23

Mean age, years [range] 62 [53–74]

Mean PSA ng/mL [range] 8.5 [1.9–20]

Pathologic stage at
prostatectomy, n (%)

pT2a 2 (9)

pT2c 17 (73)

pT3a 2 (9)

pT3b 2 (9)

Gleason score, n (%)

3+4 14 (61)

4+3 9 (39)

Mean of index tumour
diameter in transverse
plane, mm [range]

22.2 [10–40]

Tumour location, n (%)

PZ 19 (83)

TZ 4 (17)

PSA: serum prostate specific antigen, PZ: peripheral zone, TZ: transition
zone. Gleason grades were obtained from prostatectomy specimen. Three
of the TZ cancers were Gleason score 3+4 cancers, and 11 of the PZ
cancers were Gleason score 3+4 cancers.
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image analysis, the pathophysiological semantics and relevance
of the textural features are currently lacking. In addition, the
existence of numerous texture analysis approaches [21, 41] and
subsequent large number of possible textural features serve as
challenges in selecting the most relevant features for prostate
cancer. This preliminary study therefore investigated the diag-
nostic relevance of T2WMRI-derived textural features (ASM,
contrast, correlation, entropy) in relation to parameters with
known pathophysiological significance (i.e. GS, ADC, Ktrans,
and Ve).

A number of studies have used texture analysis of histopa-
thology images for automated Gleason grading with high ac-
curacy [42–44]. Other studies found GLCM-based textural
features derived from ADC maps to be capable of differenti-
ating between benign and malignant tumours in the peripheral

zone (PZ) [26] and GS 3+3 from GS ≥ 7 cancers [45]. In this
study, however, we focused the texture analysis on T2W im-
ages because they are easy to acquire, less prone to artefacts,
non-invasive, and suitable for every patient. Importantly,
T2WI offers high signal-to-noise ratio, spatial resolution and
soft tissue contrast images of the prostate structures [46], an
important feature in PI-RADS [40]. Hence, texture analysis on
these high-resolution images could reveal subtle alterations in
tissue architecture due to cancer. Moreover, this study further
improves our understanding of textural features in that it ex-
plored additional quantitative physiological MRI parameters,
Ktrans and Ve, which the previous studies did not touch on.

We found the T2W image-derived textural features (ASM
and entropy) to correlate significantly with GS. Our results
support the findings of Vignati et al [45], who also found

Fig. 3 Box plots comparing the
distribution of T2W MRI-derived
textural features between Gleason
score 3+4 and 4+3 cancers. Black
diamonds indicate mean values.
p-values corrected for multiple
testing. *significant (p-value <
0.05) after multiple test correc-
tion. ASM = angular second
moment.

Table 2 Correlation between T2W MRI-derived textural features and Gleason grade, ADC, Ktrans, and Ve.

Texture feature Gleason score median ADC median Ktrans median Ve

rpb p-value ρ p-value ρ p-value ρ p-value

ASM –0.518* 0.033 0.818* <0.0001 –0.394 0.111 –0.236 0.630

Contrast 0.267 0.218 –0.440* 0.049 0.390 0.111 0.146 0.681

Correlation –0.305 0.209 0.334 0.118 –0.377 0.111 –0.098 0.681

Entropy 0.494* 0.033 –0.798* <0.0001 0.368 0.111 0.254 0.630

ASM: angular second moment, rpb: point-biserial correlation coefficient, ρ: Spearman correlation coefficient, ADC: apparent diffusion coefficient,
Ktrans : volume transfer constant, Ve: extravascular-extracellular volume fraction. * significant correlation (p < 0.05) after correcting for multiple testing.
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significant correlations between T2W image textural features
[homogeneity (ASM) and contrast] and GS. Although
Wibmer et al [26] did not find T2W image textural features
to correlate significantly with GS, their study and that of
Rosenkrantz et al [15] found that ADC map textural features
correlated significantly with GS and the percentage of
Gleason grade 4 in GS 7 cancers, respectively. The differences
in data acquisition (resolution) and analysis (e.g. pooling to-
gether PZ and TZ cancers) between these studies possibly
contributed to the discordance.

More interestingly, we found these two textural features
(ASM and entropy) to be significantly different between GS
of 3+4 and 4+3 cancers. A similar observation was also re-
ported in [26] for ASM. These findings further underscore the
need to consider each cancer group separately in clinical prac-
tice during staging or therapeutic intervention, irrespective of
having the same GS of 7, as indicated in previous studies [19,
20]. Median T2WSI did not differ significantly between the

two cancer groups, an indication that T2W image textural
features could be more sensitive in revealing underlying tissue
morphology than ordinary summary statistics of T2W image
intensities.

Cancer growth requires formation of new blood vessels to
sustain the proliferating cells. The abnormal nature of such
neo-vasculature causes fast extravasation of injected contrast
agent and thus an increase in Ktrans when compared to healthy
tissues [10, 47]. DCE pharmacokinetic analysis in particular
probes blood vessel function and not the underlying morphol-
ogy of the tissue per se, a possible explanation for the lack of
association with the textural features. Moreover, GS 7 cancers
could grow relatively slowly, without heavy demand for new
blood vessels, as opposed to more aggressive cancers.

Generally, PCa is characterized by high cellularity and de-
creased extracellular space as a result of reduced luminal
space and stromal matrix [46, 48]. Movement of extracellular
and intraductal water molecules is, therefore, restricted,

Fig. 4 Box plots comparing the
distributions of median T2W
signal intensity (T2WSI),
apparent diffusion coefficient
(ADC), volume transfer constant
(Ktrans), and extravascular-
extracellular volume fraction (Ve)
between Gleason score 3+4 and
4+3 cancers. Black diamonds
indicate mean values. p-values
corrected for multiple testing.

Table 3 Areas under the receiver operating characteristic curves for comparing the performance of T2WMRI-derived textural features andMRI-based
physiological parameters in distinguishing Gleason score 3+4 from Gleason score 4+3 cancers.

Textural features MRI parameters

ASM Contrast Correlation Entropy ADC Ktrans Ve

AUC 0.83* 0.64 0.64 0.83* 0.72 0.69 0.71

95% CI 0.64–0.99 0.40–0.88 0.40–0.88 0.65–0.99 0.50–0.95 0.44–0.94 0.47–0.95

ASM: angular second moment, AUC: area under the curve, CI: confidence interval, ADC: apparent diffusion coefficient, Ktrans : volume transfer
constant, Ve: extravascular-extracellular volume fraction. * Statistically significant (p < 0.05) AUC.
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resulting in low ADC. These tissue microenvironment char-
acteristics, which serve as determinants of ADC, also define
the underlying textural properties of the tissue and could ex-
plain the significant correlation observed between the textural
features (ASM, contrast, entropy) and ADC (Table 2).

Textural features ASM (homogeneity) and entropy (ran-
domness/complexity) were particularly found to correlate sig-
nificantly with both GS and ADC. Increased PCa aggressive-
ness is characterized by decreased ADC, as well as deteriora-
tion of the architectural patterns depicting cellular integrity of
the prostate gland due to poor differentiation and glandular
structure deformation (i.e. high Gleason grade). All of these
could result in less homogeneity and increased complexity of
the tissue, which is reflected by the decreased ASM and in-
creased textural entropy, possibly explaining the observed cor-
relations with GS and ADC. Arguably, these two features
could be considered the most intuitive textural descriptors of
the Gleason grading system.

Vignati et al [45] also found significant correlations be-
tween T2W image textural features (ASM and contrast) and
ADC values. Similar to Fehr et al [33], our results also indicate
that combining traditional MRI parameters and T2W MRI-
derived textural features could achieve a higher classification
accuracy (91%) than the traditional MRI parameters alone.
ADC calculations are dependent on the range of b-values used
[40]. Our ADC calculation excluded the b0 image, which
minimized the contribution of perfusion to some extent.
Though relatively high, the majority of the ADC values are
within a range ([816–1891 μmm2/s] for GS 3+4 and [753–
1405 μmm2/s] for GS 4+3 cancers) comparable to other stud-
ies [15, 26, 28]. Contrary to other studies [28, 49], we did not
find median ADC to differ significantly between GS 3+4 and
4+3 cancers, as also reported in [15]. The most plausible

reason for this observation is the relatively low number of
patients in our cohort; nonetheless, the textural features could
significantly differentiate the two cancer patterns with higher
accuracy.

This study has some limitations. The sample size is rela-
tively small (23 patients), and our focus on separating only GS
3+4 and GS 4+3 PCa patterns could be regarded as limited in
terms of tumour diversity. The sample size did not allow for
separate analyses of PZ and TZ cancers as in other studies [25,
26, 33]. As all the analyzed data represent index tumours of
GS 3+4 or 4+3, this small tumour diversity could also be
explained as sample homogeneity, which contributes to the
quality of our data. Including multiple cancers from the same
patient (multifocal cancers) as separate data points could be a
way to increase the sample size, but would have hampered
sample homogeneity. Furthermore, in clinical practice, treat-
ment decision mostly relies on the Gleason score of the index
tumour (i.e. the largest histopathologically defined, clinically
significant (volume ≥ 0.5 cm3) cancer focus with the highest
GS). Hence, including multifocal cancers could generate con-
founding results that do not accurately represent clinical
practice.

Secondly, standardized T2WSI were used for cancer char-
acterization, rather than directly quantified T2 values through
T2-mapping. Further, we employed 2D texture analysis in-
stead of the reported improved 3D texture analysis [50, 51]
since the latter is not considered optimal for acquisitions with
interslice gaps. Finally, the lack of spatial co-registration of the
histopathology slides and the MR images, which caused us to
delineate the ROIs directly on the T2W MR images is also
worth noting.

Conclusions

Our study shows that T2WMRI-derived textural features cor-
relate with the underlying pathophysiology of prostate cancer
tissue, and thus could augment existing prostate cancer clas-
sification techniques. However, for texture analysis to gain a
stronger place in prostate cancer management, more efforts
need to be directed towards understanding the biological
and/or pathological semantics of the textural features, deter-
mining the most relevant features, and standardizing texture
analysis methods. To this effect, a validation of this study in a
larger, preferably multi-centre cohort with higher tumour di-
versity should be pursued.
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Appendix

Notation

G is the number of distinct levels in the histogram equalized
image; N i; jð Þ is the i; jð Þ th entry in a normalized spatial
GLCM; and px ið Þ is the i th entry in the marginal-probability
matrix obtained by summing the rows of p i; jð Þ ¼ ∑ jp i; jð Þ.

pxþy nð Þ ¼
X

i

X

j
iþ j ¼ n

N i; jð Þ; n ¼ 2; 3;…; 2G

px−y nð Þ ¼
X

i

X

j
i− jj j ¼ n

N i; jð Þ; n ¼ 0; 1;…;G−1

Textural Features

Angular Second Moment ¼
X

i

X

j

N i; jð Þ2

Contrast ¼
XG−1

n¼0

n2px−y nð Þ

Correlation ¼
X

i

X
j
i jð ÞN i; jð Þ−μ2

x

σ2
x

where μx and σx are the mean and standard deviation of px,
respectively.

Entropy ¼ −
X

i

X

j

N i; jð Þlog N i; jð Þð Þ
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