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Abstract
Purpose To investigate whether qualitative magnetic reso-
nance (MR) features can distinguish leiomyosarcoma (LMS)
from atypical leiomyoma (ALM) and assess the feasibility of
texture analysis (TA).
Methods This retrospective study included 41 women
(ALM=22, LMS=19) imaged with MRI prior to surgery.
Two readers (R1, R2) evaluated each lesion for qualitative

MR features. Associations between MR features and LMS
were evaluated with Fisher’s exact test. Accuracy measures
were calculated for the four most significant features. TA
was performed for 24 patients (ALM=14, LMS=10) with
uniform imaging following lesion segmentation on axial
T2-weighted images. Texture features were pre-selected
using Wilcoxon signed-rank test with Bonferroni correction
and analyzed with unsupervised clustering to separate
LMS from ALM.
Results Four qualitative MR features most strongly asso-
ciated with LMS were nodular borders, haemorrhage, “T2
dark” area(s), and central unenhanced area(s) (p ≤ 0.0001
each feature/reader). The highest sensitivity [1.00
(95%CI:0.82-1.00)/0.95 (95%CI: 0.74-1.00)] and speci-
ficity [0.95 (95%CI:0.77-1.00)/1.00 (95%CI:0.85-1.00)]
were achieved for R1/R2, respectively, when a lesion
had ≥3 of these four features. Sixteen texture features
differed significantly between LMS and ALM (p-values:
<0.001-0.036). Unsupervised clustering achieved accura-
cy of 0.75 (sensitivity: 0.70; specificity: 0.79).
Conclusions Combination of ≥3 qualitative MR features ac-
curately distinguished LMS from ALM. TAwas feasible.
Key Points
• Four qualitative MR features demonstrated the strongest
statistical association with LMS.

• Combination of ≥3 these features could accurately differenti-
ate LMS from ALM.

• Texture analysis was a feasible semi-automated approach
for lesion categorization.
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Abbreviations
ALM Atypical leiomyoma
BW Bandwidth
CI Confidence interval
FOV Field of view
GLCM Gray-level co-occurrence matrices
HIPAA Health Insurance Portability and Accountability

Act
LM Uterine leiomyomas
LMS Leiomyosarcoma
MR Magnetic resonance
MRI Magnetic resonance imaging
NPV Negative predictive value
PPV Positive predictive value
ROIs Regions of interest
SI Signal-intensity
ST Section thickness
T2WI T2-weighted image
TA Texture analysis
DWI Diffusion-weighted imaging

Introduction

Uterine leiomyomas (LM) are very common, observed in
nearly 40 % of reproductive-age women [1, 2]. Whereas tra-
ditionally symptomatic LMwere treated with hysterectomy or
myomectomy, currently they may be managed with standard
surgery or minimally-/non-invasive methods such as uterine
artery embolization, MRI-guided high-intensity focused ultra-
sound, or hormonal therapy [3]. While the latter techniques
offer obvious benefits of faster recovery and organ-preserva-
tion, they do not provide histopathologic confirmation and
could therefore allow leiomyosarcoma (LMS) to go unrecog-
nized. LMS are rare, highly aggressive tumours that require
prompt radical resection [4–6]. Unfortunately, distinguishing
LMS from LM clinically is often impossible due to the simi-
larity of the symptoms and laboratory data they produce [4–6].

MRI is the best imaging modality for assessing uterine
masses before intervention [7]. Most LM are easily recog-
nized as well-circumscribed, homogenous low-T2-signal-
intensity (SI) masses with avid post-contrast enhancement
[7]. However, the appearance of LM may be affected by de-
generation, oedema, and/or unusual patterns of growth, mak-
ing their differentiation from LMS difficult [8, 9]. Conflicting
results from prior studies have led to uncertainty regarding the
value of qualitativeMRI features for differentiating LMS from
unusual/atypical LM (ALM) [9–18]. These studies had
small numbers of patients with LMS, included few
ALM, and grouped var ious u te r ine sa rcomas
(leiomyosarcoma, endometrial stromal sarcoma, carcino-
sarcoma, etc.) into one category despite their often hav-
ing distinct MR features and clinical outcomes.

Furthermore, we are unaware of any published studies re-
garding the value of quantitative MR texture features for the
differentiation of LMS from ALM. Texture analysis (TA) ex-
tracts local variations in pixel intensities using well-
established mathematical formulas and provides a set of quan-
tifiable metrics that may supplement radiologists’ qualitative
image interpretations. Research suggests that TA may be of
particular value for the differentiation of tumours with similar
imaging characteristics on conventional imaging [19–23].

Thus, the aims of our study were to investigate whether
qualitative magnetic resonance (MR) features can distinguish
leiomyosarcoma (LMS) from atypical leiomyoma (ALM) and
assess the feasibility of texture analysis (TA).

Materials and methods

The Institutional Review Board approved this retrospective,
HIPAA-compliant study and waived written informed
consent.

Eligibility

We retrospectively searched our institutional database to iden-
tify all consecutive patients who 1) underwent myomectomy
and/or hysterectomy, 2) had contrast-enhanced MRI within
6 months of surgery, and had either 3) histopathologically-
proven leiomyosarcoma, high-grade spindle cell neoplasm,
smooth muscle tumour of uncertain malignant potential
(STUMP), highly cellular or cellular leiomyoma, mitotically
active leiomyoma, “atypical” leiomyoma, leiomyoma with
hydropic changes, myxoid leiomyoma (leiomyoma with
myxoid stromal changes), epithelioid leiomyoma, or intrave-
nous leiomyomatosis or 4) had ≥1 of the following keywords
in their MRI report: atypical/unusual uterine/myometrial
mass, cellular leiomyoma/fibroid, or leiomyosarcoma. The
above electronic search of our institutional database yielded
144 patients with surgically resected myometrial masses be-
tween 1/1/2007 and 12/31/2013. One hundred and three pa-
tients were excluded due to lack of MRI examination prior to
the surgery, MRI examination obtained without intravenous
contrast administration or only partial coverage of the
myometrial mass. The final study population consisted of 41
patients with histopathologically-confirmed diagnoses
(ALM=22, LMS=19), none of whom had STUMP. As uni-
form acquisition parameters are required for machine learning
methods, scans were excluded from TA if any of the following
were present on the subjective assessment of axial T2-
weighted imaging (T2WI): 1) fat saturation (ALM= 2,
LMS=2), 2) motion artefacts (ALM=2, LMS=5), 3) pixel
size >1 standard deviation from the mean (ALM = 4,
LMS=2). Thus, TAwas performed on the scans of 24 patients
(ALM=14, LMS=10).
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Histopathology

Histopathologic diagnoses rendered by fellowship-trained
gynaecologic oncologic pathologists at the time of the initial
surgical specimen evaluation served as our reference standard.
These diagnoses were based on the Stanford criteria, supple-
mented by the World Health Organization’s Classification of
Tumours of the Breast and Female Genital Organs [24, 25].

MR imaging protocol

MRIs were obtained at our institution (13/41, 32 %) or else-
where (28/41, 68 %) and digitized into our picture archiving
and communication system (Centricity PACS; GE Medical
Systems, Milwaukee, WI). At our institution, MRIs were ac-
quired on ≥1.5-Tesla systems (GE Medical Systems,
Milwaukee, WI) using pelvic phased-array coils for signal
reception. At a minimum, each study included axial and sag-
ittal T2-weighted fast spin-echo images (repetition time
msec/echo time msec, 3500–4500/85-120; bandwidth (BW),
16-32 kHz; section thickness (ST), 4 mm; intersection gap,
1 mm; field of view (FOV), 20–24 cm; ≥256×192 matrix),
axial T1-weighted spin-echo images (typical parameters:
400-650/minimum; BW, 32 kHz; ST, 5 mm; intersection
gap, 1 mm; FOV, 32–36 cm), and fat-suppressed three-dimen-
sional spoiled gradient-recalled echo T1-weighted images
(typical parameters: flip angle, 12°; BW, 62.5-83.3 kHz; ST,
3 mm with no intersection gap; FOV, 20-24 cm) obtained
before and 1, 2, 3, and 4 min after intravenous administra-
tion of gadopentetate dimeglumine (Magnevist; Berlex
Laboratories, Montville, NJ) at a dose of 0.1 mmol/kg
of body weight.

All 28 outside MR imaging examinations (performed at 24
different imaging centres) met or exceeded standards agreed
to by the investigators. These standards required ≥1.5-Tesla
systems, phased-array surface coils, acquisition of axial and
sagittal T2-weighted images, and spin-echo or gradient-echo
axial T1-weighted images obtained before and after intrave-
nous contrast agent administration. With the exception of one
MRI examination, all contrast-enhanced sequences were ob-
tained with fat saturation. For all sequences, the parameters
were the following: field of view, 20–34 cm; section thick-
ness, 6 mm or less; and 256×192 or greater matrix. We could
not determine the type of the intravenous contrast agent ad-
ministered or the timing protocol used at the outside
institutions.

Qualitative MR feature analysis

One radiologist (D.F., not involved in MR feature interpreta-
tion) reviewed allMRI scans. For each of the patients withmore
than one myometrial mass (16/41, 39 %), this radiologist cor-
related MRI and relevant histopathologic findings and marked

one index lesion per patient for both qualitative and quantitative
assessment. Two blinded radiologists (Y.L. and J.C.) with 7 and
6 years of experience in oncologic MR imaging independently
interpreted all MRI scans.

Each reader evaluated the following qualitative MR fea-
tures in each lesion: 1) borders (smooth or nodular), 2) haem-
orrhage, 3) SI relative to the outer myometrium on T2WI, 4)
heterogeneity on T2WI, 5) presence/location of cystic alter-
ation(s) on T2WI (SI equal to that of urine), 6) fluid-fluid
level(s) on T2WI, 7) flow voids on T2WI (round and/or ser-
piginous low SI vessels that enhance after contrast adminis-
tration), 8) SI relative to the myometrium on contrast-
enhanced images, and 9) presence/location of unenhanced
areas (central versus none or non-central) on contrast-
enhanced images (Fig. 1). As cystic or myxoid degeneration
cannot be distinguished from necrosis on T2WI and contrast-
enhanced images, we recorded the presence and location of
well-demarcated unenhanced areas on contrast-enhanced im-
ages [12]. The majority of the above qualitative MR features
were selected for the assessment because they were evaluated
in the prior published reports [9–12, 15, 16]. Each reader also
recorded the presence of pelvic fluid, peritoneal implants, and
pelvic lymphadenopathy (i.e., short axis ≥0.8 cm).

Quantitative MR texture feature analysis

Image pre-processing

Using Insight ToolKit (ITK) software, the same two radiolo-
gists in consensus manually contoured all lesions (one lesion
per patient in a total of 24 patients (ALM=14, LMS=10).
[26]. On all axial T2WI with visible tumour, they traced the
outer edge of each mass to segment the entire lesion and gen-
erate regions of interest (ROIs) (duration of measurement:
≤5 min per mass). The ROIs were drawn in the median on
17 slices for ALM (interquartile range: 8-21) and 18 slices for
LMS (interquartile range: 13-27) to cover the lesion. Any
variations in the scanners and acquisition parameters led to
the images having different intensity (gray-level) ranges. To
ensure a comparable range of intensities (gray-levels) across
the patients, all images were standardized through histogram
matching using an in-house developed C++ wrapper around
the HistogramMatchingImageFilter available in ITK [27].

Texture feature extraction

We employed in-house software implemented in MATLAB
(MathWorks, Natick, MA) to extract a total of 21 texture fea-
tures from each ROI. First, histogram-derived gray-level
mean, standard deviation (SD), kurtosis, and skewness were
computed from each T2-weighted intensity image, resulting in
four texture features. Second, Gabor filters at two orientations
(0°,90°) and a single bandwidth (g = 1.4) were used to
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generate two Gabor edge images [28] (Supplementary
Materials). Third, gray-level co-occurrence matrices
(GLCM) were constructed from one T2-weighted intensity
image and two Gabor edge images. Finally, Haralick texture
features comprised of energy, contrast, homogeneity, correla-
tion, and entropy were computed from GLCM, yielding an
additional five intensity image-based (Figs. 2 and 3) and 12
Gabor edge image-based texture features (Supplementary
Materials) [29, 30].

Texture feature selection and self-tuning spectral clustering

First, differences in texture features between LMS and ALM
were assessed using the Wilcoxon signed-rank test. P-values
were adjusted using Bonferroni correction to correct for the 21
comparisons.

Sixteen texture features that differed significantly between
the two groups were selected for further analysis with self-
tuning spectral clustering, a form of unsupervised clustering
[31]. Making no assumptions regarding the form of data clus-
ters, self-tuning spectral clustering separates the data into

distinct groups using eigen decomposition of the affinity ma-
trix. The self-tuning approach automatically identifies the ide-
al number of data clusters by analysing the eigen vectors of the
affinity matrix (Supplementary Materials).

Following the clustering, cluster labels from all ROIs be-
longing to the same lesion were pooled together and each
lesion was assigned a cluster label using a majority-voting
approach. For example, if a lesion had 20 ROIs with cluster
label 1 and five ROIs with cluster label 2, the final lesion label
was cluster 1.

We repeated the above process of unsupervised clustering
with only intensity image-based texture features (6/16) and
only Gabor edge image-based texture features (10/16) to com-
pare the performance of various sets of texture features (inten-
sity image-based, Gabor edge image-based or both).

Statistical analysis

Continuous variables were summarized with means and
ranges; categorical variables were described with frequencies
and percentages. Relat ionships between cl inical

Fig. 1 Illustrations of the four
qualitative MR features that
demonstrated the strongest
statistical associations with LMS
at histopathology. a Sagittal T2-
weighted image shows a large
uterine mass with nodular
superior and posterior borders
(white arrows). b Sagittal T2-
weighted image demonstrates
“T2 dark” area in the myometrial
mass (white arrow). c
Noncontrast T1-weighted fat-
saturated image illustrates the
presence of intra-lesional
haemorrhage (white arrow). d
Sagittal contrast-enhanced T1-
weighted fat saturated image
shows the presence of central
unenhanced areas (black arrow)
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characteristics, pathologic findings, and LMS were assessed
with the Wilcoxon rank-sum test for continuous variables and
Fisher’s exact test for categorical variables. The associations
between qualitative MR features and LMS were evaluated

with the Fisher’s exact test. Four MRI features—nodular bor-
ders, haemorrhage, “T2 dark” areas, and central unenhanced
areas—had the strongest statistical associations with LMS for
both readers (i.e., lowest p-values) and were therefore

Fig. 2 a Axial T2-weighted image illustrates ALM. b - f Illustration of the intensity-based texture features (energy, contrast, homogeneity, correlation,
and entropy) overlaid on the axial T2-weighted image
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included in further analysis. Multivariate logistic regression
analysis was not possible since reliable parameter estimates
could not be calculated because of the relatively small number
of patients with LMS.

For each lesion, a qualitative MR feature score was deter-
mined by counting how many of the four most significant
features (mentioned above) were present in the lesion. For
each reader, diagnostic accuracy measures with exact 95 %
CI were calculated using the presence of ≥1, ≥2, ≥3, and 4
features in a lesion as different cut-offs for diagnosing LMS.

Inter-reader agreement was assessed with the Cohen’s kap-
pa (k) and interpreted as follows: 1) 0-0.20, slight agreement;
2) 0.21-0.40, fair agreement; 3) 0.41-0.60, moderate agree-
ment; 4) 0.61-0.80, substantial agreement; and 5) 0.81-1.00
almost perfect agreement [32]. P values less than 0.05 were
considered statistically significant. All statistical analyses
were performed using SAS 9.4 (SAS Institute, Cary, NC).

Results

Patients

Patient and lesion characteristics are summarized in Table 1.
Patients with ALM were younger than those with LMS
(p= 0.0068). Median tumour diameters at histopathology
were similar (p=0.12) between patients with ALM (median:
9.25 cm, range: 2.0-20.4 cm) and LMS (median: 11.4 cm,
range: 7.0-20.0 cm). Most common symptoms leading to
MRI examinations were lower abdominal pain/pressure (17/
41, 41.5 %), dysmenorrhea/ menorrhagia (11/41, 27 %), or
both of the above (4/41, 10 %).

Qualitative MR imaging features

As shown in Table 2, for both readers, the following seven
qualitative MRI features were observed significantly more
frequently in LMS than in ALM: 1) nodular borders
(p≤ 0.0001), 2) intra-lesional haemorrhage (p<0.0001), 3)
“T2 dark” area(s) (p<0.0001), 4) flow voids (p≤0.0041), 5)

�Fig. 3 a Axial T2-weighted image illustrates LMS. b - f Illustration of
the intensity-based texture features (energy, contrast, homogeneity,
correlation, and entropy) overlaid on the axial T2-weighted image

Table 1 Patient and lesion
characteristics ALM (N= 22)

Median

(Range or %)

LMS (N= 19)

Median

(Range or %)

p-value

Median patient age (years) 40.1 (16.4-71.4) 51.3 (34.6-91.6) 0.0068

Median histopathologic tumour size (cm) 9.25 (2.0-20.4) 11.4 (7.0-20.0) 0.12

Histology 22/41 (53.7) 19/41 (46.3) NA

Histopathologic diagnosis of ALM: NA NA
• Cellular leiomyomas 4/22 (18.2)

• Leiomyoma with unusual features 1/22 (4.5)

• “Atypical" leiomyomas 2/22 (9.1)

• Intravenous leiomyomatosis 1/22 (4.5)

• Leiomyoma with hydropic changes 1/22 (4.5)

• Leiomyomas with edematous changes
or various forms of degenerationa

7/22 (32)

• Leiomyoma with histological features
suggestive of Hereditary Leiomyomatosis
and Renal Cell carcinoma Syndromea

1/22 (4.5)

• Leiomyomasa 5/22 (22.7)

Surgery type: 0.0014
Myomectomy 10 (45.5) 0

Hysterectomy 12 (54.5) 19 (100)

Days between MRI and surgery 31.5 (6.0-168.0) 20.0 (1.0-131.0) 0.0134

MR scanner strength: 0.42
1.5 Tesla 17 (77.3) 17 (89.5)

3.0 Tesla 5 (22.7) 2 (10.5)

Note: ALM atypical leiomyoma, LMS leiomyosarcoma, MRI magnetic resonance imaging, MR magnetic
resonance
a Included because interpreted as unusual/atypical myometrial mass in the official preoperative MRI report
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unenhanced area(s) (p≤0.0041), 6) heterogeneity on contrast-
enhanced images (p=0.0041), and 7) central unenhanced
area(s) (p<0.0001). For both readers, four of the above seven
features (presence of nodular borders, intra-lesional haemor-
rhage, “T2 dark” area(s), and central unenhanced area(s) dem-
onstrated the strongest statistical association with LMS
(p≤0.0001 each feature and reader).

For both readers, pelvic fluid, lesional SI and heterogeneity
on T2WI, intra-lesional cystic alterations and their location,
intra-lesional fluid-fluid levels, and lesional SI on contrast-
enhanced images did not differ significantly between LMS
and ALM (p-value range: 0.05-0.54). No patients had perito-
neal implants or lymphadenopathy.

Diagnostic accuracy measures for the four most significant
MR features (lesion borders, haemorrhage, “T2 dark” area(s),
and location of unenhanced area(s)) are summarized in Table 3.
When the presence of ≥3 of the four most significant MR fea-
tures was used to diagnose LMS, the highest combined sensi-
tivities (R1/R2: 1.00[95%CI:0.82-1.00]/0.95[95%CI:0.74-
1.00]) and specificities (R1/R2:0.95 [95%CI:0.77-1.00]/
1.00[95%CI:0.85-1.00]) were observed (Table 4).

Inter-observer agreement

Inter-reader agreement regarding qualitative MR features was
substantial to almost perfect (Table 5). In particular, agreement

Table 2 All qualitative MR features and their associations with LMS

Qualitative MR features Reader 1 Reader 2

ALM (N= 22)
N (%)

LMS (N = 19)
N (%)

p-value ALM (N= 22)
N (%)

LMS (N= 19)
N (%)

p-value

Pelvic fluid Absent 14 (63.6) 10 (52.6) 0.54 16 (72.7) 10 (52.6) 0.21
Present 8 (36.4) 9 (47.4) 6 (27.3) 9 (47.4)

Borders Smooth 20 (90.9) 3 (15.8) <0.0001 19 (86.4) 5 (26.3) 0.0001
Nodular 2 (9.1) 16 (84.2) 3 (13.6) 14 (73.7)

Haemorrhage Absent 18 (81.8) 1 (5.3) <0.0001 21 (95.5) 0 (0.0) <0.0001
Present 4 (18.2) 18 (94.7) 1 (4.5) 19 (100.0)

Signal intensity on T2WI a Hypointense 4 (18.2) 1 (5.3) 0.34 6 (27.3) 1 (5.3) 0.17
Isointense 11 (50.0) 8 (42.1) 10 (45.5) 10 (52.6)

Hyperintense 7 (31.8) 10 (52.6) 6 (27.3) 8 (42.1)

Heterogeneity on T2WI Homogenous 6 (27.3) 1 (5.3) 0.10 5 (22.7) 0 (0.0) 0.05
Heterogeneous 16 (72.7) 18 (94.7) 17 (77.3) 19 (100.0)

Cystic alteration(s) Absent 10 (45.5) 3 (15.8) 0.05 8 (36.4) 2 (10.5) 0.08
Present 12 (54.5) 16 (84.2) 14 (63.6) 17 (89.5)

Location of cystic alteration(s) None 10 (45.5) 3 (15.8) 0.32 8 (36.4) 2 (10.5) 0.17
Peripheral 6 (27.3) 4 (21.1) 6 (27.3) 3 (15.8)

Central 2 (9.1) 6 (31.6) 1 (4.5) 5 (26.3)

Central + peripheral 4 (18.2) 6 (31.6) 7 (31.8) 9 (47.4)

Fluid-fluid level(s) Absent 21 (95.5) 16 (84.2) 0.32 21 (95.5) 16 (84.2) 0.32
Present 1 (4.5) 3 (15.8) 1 (4.5) 3 (15.8)

“T2 dark” area(s) Absent 19 (86.4) 3 (15.8) <0.0001 19 (86.4) 4 (21.1) <0.0001
Present 3 (13.6) 16 (84.2) 3 (13.6) 15 (78.9)

Flow voids Absent 8 (36.4) 0 (0.0) 0.0041 11 (50.0) 0 (0.0) 0.0002
Present 14 (63.6) 19 (100.0) 11 (50.0) 19 (100.0)

Signal intensity on contrasted imagesβ Hypointense 4 (18.2) 8 (42.1) 0.28 5 (22.7) 9 (47.4) 0.14
Isointense 15 (68.2) 10 (52.6) 15 (68.2) 10 (52.6)

Hyperintense 3 (13.6) 1 (5.3) 2 (9.1) 0 (0.0)

Heterogeneity on contrasted images Homogenous 8 (36.4) 0 (0.0) 0.0041 8 (36.4) 0 (0.0) 0.0041
Heterogeneous 14 (63.6) 19 (100.0) 14 (63.6) 19 (100.0)

Unenhanced area(s) Absent 9 (40.9) 0 (0.0) 0.0017 8 (36.4) 0 (0.0) 0.0041
Present 13 (59.1) 19 (100.0) 14 (63.6) 19 (100.0)

Location of unenhanced area(s) None or
Non-central

16 (72.7) 1 (5.3) <0.0001 15 (68.2) 0 (0.0) <0.0001

Central 6 (27.3) 18 (94.7) 7 (31.8) 19 (10.0)

Note: ALM atypical leiomyoma, LMS leiomyosarcoma, T2WI T2-weighted image
a Relative to the outer myometrium
β Relative to the myometrium
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levels for lesion borders, haemorrhage, “T2 dark” area(s), and
location of unenhanced area(s) were almost perfect (Table 5).

Quantitative texture features

Comparison of texture feature values

Of the 21 extracted texture features, 16 (six intensity image-
based and ten Gabor edge image-based) features differed

significantly between LMS and ALM (p-values: <0.001-
0.036) (Table 6).

In comparison to ALM, LMS were associated with
higher intensity image-based and Gabor edge image-
based contrast, lower energy, and lower homogeneity
(p< 0.001 for each feature); furthermore, LMS had higher
SD and lower kurtosis (p< 0.001 for both features), indic-
ative of less peaked and more variable distribution of in-
tensities. Taken together, these findings all suggested
greater textural heterogeneity of LMS.

Table 3 Diagnostic accuracy measures for each of the four qualitative MR features that had the strongest statistical associations with LMS

Qualitative MR features Reader Sensitivity
[95%CI; N]

Specificity
[95%CI; N]

PPV
[95%CI; N]

NPV
[95%CI; N]

Accuracy
[95 % CI; N]

Borders 1 0.84
[0.6-0.97;16/19]

0.91
[0.71-0.99;20/22]

0.89
[0.65-0.99;16/18]

0.87
[0.66-0.97;20/23]

0.88
[0.74-0.96;36/41]

2 0.74
[0.49-0.91;14/19]

0.86
[0.65-0.97;19/22]

0.82
[0.57-0.96;14/17]

0.79
[0.58-0.93;19/24]

0.80
[0.65-0.91;33/41]

Haemorrhage 1 0.95
[0.74-1.00;18/19]

0.82
[0.60-0.95;18/22]

0.82
[0.60-0.95;18/22]

0.95
[0.74-1.00;18/19]

0.88
[0.74-0.96;36/41]

2 1.00
[0.82-1.00;19/19]

0.95
[0.77-1.00;21/22]

0.95
[0.75-1.00;19/20]

1.00
[0.84-1.00;21/21]

0.98
[0.87-1.00;40/41]

“T2 dark” area(s) 1 0.84
[0.60-0.97;16/19]

0.86
[0.65-0.97;19/22]

0.84
[0.60-0.97;16/19]

0.86
[0.65-0.97;19/22]

0.85
[0.71-0.94;35/41]

2 0.79
[0.54-0.94;15/19]

0.86
[0.65-0.97;19/22]

0.83
[0.59-0.96;15/18]

0.83
[0.61-0.95;19/23]

0.83
[0.68-0.93;34/41]

Location of unenhanced area(s) 1 0.95
[0.74-1.00;18/19]

0.73
[0.50-0.89;16/22]

0.75
[0.53-0.9;18/24]

0.94
[0.71-1.00;16/17]

0.83
[0.68-0.93;34/41]

2 1.00
[0.82-1.00;19/19]

0.68
[0.45-0.86;15/22]

0.73
[0.52-0.88;19/26]

1.00
[0.78-1.00;15/15]

0.83
[0.68-0.93;34/41]

Note: PPV positive predictive value, NPV negative predictive value, CI confidence interval

Table 4 Diagnostic accuracy measures for diagnosing LMS using different criterions to signify LMS

Number of MR features
present in a lesion

Reader Sensitivity
[95%CI; N]

Specificity
[95%CI; N]

PPV
[95%CI; N]

NPV
[95%CI; N]

Accuracy
[95 % CI; N]

≥1 feature 1 1.00
[0.82-1.00;19/19]

0.55
[0.32-0.76;12/22]

0.66
[0.46-0.82;19/29]

1.00
[0.74-1.00;12/12]

0.76
[0.60-0.88;31/41]

2 1.00
[0.82-1.00;19/19]

0.59
[0.36-0.79;13/22]

0.68
[0.48-0.84;19/28]

1.00
[0.75-1.00;13/13]

0.78
[0.62-0.89;32/41]

≥2 features present 1 1.00
[0.82-1.00;19/19]

0.82
[0.60-0.95;18/22]

0.83
[0.61-0.95;19/23]

1.00
[0.81-1.00;18/18]

0.90
[0.77-0.97;37/41]

2 1.00
[0.82-1.00;19/19]

0.77
[0.55-0.92;17/22]

0.79
[0.58-0.93;19/24]

1.00
[0.80-1.00;17/17]

0.88
[0.74-0.96;36/41]

≥3 features present 1 1.00
[0.82-1.00;19/19]

0.95
[0.77-1.00;21/22]

0.95
[0.75-1.00;19/20]

1.00
[0.84-1.00;21/21]

0.98
[0.87-1.00;40/41]

2 0.95
[0.74-1.00;18/19]

1.00
[0.85-1.00;22/22]

1.00
[0.81-1.00;18/18]

0.96
[0.78-1.00;22/23]

0.98
[0.87-1.00;40/41]

4 features present 1 0.58 1.00 1.00 0.73 0.80

[0.33-0.80;11/19] [0.85-1.00;22/22] [0.72-1.00;11/11] [0.54-0.88;22/30] [0.65-0.91;33/41]

2 0.58 1.00 1.00 0.73 0.80

[0.33-0.80;11/19] [0.85-1.00;22/22] [0.72-1.00;11/11] [0.54-0.88;22/30] [0.65-0.91;33/41]

Note: MR magnetic resonance, PPV positive predictive value, NPV negative predictive value, CI confidence interval
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Interestingly, LMS demonstrated lower Gabor edge image-
based entropy compared to ALM (p-values: 0.029-0.036).
Intensity-based entropy did not differ significantly between
ALM and LMS (p=0.092).

Self-tuning spectral clustering

Self-tuning spectral clustering selected the ideal number of
clusters by identifying the cluster groupings with the least

Table 5 Inter-reader agreement
with regard to the qualitative MR
features

Qualitative MR features N Kappa 95%CI Interpretation

Borders 41 0.85 0.69-1.00 Almost perfect

Haemorrhage 41 0.81 0.62-1.00 Almost perfect

Signal intensity on T2WI 41 0.80 0.64-0.96 Substantial

Heterogeneity on T2WI 41 0.81 0.55-1.00 Almost perfect

Cystic alteration(s) on T2WI 41 0.82 0.63-1.00 Almost perfect

Location of cystic alteration(s) 28 0.84 0.67-1.00 Almost perfect

Fluid-fluid level(s) 41 1.00 1.00-1.00 Almost perfect

“T2 dark” area(s) on T2WI 41 0.85 0.69-1.00 Almost perfect

Flow voids on T2WI 41 0.80 0.58-1.00 Substantial

Signal intensity on contrasted images 41 0.72 0.52-0.93 Substantial

Heterogeneity on contrasted images 41 0.84 0.64-1.00 Almost perfect

Unenhanced area(s) 41 0.93 0.78-1.00 Almost perfect

Location of unenhanced area(s) 41 0.90 0.76-1.00 Almost perfect

Note: MR magnetic resonance, CI confidence interval, T2WI T2-weighted image

Table 6 Comparison of texture
feature values between LMS and
ALM using a Wilcoxon signed-
rank test with Bonferroni
correction for multiple variables

Texture features LMS

Median (range)

ALM

Median (range)

p-value

Gabor(0,1.4)Energy 0.04 (0.01-0.14) 0.08 (0.01-0.38) <0.001

Gabor(0,1.4)Contrast 1.67 (0.37-6.06) 0.76 (0.17-7.23) <0.001

Gabor(0,1.4)Homogeneity 0.64 (0.48-0.82) 0.76 (0.45-0.88) <0.001

Gabor(0,1.4)Correlation 0.68 (0.19-1) 0.57 (0.1-1) 0.011

Gabor(0,1.4)Entropy 0.89 (0.41-0.96) 0.91 (0-0.98) 0.036

Gabor(0,1.4) Intensity 131.95

(92.32-163.91)

129.85

(101.61-162.34)

1.000

Gabor(90,1.4)Energy 0.09 (0.02-0.36) 0.13 (0.01-0.56) <0.001

Gabor(90,1.4)Contrast 1.59 (0.3-5.18) 0.87 (0.03-3.39) <0.001

Gabor(90,1.4)Homogeneity 0.68 (0.48-0.83) 0.74 (0.03-0.88) <0.001

Gabor(90,1.4)Correlation 0.62 (0.16-0.99) 0.51 (0-0.98) 0.335

Gabor(90,1.4)Entropy 0.63 (0.42-0.78) 0.65 (0-0.82) 0.029

Gabor(90,1.4) Intensity 131.71

(100.36-157.39)

136.17

(112.79-163.18)

<0.001

Energy 0.08 (0.02-0.37) 0.15 (0.01-0.49) <0.001

Contrast 1.62 (0.29-4.62) 0.7 (0.01-4.7) <0.001

Homogeneity 0.67 (0.46-0.84) 0.77 (0.02-0.89) <0.001

Correlation 0.6 (0.12-0.96) 0.47 (0-0.99) 0.002

Entropy 0.65 (0.42-0.79) 0.66 (0-0.81) 0.092

Intensity 79.86

(34.27-119.88)

83.48

(20.27-129.38)

1.000

SD 16.05 (5.62-46.84) 10.21 (4.58-34.24) <0.001

Kurtosis 3.23 (1.64-16.8) 4.01 (1.71-13.9) <0.001

Skewness -0.15 (-2.53-2.05) -0.32 (-2.11-2.86) 1.000

Note: LMS leiomyosarcoma, ALM atypical leiomyoma
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cost. The cost measures for various data groupings were 1.04,
1.09, 1.03, and 1.07 for 2, 3, 4 and 5 clusters, respectively.
Therefore, four clusters (1 ALM and 3 LMS clusters) were
selected (Fig. 4). Self-tuning spectral clustering grouped the
lesions with accuracy of 0.75, sensitivity of 0.70
(95%CI:0.35-0.93, 7/10 LMS), and specificity of 0.79
(95%CI:0.39-0.95, 11/14 ALM).

When only intensity image-based texture features were an-
alyzed, self-tuning spectral clustering identified four clusters
(two ALM and two LMS) and achieved accuracy of 0.71,
sensitivity of 0.7 (95%CI:0.35-0.93, 7/10 LMS) and specific-
ity of 0.71 (95%CI:0.42-0.92, 10/14 ALM).When only Gabor
edge image-based texture features were included, self-tuning
spectral clustering selected four clusters (two ALM and two
LMS) and categorized the lesions with accuracy of 0.58, sen-
sitivity of 0.60 (95%CI:0.26-0.88, 6/10 LMS), and specificity
of 0.57 (95%CI:0.29-0.82, 8/14 ALM).

Discussion

Accurate diagnosis of LMS is a clinical challenge. LM are
much more common than LMS, and patients with these enti-
ties tend to present at similar ages and with similar clinical
symptoms [33]. While rapid mass enlargement, particularly
after menopause, may signify malignancy, it may also be ob-
served with cellular or degenerating LM [33]. Furthermore,
establishing the rate of tumour growth may not be possible
when a large myometrial mass is discovered at the initial en-
counter. Serum markers such as LDH and LDH isozyme type
3 can be elevated not only with LMS but also with cellular and
degenerated LM [11]. Similarly, CA-125 levels may overlap
between LM and early-stage LMS [33, 34].

Our study first examined the ability of qualitative MRI
features to differentiate LMS from atypical LM (ALM). The
four qualitative MR features that had the strongest statistical
associations with LMS—nodular borders, haemorrhage, “T2
dark” area(s), and central unenhanced area(s)—were repro-
ducible between the two readers and accurately distinguished
LMS from ALM. When the presence of ≥3 of these four
features in a lesion was used as the criterion to diagnose
LMS, the highest combined sensitivities (95-100 %) and
specificities (95-100 %) were achieved. If externally
validated, our results may help gynaecologic surgeons to bet-
ter plan their surgical approaches and counsel women present-
ing for management of presumed leiomyomas.

Similarly to Sahdev et al., Schwartz et al. and Tanaka et al., we
found that LMS appeared as large masses with ill-defined/nodu-
lar (rather than smooth) borders, heterogeneous iso-
hyperintensity on T2WI, intralesional haemorrhage, and
unenhanced areas on contrast-enhanced images [9, 10, 12].
Assuming that a combination of T1 and T2 hyperintensity and
unenhanced areas signified malignancy, Tanaka et al. achieved
moderate sensitivity (73 %) and high specificity (100 %) in dif-
ferentiating benign and malignant smooth muscle tumours [12].
We attained higher sensitivity (95-100 %) and similarly high
specificity (95-100 %) for distinguishing LMS from ALM by
using the presence of≥3 features to diagnose LMS.

Our findings contrast with those of Cornfield et al., who stud-
ied 17 ALM and nine malignant mesenchymal tumours (four
LMS, two STUMP, two endometrial stromal sarcoma [ESS],
one mixed ESS and smooth muscle tumour) and were unable
to distinguish between these two groups of lesions using quali-
tative MR features [16]. Although they found the presence of ill-
defined borders and reader “gestalt” (i.e., overall impression) to
have the highest sensitivity and specificity, sensitivity was mod-
erate at best (44-56 %). However, their study neither evaluated
the location of unenhanced areas nor examined MR features
other than lesion hyperintensity on T2WI.

Our study found high inter-observer agreement; however, it
was based on the comparison of two readers from the same
institutionwith similar levels of sub-specialty training and a com-
mon exposure to a large volume of gynaecologic oncologic ex-
aminations at a tertiary care cancer centre. It is possible that
different results would have been obtained with other readers.

The second part of our study evaluated texture analysis
(TA), where the only user activity was manual lesion segmen-
tation. In comparison to ALM, LMS were associated with
higher contrast and SD but lower energy, homogeneity, and
kurtosis. These results indicate that LMSwere more texturally
heterogeneous than were ALM. Although higher entropy is
typically associated with more heterogeneous tumours, we
found Gabor edge imaged-based entropy of LMS to be lower
than that of ALM. Furthermore, intensity image-based entro-
py did not differ significantly between LMS and ALM. The
small differences in entropy we found may be explained by

Fig. 4 A plot demonstrating the results of self-tuning spectral clustering.
To facilitate the ease of illustration, only three of 16 texture features with
statistically significant difference between LMS and ALM were used to
generate this figure. Self-tuning spectral clustering identified a total of
four distinct data clusters (C1 though C4) that comprised of one ALM
(star) grouping and 3 LMS (blue, orange, and purple circles) groupings

Eur Radiol (2017) 27:2903–2915 2913



the fact that we focused on ALM rather than typically homog-
enous, T2-hypointense classic LM.

We computed both intensity image-based and Gabor edge
image-based texture features because we hypothesized that
Gabor filters, with their superior edge detection properties,
might bemore sensitive to the inter-group differences in lesion
borders, frequency of intralesional haemorrhage, and
presence/location of necrosis. Using unsupervised clustering,
we found that a combination of intensity-based and Gabor
edge image-based texture features yielded the highest accura-
cy of 0.75, while Gabor edge image-based texture features
alone had the lowest accuracy of 0.58. Thus, while edge-
based texture features alone were insufficient to accurately
capture the textural differences between LMS and ALM, the
addition of edge-based to intensity-based texture features im-
proved lesion categorization.

Our study had several limitations. First, it was retrospec-
tive, and we only included patients with surgically resected
tumours and preoperative MR imaging, introducing a selec-
tion bias. This was necessary to ensure accurate image-
pathology correlation. Second, only LMS and ALM were
evaluated that makes our conclusions less applicable to a
broader patient population with various myometrial masses.
This was intentional and justifiable given characteristic imag-
ing features of typical LM and the limited data on the ability of
MRI to distinguish LMS from ALM. Third, our cohort lacked
STUMP. Fourth, we were unable to retrospectively correlate
qualitative MRI findings to histopathologic findings on a per-
feature-basis secondary to the lack of histopathologic whole-
tumour step-section tumour maps. Fifth, we could not perform
multivariate logistic regression analysis for the selection of
qualitative MR features because of the small sample size.
Sixth, we were unable to assess the role of diffusion-weighted
imaging (DWI) because few MRIs (13/41, 32 %) included it.
Furthermore, available studies with DWI could not be compared
meaningfully due to differences in acquisition parameters and
scanner manufacturers. Seventh, the acquisition parameters were
relatively heterogeneous between the scans since many studies
were performed elsewhere. As uniform acquisition parameters
are required for radiomics andmachine learningmethods, a num-
ber of patients were excluded from texture analysis. Only T2WI
were used for TA because of their robustness and least varia-
tion in acquisition parameters. We anticipate that the perfor-
mance of TA may improve with the inclusion of textural in-
formation from additional sequences such as DWI and
contrast-enhanced images. Lastly, a larger sample size
and a distinct validation set are required to determine
the efficacy of supervised machine learning for differen-
tiating LMS from ALM. While TA has the potential to
assist in the differentiation of tumours in the daily clin-
ical practice, this would require the development of
user-friendly tools for robust automated lesion segmen-
tation and efficient extraction of texture features.

In summary, we identified four qualitative MRI features
that had the strongest statistical association with LMS and
found that the presence of ≥3 of them could accurately distin-
guish LMS from ALM; in addition, we found texture analysis
to be a feasible semi-automated approach for lesion categori-
zation. Future studies are needed to externally validate our
results and to further evaluate the ability of machine learning
techniques to correctly classify LMS and ALM.
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