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Abstract
Objectives To compare bilateral diffusion-weighted MR im-
aging (DWI) at 3 Tand 7 T in the same breast tumour patients.
Methods Twenty-eight patients were included in this IRB-
approved study (mean age 56±16 years). Before contrast-
enhanced imaging, bilateral DWI with b=0 and 850 s/mm2

was performed in 2:56 min (3 T) and 3:48 min (7 T), using
readout-segmented echo planar imaging (rs-EPI) with a 1.4×
1.4 mm2 (3 T)/0.9×0.9 mm2 (7 T) in-plane resolution. Appar-
ent diffusion coefficients (ADC), signal-to-noise (SNR) and
contrast-to-noise ratios (CNR) were assessed.
Results Twenty-eight lesions were detected (18 malignant, 10
benign). CNR and SNR were comparable at both field
strengths (p>0.3). Mean ADC values at 7 T were 4–22 %
lower than at 3 T (p≤0.03). An ADC threshold of 1.275×
10−3 mm2/s resulted in a diagnostic specificity of 90 % at both
field strengths. The sensitivity was 94 % and 100 % at 3 Tand
7 T, respectively.
Conclusion 7-T DWI of the breast can be performed with 2.4-
fold higher spatial resolution than 3 T, without significant
differences in SNR if compared to 3 T.

Key points
• 7 T provides a 2.4-fold higher resolution in breast DWI than
3 T

• 7 T DWI has a high diagnostic accuracy comparable to that
at 3 T

• At 7 T malignant lesions had 22 % lower ADC than at 3 T
(p<0.001)
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Introduction

Dynamic contrast-enhanced (DCE) magnetic resonance imag-
ing (MRI) in breast cancer has developed into a powerful clin-
ical tool for the characterization and detection of malignant and
benign breast tumours. This and the morphologic appearance
of lesions on contrast-enhanced MRI provide an exceptional
sensitivity of up to 100 % for detection of breast cancer [1–6],
and a specificity not less than 80%which has been illustrated at
different field strengths (1.5, 3 or 7 T) presuming that correct
techniques and experienced readers are available [7–9].

To further increase the diagnostic specificity of breast MR
imaging, supplementary MRmethods, in particular, diffusion-
weighted imaging (DWI), were proposed for inclusion into
clinical MR imaging protocols for breast cancer diagnosis
[10–12]. DWI is one of the most promising adjunct MRI
methods. It probes the tissue microstructure by quantifying
restricted water diffusion, resulting in an additional quantita-
tive marker—the apparent diffusion coefficient (ADC)—to
distinguish between benign and malignant lesions or to mon-
itor treatment success [13–15].

At low magnetic fields (e.g. 1.5 T), DWI suffers from low
spatial resolution. Higher magnetic fields (i.e. 3 T and above)
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offer increased signal-to-noise ratio (SNR) that can be trans-
lated into higher spatial resolution [16]. This could improve
differentiation of benign and malignant lesions based on ADC
values. Matsuoka et al. compared DWI in breast cancer be-
tween 1.5 T and 3 T in 13 patients [17]. They found no differ-
ences inADC values at 1.5 and 3 T. For large lesions there was
no difference in image scores between the two field strengths.
In contrast, better image scores and improved lesion visibility
for small lesions at 3 T, compared to 1.5 T, were reported.
Initial breast MRI studies exploring ultra-high fields (7 T)
provided evidence of substantially improved image quality
compared to lower field strengths [18].

Promising unilateral breast DWI results from three patients
[19] and a volunteer [20] were also reported at 7 T. An up to
5.7-fold SNR increase, compared to 3 T, was found with the
same imaging parameters, but the spatial resolution and image
quality were hampered by the use of single shot echo planar
imaging (ss)-EPI, fat suppression failure and motion artefacts
[19]. Recent results at 3 T and 7 T obtained in the brain and in
the breast indicate that readout-segmented (rs)-EPI combined
with parallel imaging improves image quality substantially
and is able to overcome former restrictions in spatial resolu-
tions at ultra-high B0 [21–23]. Recently, Bogner et al. showed
that rs-EPI improves the diagnostic performance of diffusion-
weighted MR breast examinations at 3 T compared to ss-EPI
[11]. Moreover, the use of rs-EPI enables DWI at ultra-high
fields with reduced distortions but increased measurement
time compared to ss-EPI.

A direct comparison of contrast-enhanced breast MRI be-
tween 3 T and 7 T showed excellent diagnostic accuracy at
both field strengths, and comparable SNR when using a 3.2-
fold higher spatial resolution at 7 T, compared to 3 T [9].

International guidelines recommend the use of an in-plane
resolution of 1×1 mm2 or less for clinical contrast-enhanced
breast MRI at 1.5 T [24]. However, at 1.5 T DWI is usually
measured with lower resolution. Recently, a relatively high in-
plane resolution of 1.1×1.1 mm2 in breast DWI using a spe-
cial zoom-in technique was reported at 1.5 T [25].

The increased SNR at 7 T in breast MRI and DWI, compared
to that at 3 T, can be translated into even higher spatial resolution
[9, 19]. A spatial resolution comparable to clinical DCE MRI
could improve the morphological evaluation of breast lesions
based on DWI, in addition to ADC quantification at 7 T.

The purpose of this study was to compare bilateral breast
DWI at 7 Twith 0.9×0.9 mm2 in-plane resolution with breast
DWI at 3 Twith 1.4×1.4 mm2 in-plane resolution in the same
breast tumour patients.

Materials and methods

The local ethics committee approved this study. Inclusion
criteria for enrolment in this study were 18 years or older;

not pregnant or breastfeeding; no contraindication to MR im-
aging or contrast agents; no previous treatment; clinical indi-
cation for MRI of the breast; clinical abnormality or suspi-
cious finding on mammography or breast ultrasound (asym-
metric density, architectural distortion or breast mass classi-
fied according to the Breast Imaging Reporting and Data Sys-
tem, BI-RADS). In premenopausal women, MRI was per-
formed between day 7 and 14 of the menstrual cycle.

Twenty-nine patients who were referred from our breast
clinics with either suspicious clinical findings or
mammographically and/or sonographically detected abnor-
malities were included in this study.

They were measured consecutively between April and No-
vember 2012 on both a 3 T Tim Trio and a 7 TMagnetomMR
system (both Siemens Healthcare, Erlangen, Germany) within
4 days using dedicated bilateral breast coils with four 1H chan-
nels (3 T: In vivo, Orlando, FL, USA; 7 T: 1H/31P coil, H.
Stark, Erlangen, Germany) in the prone position. One patient
was excluded from the study because of inadequate fat satu-
ration, caused by a B0 shimming failure at 7 T. Therefore, in
this study 28 patients, 55±16 years old (mean±SD, age range
23–81), were included. Written, informed consent was obtain-
ed from all patients prior to MR imaging.

Lesions were either histopathologically verified by image-
guided breast biopsy (n=8/28) or by surgery (n=18/28; surgi-
cal biopsy, mastectomy or lumpectomy). Clinical and imaging
follow-up was performed for more than 2 years in two patients
who did not undergo surgery or biopsy (n=2/28; both classi-
fied as BI-RADS 3 with DCE MRI at 3 T).

Data acquisition

Bilateral three-direction trace DWI was performed with simi-
larly adjusted sequence parameters in 2:56 min (3 T) and
3:48 min (7 T) using combined rs-EPI with fat-suppression
and with bvalues of 0 and 850 s/mm2, suggested previously
(Table 1) [10]. To make full use of the hardware at both MR
scanners, the in-plane resolution (1.4×1.4 mm2 at 3 T and
0.9×0.9 mm2 at 7 T) was adjusted to the best possible at both
field strengths to compensate for the expected increase in SNR
at 7 T (i.e. 7/3=2.3). The slice thickness (5 mm) was identical.
The measured field of view was 320×160 and the number of
slices was 28. To allow a higher resolution at 7 T without
causing additional blurring and distortions (i.e. same echo
spacing of 0.32 ms), we used nine readout segments at 7 T
compared to five at 3 T in combination with parallel imaging
resulting in comparable effective TEs (62 ms vs 68 ms at 3 T
vs 7 T).

DCE MRI was performed using a T1-weighted 3D time-
resolved angiography with stochastic trajectories (TWIST)
sequence using intravenously injected contrast as a bolus
(0.2 mL/kg of body weight) after three baseline images, as
described previously [9, 26].
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Data evaluation and statistical analysis

During post-processing, two-dimensional regions of interest
(ROIs) were drawn manually in the lesion and in homoge-
neous breast parenchyma without enhancement (in the contra-
lateral breast) in three different parts of the breast, namely
para-mammillar, central and pre-pectoral, using OsiriX®
(Pixmeo, Geneva, Switzerland) software by two readers in
consent (radiologists with more than 7 years of experience in
DWI of the breast; trained at different institutions).

The ROIs were drawn on the diffusion-weighted (b=850 s/
mm2) images. The slice with the largest diameter of the lesion
was used. Necrotic areas, represented as hyperintense regions
on both diffusion-weighted (b=850 s/mm2) and ADC maps,
were excluded. SNR was defined as the ratio between mean
signal amplitude inside the ROI (SROI) and standard deviation
of the background noise (σBG) (SNR=SROI/σBG). Contrast-to-
noise (CNR) ratio was calculated as the difference between
SROI and signal amplitude in tissue (ST), divided by the stan-
dard deviation in the lesion ROI (σROI) and normal tissue ROI
(σT).

CNR ¼ SROI−ST
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
ROI þ σ2

T

p

A logarithmic transformation was performed on the
skewed SNR data to achieve data normality. Mean ADC,
CNR and transformed SNR values were calculated. They
were compared using a two-way analysis of variance
(ANOVA) for repeated measures in the case of SNR and
ADC data from healthy tissue, because more then one value
from one patient was used (three healthy tissue ROIs) and a

paired ttest was used for ADC, SNR and CNR means com-
parison of ROIs frommalignant and benign lesions. The 95%
confidence intervals of the diagnostic sensitivity, specificity,
positive predictive value and negative predictive value were
calculated with ADC threshold of 1.275×10−3 mm2/s,
established previously for similar diffusion imaging parame-
ters in a larger patient study (n=247 patients) at 3 T [27]. The
lesion size was defined as the maximum diameter on 3 T DCE
MRI. All the statistical analysis was performed in IBM SPSS
Statistics (Armonk, NY).

Results

Twenty-eight lesions with an average size of 24±16 mm
(range 8–66 mm) were identified in 28 patients (Table 2).
The diameter of benign lesions was not significantly different
from that of malignant lesions (malignant, 25±17 mm; be-
nign, 22±14 mm [p=0.62]). There were 18 malignant and
10 benign lesions. Malignant cases consisted of 15 invasive
ductal carcinomas (IDC) (two grade 1, five grade 2, eight
grade 3), two invasive lobular carcinomas (ILC) grade 2 and
one ductal carcinoma in situ (DCIS). Of the benign lesions,
there were eight fibroadenomas, one intraductal papilloma and
one case of mastitis.

At 3 T and 7 T, DWI was acquired with high SNR and
diagnostic image quality in all patients in clinically acceptable
measurement times of 2:56 min (3 T) and 3:48 min (7 T).
Figure 1 shows bilateral DWI breast images of a 61-year-old
woman acquired at 3 T (left) and 7 T (right), with an IDC
(grade 3) in the right breast. Compared to 3 T, the MRI

Table 1 Sequence parameters for
3 T and 7 T DWI Parameter 3 T 7 T

Diffusion directions 3 – scan trace 3 – scan trace

Diffusion schema Stejskal–Tanner Stejskal–Tanner

bvalues (s/mm2) 0, 850 0, 850

Fat suppression Frequency-selective
and gradient reversal

Frequency-selective
and gradient reversal

Refocusing Low SAR Low SAR

Repetition time (ms) 5800 5500

Echo time (ms) 68 62

Matrix size 256×128 340×170

Field of view (mm2) 360×180 320×160

Number of averages 1 1

Voxel size (mm3) 1.4×1.4×5 0.9×0.9×5

Slices per slab 28 28

Slice thickness (mm) 5 5

Readout segments 5 9

Parallel imaging – GRAPPA, factor 2

Acquisition time (min) 2:54 3:48
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acquired at 7 T had a 2.4-fold higher spatial resolution (9.8/
4.1 mm3 at 3 T/7 T), with higher contrast and more detailed
information.

Figures 2 and 3 show examples of DWI in benign lesions.
Figure 3 depicts bilateral contrast-enhanced imaging com-
pared to DWI, without diffusion weighting in a benign
fibroadenoma of a 31-year-old patient. Fat suppression was
good over the whole image at both field strengths. Notice the
DWIs measured with b=0 s/mm2 showing T2-weighted con-
trast and high anatomical details.

There was no significant difference between SNR at 3 T
and 7 T (malignant, p=0.677; benign, p=0.704) and there was
no significant difference between CNR of benign (p=0.320)
and malignant (p=0.435) lesions at 3 T and 7 T. In particular
the mean SNR was 66.3±25.3/51.0±17.4, 65.5±19.5/52.6±
18.1 and 28.0±12.1/21.0±9.75 in benign lesions, malignant
lesions and healthy tissue at 3 T/7 T. SNR values from healthy
tissue on the contralateral breast were found to be 30.0±12.2/

23.1±11.2 in the para-mammillar area, 28.3±11.2/21.5±9.7
in the central area and 25.7±12.8/18.5±7.9 in the pre-pectoral
area (3 T/7 T). This indicates decreasing SNR towards the pre-
pectoral area. Average CNR values for benign lesions were
2.69±1.13/3.29±0.92 and 3.31±1.11/3.60±1.64 for malig-
nant lesions at 3 T/7 T.

A comparison of the ADC values is shown in a box plot
(Fig. 4). A Bland–Altman plot (Fig. 5) shows good agree-
ment between the ADC values at 3 T and 7 T. However, the
ADC values were significantly lower at 7 T than that at 3 T.
The average ADC values were 1.73±0.28×10−3/1.64±
0.29×10−3 mm2/s in healthy tissue (p=0.005), 1.66±
0.40×10−3/1.60±0.38×10−3 mm2/s (p=0.03) in benign le-
sions and 0.86±0.15×10−3/0.70±0.17×10−3 mm2/s in ma-
lignant lesion (p<0.001) at 3 T and 7 T, respectively. The
mean difference of ADC values between the two field
strengths was twice as low in healthy tissue than in malig-
nant lesions (see Fig. 5).

Table 2 Characteristics of 28 breast lesions in 28 patients arranged according to the BI-RADS classification

Patient no. Age (years) Menopausal status BI-RADS Tumour type Tumour size (mm) Histological type Verification

1 63 Post 5 Malignant 66 IDC/G3 Surgery

2 61 Post 5 Malignant 57 IDC/G3 Surgery

3 81 Post 5 Malignant 53 IDC/G3 Surgery

4 72 Post 5 Malignant 39 IDC/G3 Surgery

5 67 Post 5 Malignant 13 IDC/G3 Surgery

6 45 Pre 5 Malignant 21 IDC/G3 Surgery

7 62 Post 5 Malignant 14 IDC/G3 Surgery

8 52 Post 5 Malignant 25 IDC/G3 Surgery

9 68 Post 5 Malignant 36 IDC/G2 Surgery

10 45 Pre 5 Malignant 22 IDC/G2 Surgery

11 69 Post 5 Malignant 17 IDC/G2 Surgery

12 54 Post 5 Malignant 16 IDC/G2 Surgery

13 74 Post 5 Malignant 15 IDC/G2 Surgery

14 72 Post 5 Malignant 8 ILC/G2 Surgery

15 69 Post 5 Malignant 10 ILC/G2 Surgery

16 63 Post 4 Malignant 16 IDC/G1 Surgery

17 72 Post 4 Malignant 10 IDC/G1 Surgery

18 31 Pre 4 Benign 25 FA Biopsy

19 55 Post 4 Malignant 20 DCIS Surgery

20 50 Post 4 Benign 22 FA Biopsy

21 45 Pre 4 Benign 17 FA Biopsy

22 34 Pre 4 Benign 13 FA Biopsy

23 33 Pre 4 Benign 12 FA Biopsy

24 41 Pre 4 Benign 11 FA Biopsy

25 69 Post 4 Benign 16 Papilloma Biopsy

26 23 Pre 3 Benign 45 FA Follow-up

27 31 Pre 3 Benign 50 Mastitis Biopsy

28 33 Post 3 Benign 11 FA Follow-up

IDC invasive ductal carcinoma, ILC invasive lobular carcinoma, FA fibroadenoma, G1–G3 grades 1–3
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An ADC threshold of 1.275×10−3 mm2/s [27] differentiat-
ed benign and malignant breast lesions with a sensitivity of
94 % (95 % CI 73–99 %), a specificity of 90.00 % (95 % CI
55–98 %), a PPVof 94 % (95 % CI 73–99 %) and an NPVof
90 % (95 % CI 55–98 %) at 3 T. There were 17 true-positive,
nine true-negative, one false-positive and one false-negative
lesion at 3 T. At 7 T, the same ADC threshold identified 18
lesions as true-positive, nine as true-negative, and one as false-
positive, leading to a higher sensitivity of 100 % (95%CI 81–
100 %), a specificity of 90 % (95 % CI 55–98 %), a PPV of
95 % (95 % CI 74–99 %) and an NPVof 100 % (95 % CI 66–
100 %).

Note that we used the ADC threshold which was based on a
higher number of patients but with different bvalues (this
work: 0, 850 mm2/s; literature value: 50, 850 mm2/s) [27].
Therefore, we calculated the ADC thresholds for 3 T and
7 T using ROC analysis. This did not further improve the
diagnostic accuracy.

The false-positive case at both 3 T and 7 T was mastitis.
The false-negative case at 3 Twas a grade 2 IDC which had a
reported diameter of 17 mm on DCE MRI.

Discussion

This study comparing bilateral DWI in breast cancer patients at
3 T and 7 T demonstrates the potential of 7 T DWI for breast
lesions diagnosis. At both field strengths, images were acquired
without significant artefacts andwith satisfactory fat suppression,
resulting in a high specificity of 90% at both field strengths and a
sensitivity of 94.4 % and 100 % at 3 T and 7 T, respectively, on
the basis of an ADC threshold of 1.275×10−3 mm2/s.

There were no significant differences in CNR or SNR be-
tween 3 T and 7 T, but the spatial resolution was 2.4-fold
higher at 7 T than at 3 T. The in-plane resolution was altered
with the ratio of the magnetic field strengths. We have chosen
this simple assumption to give a qualitative impression of
high-resolution DWI at 7 T which was, therefore, acquired
with a sub-millimetre in-plane resolution comparable to that
of clinical DCE images at lower field strengths.

At 1.5 T and 3 T, most DWI studies of the breast were per-
formed using ss-EPI, which is prone to image artefacts (i.e.
ghosting artefacts, geometric distortions, T2* image blurring) that
are even more profound at higher field strengths [11, 21, 28, 29].
Strong T2* blurring, in particular at 7 T, prevents the anticipated
increase in spatial resolution. This limits the diagnostic power of

a

b c

d e

f g

Fig. 1 An example of a malignant breast lesion in a 61-year-old woman
with an IDC (grade 3) depicted on contrast-enhanced and DWI images at
3 T (left) and 7 T (right). a Contrast-enhanced T1-weighted image at 7 T;
DWI images with b, c b=0 s/mm2 and d, e b=850 s/mm2; f, gADCmaps

a b

c d

e f

Fig. 2 DWI images of a patient (age 31 years) with benignmastitis in the
right breast at 3 T (left) and 7 T (right). DWIs with a, b b = 0 s/mm2 and c,
d b = 850 s/mm2; e, fADCmaps.White arrows indicate the lesion, which
is characterised by hyperintense signal on DWI (b = 850 s/mm2) and
hypointensity on ADC maps. Yellow arrows point to the loss of signal
on DWI images at 7 T in comparison with 3 T images
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ss-EPI-based DWI. Korteweg et al. showed preliminary and
promising unilateral breast-DWI results using ss-EPI, but the
spatial resolution and image quality were hampered by the use
of ss-EPI, fat suppression failure and motion artefacts [9, 19].
This resulted in an in-plane resolution of 2 mm in their 7 T breast
DWI, compared to 0.9 mm, which was used in this study. In a
comparison between ss-EPI and rs-EPI in breast DWI at 3 T, a
threefold reduction of geometric distortions and significantly im-
proved diagnostic accuracywere reported using rs-EPI compared
to ss-EPI [11]. Van de Bank et al. used parallel imaging (PI) at
7 T to increase the spatial/temporal resolution of DCE MRI and
to decrease geometric distortions in breast-DWI at 7 T. [20, 30].
At 7 T, we combined rs-EPI with PI to further reduce the geo-
metric distortions as recently shown by Bogner et al [23]. This
resulted in breast DWI without significant artefacts, satisfactory
fat suppression and high diagnostic accuracy based on ADC
quantification.

Few studies have compared DCE breast MRI or breast DWI
between 7 T and lower field strengths. In a pilot study with a
10-cm-diameter single-loop coil on healthy volunteers and five
patients with breast cancer, 2.8–3.8 times higher SNRs were
reported in breast MRI at 7 T, when compared to 1.5 T [31].
Korteweg et al. reported a 5.7-fold SNR increase at 7 T com-
pared to 3 T in breast MRI [9, 19]. Gruber et al. did a direct
comparison between 3 Tand 7 Tof 24 patients who underwent
breast DCE MRI [9]. They found comparable SNR between
3 T and 7 T, but used spatial resolution at 7 T was 3.2 times
higher than at 3 T. In this study, the SNR at 3 T and 7 T was
comparable, but the spatial resolution was 2.4-fold higher,
resulting in DWI with sub-millimetre in-plane resolution at 7 T.

The high diagnostic accuracy at 3 T and 7 T in this study is
based on anADC threshold of 1.275×10−3 mm2/s, established

a

b

c

d

Fig. 3 An example of bilateral DCE MRI (a 3 T, b 7 T) compared to
DWI images (c 3 T, d 7 T) without diffusion weighting (b=0 s/mm2) of a
benign fibroadenoma in the right breast (patient’s age 31 years). The
lesions are bright on the rs-EPI images with b=0 s/mm2 owing to an
increased extracellular water content which is reflected by high ADC
values. There is a slight signal loss in the axillary area on the 7 T image
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Fig. 4 Comparison of the ADC values measured at 3 Tand 7 T. The false-
negative case (IDC, grade 2) on 3 Twas true-positive on 7-TADC maps
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Fig. 5 The Bland–Altman plot illustrates slightly lower ADC values
measured at 7 T. No systematic error could be seen in the evaluation
between ADC values measured at 3 and 7 T. There was one false-
positive case found at both field strengths. The mean differences between
ADC values measured at 3 T and 7 T are calculated separately for all data
together (solid black line), healthy tissue only (green line, green boxed
value) and malignant tissue only (red line, red boxed value)
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previously in a larger patient study (n=247 patients) at 3 T
[27]. The ADC values, measured in this study at 3 T, are in
agreement with values reported previously. ADC values at 7 T
were 4–22 % lower than those at 3 T. Differences between
ADC values at different field strengths have been reported
previously in the liver and the brain [32, 33]. Dale et al. found
higher ADC values in the liver at 3 T, when compared to those
at 1.5 T. They did not find any differences between 1.5 T and
3 T in the pancreas [32, 33]. On the other hand, lower ADC
values in the brain were reported at 3 T, when compared to
1.5 T [32, 33]. It is not expected that field strength per se is
changing the determined ADC values, but other relevant hard-
ware differences may exist. Also, recent papers concluded that
higher spatial resolution in breast DWI may lead to lower
ADCs particularly in small malignant lesions owing to re-
duced partial volume effects [34, 35]. This is in agreement
with the findings of this study. The mean difference of ADC
values between 3 T and 7 T in malignant lesions was twice as
high as in healthy tissue. Other authors pointed out that in
addition to the spatial resolution other parameters such as
magnetic susceptibility, SNR and the fat suppression perfor-
mance may alter the ADC values [36, 37].

This study has several limitations. We used a high in-
plane resolution but a relatively large slice thickness of
5 mm. Frost et al. proposed rs-EPI with multislice acceler-
ation to reduce scan time for DWI at 3 and 7 T [38]. Such a
sequence allows one to acquire either thinner slices or to
decrease TR to optimize SNR per unit time. In addition,
results of this study could be affected by ROI misregistra-
tion between 3 T and 7 T. Furthermore, larger studies
should be conducted including smaller tumours to evaluate
potential advantages of 7 T DWI to resolve smaller ana-
tomical structures. The method for SNR quantification
used with parallel imaging may affect SNR calculation.
We used a dual-tuned, bilateral 1H/31P breast coil at 7 T.
A single-tuned coil, optimized for proton imaging would,
therefore, further improve the SNR obtained for breast
MRI at 7 T. A reduced B1

+ field in the pre-pectoral region
and the lateral region, compared to the central region of the
breast, was reported at 7 T [9]. This results in reduced SNR
in T1-w images at 7 T, which was reported in several stud-
ies [9, 19, 20, 31, 39]. ADC maps are less sensitive to B1

heterogeneities, because they are calculated from two images
with the same B1 errors. Nevertheless, DWI in such regions
can be biased as a result of a T2 black-out effect in regions
with low SNR. In addition, this hampers the overall image
quality of the b=0 s/mm2 DWI images limiting the use for
morphological assessment of lesions and healthy tissue. Cur-
rent developments of MRI technology, in particular, advanced
B1

+ shimming technology provided by multi-transmit hard-
ware [40], will further improve breast DWI at 7 T.

In this study 7 T DWI versus 3 T DWI resulted in increased
sensitivity, but not specificity. We had one false-positive

(mastitis, at 3 T and 7 T) and one false-negative (IDC grade 2,
at 3 Tonly) case. Interestingly, the false-negative finding at 3 T
was very small (a 17-mm diameter reported on DCE MRI;
however, it had a less than 10-mm diameter on DWI and it
was visible only on one DWI slice at both 3 and 7 T). At 7 T,
the lesion was identified correctly. This motivates us to conduct
further studies that would include lesions that are more difficult
to diagnose, in particular small lesions and non-mass-like en-
hancing lesions.

Our results suggest that 7 T DWI of the breast can be
performed with significantly higher spatial resolution (2.4-
fold) than that at 3 T, without significant differences in SNR.
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