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Abstract
Objectives To evaluate the impact of previous administration
of gadodiamide and neural tissue gadolinium deposition in
patients who received gadobenate dimeglumine.
Methods Our population included 62 patients who underwent
at least three administrations of gadobenate dimeglumine, plus
an additional contrast-enhanced last MRI for reference, divid-
ed into two groups: group 1, patients who in addition to
gadobenate dimeglumine administrations had prior exposure

to multiple doses of gadodiamide; group 2, patients without
previous exposure to other gadolinium-based contrast agent
(GBCAs). Quantitative analysis was performed on the first
and last gadobenate dimeglumine MRIs in both groups.
Dentate nucleus-to-middle cerebellar peduncle signal intensi-
ty ratios (DN/MCP) and relative change (RC) in signal over
time were calculated and compared between groups using
generalized additive model.
Results Group 1 showed significant increase in baseline and
follow-up DN/MCP compared to group 2 (p<0.0001). The
RC DN/MCP showed a non-statistically significant trend to-
wards an increase in patients who underwent previous
gadodiamide (p=0.0735).
Conclusion There is increased T1 signal change over time in
patients who underwent gadobenate dimeglumine and had
received prior gadodiamide compared to those without known
exposure to previous gadodiamide. A potentiating effect from
prior gadodiamide on subsequent administered gadobenate
dimeglumine may occur.
Key Points
• Neural gadolinium deposition is associated with multiple
administrations of less stable GBCAs.

• Less stable GBCA effect on subsequent more stable GBCA
administrations is undetermined.

• Significant increase of DN/MCP was seen in patients with
previous gadodiamide exposure.

• RC DN/MCP showed a non-significant increase in patients
who received previous gadodiamide.

• Potentiating effects from prior gadodiamide on subsequent
administered gadobenate dimeglumine may occur.
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Abbreviations
DN dentate nucleus
GBCA gadolinium-based contrast agent
MCP middle cerebellar peduncle
RC relative change
SI signal intensity

Introduction

Over the last 2 years, reports have been published describing
progressive increase in signal intensity in the globus pallidi
(GP) and/or dentate nuclei (DN) on unenhanced T1-weighted
images in patients with normal renal function who were ex-
posed to multiple administrations of different gadolinium-
based contrast agents (GBCAs), such as gadodiamide
(Omniscan®, GE Healthcare) [1–4] and gadopentetate
d imeg l um in e (Magnev i s t® , Baye r Hea l t h c a r e
Pharmaceuticals) [1, 5–7].Recently, human [8, 9] and animal
[10, 11] histopathology studies have shown a dose-dependent
relationship between intravenous GBCAs administration and
subsequent neural deposition of gadodiamide (Omniscan®)
[8, 10, 11], gadopentetate dimeglumine (Magnevist®) [9, 11]
and gadobenate dimeglumine (MultiHance®, Bracco
Diagnostics) [11]. Those studies [8, 10, 11] confirmed a pos-
itive correlation between T1-weighted signal intensity and
gadolinium tissue deposition.

Other more stable macrocyclic GBCAs, such as
gadoteridol (ProHance®, Bracco Diagnostics) [5], gadoterate
meglumine (Dotarem®, Guerbet) [6, 10, 11] and gadobutrol
(Gadavist®, Bayer Healthcare Pharmaceuticals) [7, 12] have
not been associatedwith substantial brainMRI signal intensity
changes. Gadobenate dimeglumine (MultiHance®) an agent
of intermediate stability was associated with fewer MRI
changes compared with the linear gadodiamide [4].
Recently, Weberling et al. [13] suggested that this agent re-
leases less gadolinium than gadopentetate dimeglumine
(Magnevist®) but more than gadoterate meglumine
(Dotarem®). An animal study by Robert et al. [11] corrobo-
rated this finding. However, a lack of appreciable MRI find-
ings does not exclude human neural tissues deposition even
with the more stable GBCAs because a lesser deposition may
not be observable on clinical MRI studies.

In clinical practice, patients may undergo MRI with differ-
ent gadolinium chelates for a variety of reasons including
being studied at different facilities and changes in MRI con-
trast agents at the same imaging centre. An explanation for
these changes is the general shift from less stable GBCAs to
more stable GBCAs. To the best of our knowledge, the effect
of previous administration of different GBCAs in neural tissue
deposition has not been evaluated.

Our purpose was to evaluate the effect of previous admin-
istration of gadodiamide, a linear non-ionic GBCA associated

with significant neural tissue deposition, in patients who sub-
sequently received gadobenate dimeglumine, a more stable
linear ionic GBCA associated with minimal tissue deposition
[14]. To achieve our goal, we compared T1-weighted changes
in patients after multiple MRI studies with gadobenate
dimeglumine and without previous exposure to other
GBCAs to patients who underwent multiple studies with
gadobenate dimeglumine and previously received multiple
doses of gadodiamide.

Materials and methods

Institutional review board (IRB) approval with signature
waiver was obtained for this Health Insurance Portability
and Accountability Act (HIPAA)-compliant retrospective lon-
gitudinal observational cohort study.

Study population

In our databases, we identified 200 consecutive patients who
underwent at least three GBCA administrations, plus an addi-
tional MRI study as reference. At our institution we used
gadodiamide as the sole GBCA for all enhanced MRI studies
performed before December 2006 irrespective of the patient’s
renal function. From December 2006 to June 2007, patients
with normal renal function still received gadodiamide and
after June 2007 all adult patients received gadobenate
dimeglumine and the use of gadodiamide was discontinued.

Patients who underwent GBCA administration outside of
our institution or who underwent MRI with a GBCA other
than gadodiamide or gadobenate dimeglumine (n=8) were
excluded. Patients who received only gadodiamide were also
excluded (n=5). To avoid confounding factors, patients with a
history of targeted or whole-brain radiation therapy (n=69)
[15], those with multiple sclerosis (n=23) [16] and those with
unknown diagnosis (n=2) were also excluded. Other exclu-
sion criteria were the absence of unenhanced spin-echo T1-
weighted MR images (n=22), unsatisfactory images due to
artefacts and/or brain lesions involving the DN (n=7) and
examinations performed at field strengths other than
1.5 Tesla (T) (n=2). Our final population included 62 patients
(Fig. 1).

Among those 62 patients who underwent multiple
gadobenate dimeglumine studies, 18 had previous administra-
tion of gadodiamide and those constituted group 1. The re-
maining 44 patients who received only gadobenate
dimeglumine constituted group 2. For both groups, the mini-
mum number of studies using gadobenate dimeglumine for a
given patient was three plus a fourth examination used as a
reference for measuring the follow-up signal. For each patient,
the number of gadolinium-enhanced MRI examinations per-
formed with gadodiamide and gadobenate dimeglumine was
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recorded. Imaging analysis was performed only for
gadobenate dimeglumine-enhanced MRIs. The first brain

contrast-enhanced MRI examination performed with
gadobenate dimeglumine was labelled ExamBaseline while the
last contrast-enhanced MRI examination was labelled
ExamFinal (Fig. 2).

Age, gender, diagnosis, liver function tests and estimated
glomerular filtration rate (eGFR) were recorded for all pa-
tients. Liver function was assessed by serum concentrations
of aspartate aminotransferase, alanine aminotransferase, total
bilirubin, or gamma-glutamyl transpeptidase. Normal liver
function was considered if these laboratory measurements
were within the normal limits. Renal function was assessed
by means of the eGFR. Normal renal function was considered
when eGFR ≥ 60 mL/min/1.73 m2. The patients’ demo-
graphics and examinations are summarised for each group in
Table 1. The number of gadolinium administrations for each
GBCA are shown for each group in Table 2.

Imaging protocol

Brain MRI was performed on a 1.5-T system (Magnetom®
Avanto; Siemens, Erlangen, Germany) with a dedicated 12-
element matrix head coil. Imaging protocols varied according
to the patient’s clinical indication but all included fast spin-
echo (SE) T1-weighted images with the following parameters:
repetition time (TR), 623 ms; echo time (TE), 13 ms; echo
train length, 1; section thickness, 5 mm; spacing, 1 mm; ma-
trix size, 256×256; and field-of-view, 165×220. A standard
dose of 0.1 mmol of gadodiamide or gadobenate dimeglumine

Fig. 1 Study flowchart of included and excluded patients

Fig. 2 Schematic representation of the study design
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per kilogram of body weight was administered intravenously
using a power injector (Medrad, Pittsburgh, PA) at a rate of
1.5–2.0 mL/s followed by a 20-mL saline flush bolus at the
same rate.

Imaging analysis

Images were independently evaluated on a dedicated worksta-
tion (IMPAX® v.6, Agfa Healthcare, Mortsel, Belgium) by
two radiologists (JR and RHN). The sequences were randomly
loaded into the workstation and all patient information was
removed by a coauthor who did not take part in the actual
image evaluation. Quantitative analysis was performed on
gadobenate dimeglumine contrast-enhanced MRIs. A
region-of-interest (ROI)-based approach was applied for both
the first (ExamBaseline) and last (ExamFinal) unenhanced T1-
weighted images. Oval ROIs were manually placed on the
DN and middle cerebral peduncles (MCPs) including as much
of the anatomic structures as possible while avoiding lesions,
blood vessels and/or artefacts. To ascertain a correct place-
ment of the ROI, T2-weighted or diffusion-weighted images
(DWI) were used to increase confidence in identifying the
DN. Whenever possible, DN and MCP measurements were
averaged for right and left sides and for both readers.

The DN-to-MCP signal intensity ratio (DN/MCP) was cal-
culated by dividing the mean signal intensity of the DN by that
of the MCP. This ratio was determined for the baseline and
final MRI examinations performed with gadobenate
dimeglumine in all patients in both groups.

Table 2 Number of doses administered for patients in both groups

Group 1 Group 2

Patient
IDa

Gadodiamide Gadobenate
dimeglumine

Frequencyb Gadobenate
dimeglumine

1 8 4 17 3

2 9 8 12 4

3 6 5 7 5

4 11 5 3 6

5 5 4 2 7

6 8 10 2 10

7 3 7 1 11

8 3 5

9 7 6

10 3 7

11 6 4

12 3 8

13 4 4

14 6 4

15 4 3

16 3 6

17 6 4

18 11 5

Gadodiamide, Omniscan®; gadobenate dimeglumine, MultiHance®
aRefers to individual patients’ ID numbers
b Frequency represents the number of patients who received the stated
number of gadobenate dimeglumine administrations in group 2, which
did not have a prior exposure to gadodiamide

Table 1 Patients’ demographics and examinations description

Group 1 Group 2

Number of patients 18 44

Age 56.5 ± 13.9 (29–84 years) 60.4 ± 14.2 (29–86 years)

Gender 16 female, 2 male 23 female, 21 male

Number of MRIs with gadodiamide 5.9 ± 2.7 (3–11) NA

Number of MRIs with gadobenate dimeglumine 5.5 ± 1.9 (3–10) 4.5 ± 2.0 (3–11)

Interval (MRI gadobenate dimeglumine) 1762.4 ± 433.5 (801–2315 days) 1089.9 ± 592.3 (94–2633 days)

Diagnosis Meningioma (n= 8)
Pituitary lesions (n= 4)
Stroke (n= 2)
PRES (n= 1)
Intracranial aneurysm (n= 1)
Clivus chordoma (n = 1)
Spinal haemangioblastoma (n= 1)

Pituitary lesions (n= 15)
Stroke (n= 11)
Meningioma (n= 6)
Breast cancer without brain metastases (n= 3)
Vestibular schwannoma (n= 2)
Clivus chordoma (n= 1)
Trigeminal mass (n= 1)
CSF leak (n= 1)
Intraventricular mass (n= 1)
Trauma (n= 1)
Acute haematoma (n = 1)
Epidermoid (n= 1)

Gadodiamide, Omniscan®; gadobenate dimeglumine, MultiHance®

NA not applicable, PRES posterior reversible encephalopathy syndrome, CSF cerebrospinal fluid
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The relative change (RC) of DN/MCP was then calculated
for all patients using the first MRI measurement as reference
according to the following equation where Final indicates the
last contrast-enhanced MRI study and Baseline indicates the
first contrast-enhanced MRI study in the same patient [2]:

RC DN=MCPð Þ ¼ DN=MCPFinal−DN=MCPBaseline

DN=MCPBaseline

Statistical analysis

R, a language and environment for statistical computing (R
Core Team, Vienna, Austria), was used for all statistical com-
puting [17]. The Mixed GAM Computation Vehicle Bmgcv^
package with GCV/AIC/REML Smoothness [18] was used to
apply the generalized additive model (GAM). Statistical sig-
nificance was defined as a pvalue less than 0.05.

Interobserver correlation agreement between the two
readers’ ROI measurements for each structure was tested
using Lin’s concordance correlation coefficient [19].
Intraobserver agreement between right and left measurements
was also tested with Lin’s concordance correlation coefficient.
The strength of correlation was considered almost perfect
when it was greater than 0.99, substantial when it was 0.95–
0.99, moderate when it was 0.90–0.95 and poor when it was
less than 0.90.

The DN/MCP ratios as well as RC in ratios were individ-
ually evaluated as dependent variables by using GAM. The
GAM function is a non-parametric regression analysis evalu-
ated by using the GAM computation vehicle with generalized
cross validation, the Akaike information criterion and restrict-
ed maximum likelihood (GCV/AIC/REML) smoothness esti-
mation function. The model for both ratios and RC in ratios
was defined as follows:

s number of MRIsð Þ þ s ageð Þ þ s intervalð Þ þ gender

þ prior exposure to gadodiamide

The function s was defined as a smoothing spline function
with penalized regression splines to specify that the subse-
quent linear predictors depend on smooth functions.
Smoothing parameters were calculated as minimalized gener-
alized cross validation.

Results

All patients included in our study had normal liver and renal
functions. The left DN andMCP were excluded in one patient
from group 1 and the right DN andMCPwere excluded in one
patient from group 2 (both for baseline and final MRI

examinations) because of image artefacts. In these two pa-
tients, ratios were calculated on the basis of the contralateral
values alone without averaging.

A total of 140 ROIs were drawn for group 1 and 348 were
for group 2. Interobserver agreement was almost perfect for all
four structures evaluated (0.99). Intraobserver agreement was
substantial to almost perfect for both readers. The Lin’s con-
cordance correlation coefficient was 0.99 for DN andMCP for
reader 1, and 0.98 for DN and 0.99 for MCP for reader 2.

Group 1 included 18 patients (16 female, 2 male; mean age
56.5 years±13.9, range 29–84). The number of administered
doses of gadodiamide ranged from 3 to 11 (mean 5.9 doses
± 2.7). The number of administered doses of gadobenate
dimeglumine ranged from 3 to 10 (mean 5.5 doses ± 1.9)
and the interval between the baseline and last examinations
ranged from 801 to 2315 days (mean 1762.4 days±433.5).

Group 2 included 44 patients (23 female, 21 male; mean
age 60.4 years±14.2, range 29–86). The number of adminis-
tered doses of gadobenate dimeglumine ranged from 3 to 11
(mean 4.5 doses ±2.0) and the intervals between the baseline
and final examinations ranged from 94 to 2633 days (mean
1089.9 days±592.3).

Detailed results of the GAM data analysis are shown in
Table 3. Patients who received gadodiamide before
gadobenate dimeglumine showed a significant increase in
baseline DN/MCP (p<0.0001) compared with those without
previous administration of gadodiamide.

The RC DN/MCP was not significantly different between
group 1 and group 2. However, a non-statistically significant
trend towards an increase RC DN/MCP in patients who
underwent previous gadodiamide (p=0.0735) was observed.
(Figs. 3, 4, and 5).

Gender, age and intervals did not have significant influence
on RC DN/MCP.

Discussion

Our results show that DN/MCP for baseline and final exami-
nations were significantly increased in patients who
underwent previous exposure to gadodiamide compared to
those who underwent studies using only gadobenate
dimeglumine only (p<0.0001).

Prior studies [1–4] described a progressive increase in T1
signal in the dentate nuclei associated with gadolinium depo-
sition after multiple administrations of gadodiamide.
Additionally, a recent animal study [10] employing multiple
administrations of gadodiamide showed that the signal
hyperintensity in the DN did not resolve during a 5-week
contrast-free period, suggesting persistence of this phenome-
non after the last administration of the contrast with no wash-
out effect over a period of weeks. These observations are in
accordance with our results.
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An investigation by Ramalho et al. [4] compared the accu-
mulation of gadodiamide and gadobenate dimeglumine in the
GP and DN. They showed a significant increased signal in-
tensity in the GP and DN associated with multiple
gadodiamide-enhanced studies but not with gadobenate
dimeglumine-enhanced studies. Rate-of-change data indirect-
ly suggested that gadolinium deposition occurred in the DN
with multiple doses of gadobenate dimeglumine, although
considerably less than with gadodiamide.

Our results showed a non-statistically significant trend to-
wards increased signal changes in patients who underwent
previous GBCA administration. The suggested amplifying ef-
fect of previous administration of gadodiamide on gadolinium
deposition observed following gadobenate dimeglumine (RC

DN/MCP) has not been previously reported. The mechanism
by which prior gadodiamide deposition may potentiate gado-
linium deposition following gadobenate dimeglumine is as yet
unknown.

A saturation effect was recently reported by Robert et al.
[10], who described a curve plateau near the 16th
gadodiamide administration in rats. Our findings do not cor-
roborate this saturation effect since we did not find a plateau of
the RC DN/MCP in patients with previous administration of
gadodiamide but instead we found a non-statistically signifi-
cant trend towards an increase in RC DN/MCP in those pa-
tients. This may suggest either that saturation does not occur
in humans or that it occurs at a similar number of multiple
GBCA administrations. Animal studies are not strictly

Fig. 3 Unenhanced axial fast
spin-echo T1-weighted MR
images at the level of the dentate
nucleus on baseline MRI (a, c)
and after 4 administrations of
gadobenate dimeglumine (b, d) in
a patient with previous
administration of gadodiamide (a,
b) and in a patient without known
previous administration of other
GBCAs (c, d)

Table 3 Results of non-parametric regression models

Signal intensity ratio Parameter Estimated value
of parametric coefficients

Standard error Estimated degrees
of freedom

Reference degrees
of freedom

p value

DN/MCP Gender 0.007427 0.010457 – – 0.479

Previous 0.050625 0.011527 – – <0.0001

Age – – 2.313 2.894 0.0385

MRIs – – 1 1 0.4455

Interval – – 1.508 1.843 0.206

Relative change DN/MCP Gender 0.003634 0.015788 – – 0.8188

Previous 0.035266 0.01933 – – 0.0735

Age – – 1.157 1.297 0.52

MRIs – – 1.441 1.687 0.069

Interval – – 1 1 0.483

Data represent analysis of signal intensity ratios using the GAM function

DN/MCP dentate nuclei-to-middle cerebellar peduncle ratio, Previous previous administration of gadodiamide,MRIs number of MRIs performed,GAM
generalized additive models
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equivalent to human studies; for example, the excretion half-
life of GBCAs in healthy rats [20] is markedly shorter than in
humans [21], thereby reducing tissue exposure [10] which
may suggest that saturation effects may be observed in
humans with lesser numbers of GBCA administrations.

However, since none of our patients underwent 16 studies
with gadodiamide, we were not able to confirm this finding.

Another observation is that no substantial gadolinium
washout occurred in our population during the interval be-
tween the last injection of gadodiamide and the last injection

a

b

Fig. 4 Box plot representation of
a DN/MCP for baseline
examinations (ExamBaseline) and
last known examinations
(ExamFinal) in group 1 (patients
with previous exposure to
gadodiamide) and group 2
(patients without know previous
exposure to gadodiamide) and b
RC DN/MCP signal intensity in
the same groups. DN/MCP
dentate nucleus-to-middle
cerebellar peduncle ratio, RC
relative change
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of gadobenate dimeglumine as no increase of RC DN/MCP
would be expected if washout had occurred.

Our study had some limitations including the retrospective
design and a relatively small sample size. The sample size was
possibly the reason for the non-statistically significant trend in
RC DN/MCP. Another limitation was the potential

confounding effect of variations between the two groups in-
cluding age, sex, intervals between the examinations, and un-
derlying disease processes. However, we attempted to account
for their effects by including these variables in our statistical
GAM models. Evaluation of washout over a period of years
would require years of not having contrast-enhanced MRI

a

b

Fig. 5 Scatter plot representation
of a DN/MCP and b RC DN/
MCP showing the relationship
between the baseline and last
MRI examination for patients
who received different numbers
of doses of gadobenate
dimeglumine (MultiHance®) in
group 1 (patients with exposure to
gadodiamide) and group 2
(patients without known exposure
to gadodiamide). The relationship
is fitted using GAM as a
smoothing function and the
shaded areas represent the
standard errors. DN/MCP dentate
nucleus-to-middle cerebellar
peduncle ratio, RC relative
change, GAM generalized
additive model
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studies, something that did not occur in our patients. It is also
impossible to exclude that our patients received other GBCAs
prior to the first study performed at our institution. We think
that this is unlikely as we carefully searched all medical re-
cords, and patients who had undergone studies with contrast
administration outside our institution were excluded. We also
used the differences between the first and last examinations
performed with gadobenate dimeglumine to calculate the
changes in signal over time, avoiding possible effects of pre-
existing GBCA administrations.

In conclusion, our results suggest that there is increased T1
signal change over time in patients who underwent
gadobenate dimeglumine-enhanced studies and had prior ad-
ministration of gadodiamide compared to those who received
gadobenate dimeglumine alone. This suggests that a potenti-
ating effect from prior gadodiamide on the subsequent admin-
istered more stable gadobenate dimeglumine may occur.
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