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Abstract
Objectives To develop an algorithm to segment and obtain an
estimate of total intracranial volume (tICV) from computed
tomography (CT) images.
Materials and methods Thirty-six CT examinations from
18 patients were included. Ten patients were examined
twice the same day and eight patients twice six months
apart (these patients also underwent MRI). The algorithm
comb ines morpho log i ca l ope ra t i ons , i n t ens i t y
thresholding and mixture modelling. The method was val-
idated against manual delineation and its robustness
assessed from repeated imaging examinations. Using au-
tomated MRI software, the comparability with MRI was
investigated. Volumes were compared based on average

relative volume differences and their magnitudes; agree-
ment was shown by a Bland-Altman analysis graph.
Results We observed good agreement between our algorithm
and manual delineation of a trained radiologist: the Pearson’s
correlation coefficient was r=0.94, tICVml[manual]=1.05×
tICVml[automated] - 33.78 (R2=0.88). Bland-Altman analy-
sis showed a bias of 31 mL and a standard deviation of 30 mL
over a range of 1265 to 1526 mL.
Conclusions tICV measurements derived from CT using
our proposed algorithm have shown to be reliable and
consistent compared to manual delineation. However, it
appears difficult to directly compare tICV measures be-
tween CT and MRI.
Key Points
• Automated estimation of tICV is in good agreement with
manual tracing.

• Consistent tICV estimations from repeated measurements
demonstrate the robustness of the algorithm.

• Automatically segmented volumes seem less variable than
those from manual tracing.

• Unbiased and automated tlCV estimation is possible from
CT.
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Introduction

Computed tomography (CT) has traditionally played a sub-
stantial role in neuroimaging and continues to do so. The
technique has excellent spatial resolution, reasonable contrast
resolution, speed, the potential for performing contrast studies,
and 3D reconstruction. Despite these facts, magnetic reso-
nance imaging (MRI) is often the method of choice [1, 2].
One important task neuroimaging researchers have sought to
solve is skull-stripping or brain extraction, that is, removal of
the skull, neck, background and eye-balls. Skull-stripping can
be thought of as an instance of global brain image segmenta-
tion, which represents the correct identification/classification
of individual image pixels into a set of definite categories
without prior knowledge or human input. If done successfully,
one can then quantify total intracranial volume (tICV: the sum
of cerebrospinal fluid, gray matter and white matter volumes).
tICV is a morphometric measure of interest in brain disorders
and cognitive aging [3, 4], and is used as a proxy for head size.
The volume of the intracranial cavity is directly related to
brain growth and is considered to remain relatively stable after
brain development ceases in youth [5, 6]. For neuroimaging
research, there exist a number of open-source software pack-
ages for quantitative MRI evaluation including FreeSurfer
(http://surfer.nmr.mgh.harvard.edu), FSL (http://www.fmrib.
ox.ac.uk/fsl) and SPM (http://www.fil.ion.ucl.ac.uk/spm).
Despite these advances, automated computation of tICV
from MRI or CT images remains an open area of
neuroimaging research [7, 8].

The aim of this study was to automatically segment tICV
from CT images by combining morphological operations
(opening: erosion followed by dilation using an elliptical
structuring element), intensity thresholding, robust statistics
and a mixture of modelling based on maximum likelihood
estimation.

Material and methods

All studies were approved by the Regional Ethical Committee
in Stockholm and the Radiation Protection Committee at
Karolinska University Hospital in Huddinge, and participants
were informed and provided written consent for inclusion.

Subjects

Eighteen patients (age range 63 to 81 years with a mean of
73 years and a standard deviation (SD) of 5.8 years), 8 women
(age range 70 to 81 years with a mean age of 77 years and an
SD of 4.5 years) and 10 men (age range 63 to 79 years with a
mean age of 71 years and an SD of 5.3 years), referred to a
local Memory Clinic (Karolinska University Hospital,
Huddinge, Sweden) were retrospectively selected. The

selection was made from those who had undergone imaging
examination of the brain in the context of memory investiga-
tion and were examined using the same protocol. Patients with
other pathologies, such as intracranial tumours or infarcts
were excluded. Ten out of the 18 patients underwent imaging
twice the same day. The remaining eight patients were exam-
ined using both CT and MRI within a seven-day period, and
six months later, a second examination was performed using
the same protocol. This resulted in a total of 36 CT examina-
tions from 18 patients examined twice, and 16 MRIs from 8
patients examined twice.

Acquisition: CT and MRI

A 64-channel CT system (GE Medical Systems, LightSpeed
VCT) was used without intravenous contrast (orientation, ax-
ial; scan type, helical; tube voltage, 120 kV; tube current, 100-
300 mA; detector area, 20 mm×0.625 mm; voxel size,
0.4199×0.4199×2.5 mm3; rotation time, 0.5 s; effective radi-
ation dose, 1.7 mSv; pitch 0.531:1).

For MRI acquisition, a 1.5 Tesla system (Siemens, Avanto)
was used. The protocol included a T1Magnetization-Prepared
Rapid Acquisition with Gradient Echo (MPRAGE) coronal
pulse sequence (TR, 1910 ms; TE, 3.14 ms; flip angle, 15
degrees; voxel size, 0.449×0.449×1.4 mm3; 160 slices).

For both acquisitions, full brain coveragewas requiredwith
at least one slice totally above and one totally below to ensure
total intracranial volume was fully included. Each image was
checked visually for quality control to assess whole brain cov-
erage and that no major artefacts were present [9, 10].

Phantom

A Siemens phantom was examined on both MR and CT sys-
tems to check the resulting images were not distorted or mag-
nified in some way by the acquisition parameters, imaging
modality or segmentation algorithm. The real volume of the
phantom was 2570 ml, and was filled with a fluid similar to
cerebrospinal fluid (CSF).

Manual delineation on CT brain images and CT/MRI
phantom images

Manual measurements were performed on the CT images
using ITK-SNAP (http://www.itksnap.org) [11]. All
delineations were performed by a single trained radiologist
following anatomical landmarks and avoiding major veins
(intensity of the major veins overlaps with the intensity of
intracranial structures creating bridges between brain
parenchyma and eyeballs, which is why veins were removed
as part of the automated segmentation). The procedure
consisted of manually drawing the boundary between the
brain and the skull from original slices presented in the axial
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plane (ITK-SNAP allows tracing in axial, sagittal and coronal
projections simultaneously). Realignment was not necessary
due to the large size of the intracranial cavity, but reorientation
to follow radiological convention was performed using
fslswapdim from FSL. Brightness was increased to improve
identification of the boundary of the dura mater. The slice in
which the brain initially appeared was selected as the starting
point and from that point every slice was traced. Tracing was
stopped at the inferior part of the brain at the level of the
foramen magnum, which was localized on the sagittal
projection. All slices in between were traced, although it has
been reported other samplingmechanisms (tracing every tenth
slice) would also yield accurate estimations [12]. By adding
the traced volumes from each segmented slice, tICV was
computed.

For phantom images, manual delineation was performed
on T1-weighted MRI and CT images. The spherical shape of
the phantom made it easier to delineate the boundary.

MR image processing

Structural MR images were skull-stripped using the Brain
Extraction Tool (BET) from FSL [13]. Briefly, this method
uses a deformable surface model that is fitted to the brain
surface. Raw T1-weighted images were reoriented to follow
radiological convention using fslswapdim. The application of
the BET on the reoriented images resulted in unsatisfactory
results due to inclusion of non-brain structures. Thus, these
images were cropped using fslroi, to remove the neck, and the
intensity threshold flag was set to 0.1 instead of the default 0.5
(‘-f’ parameter on BET) [7, 14]. Once the BET’s parameters
were tuned, reoriented and cropped, images were fed into
sienax for automated segmentation [15, 16] keeping the pre-
viously determined BET parameters.

Mixture modelling based on maximum likelihood
estimation

Mixture modelling refers to a statistical procedure for estimat-
ing the parameters of a linear mixture of statistical distribu-
tions from a finite sample. For estimating parameters of a
known model from its sample, the method of maximum like-
lihood looks for the parameter point for which the observed
sample is most likely (plausible) [17].

The distribution of a pixel’s intensity expressed in
Hounsfield units (HUs) within the range -50 to 200 is com-
posed of two separate frequency curves: CSF and brain tissue.
Such frequency curves are discrete (histogram), given that HU
values are integers. Thus, a suitable way to model such curves
is by a binomial distribution. For a pixel’s intensity histogram
modelled by a binomial distribution, there is one parameter to
be determined: p (success probability). Matching a mixture of
a binomial distributions model with unknown parameter p and

an intensity histogram can be done numerically applyingmax-
imum likelihood estimation (Bregman soft-clustering [18]),
resulting in the most likely model for the frequency curves
contained in the intensity histogram.

Automated tICV segmentation

The following image processing procedure was implemented
based on open-source libraries for reading DICOM medical
files (Grassroots DICOM - http://gdcm.sourceforge.net),
programming real-time computer vision applications
(OpenCV – http://opencv.org) and writing interpreted scripts
(Lua – http://www.lua.org). This algorithm was designed to
automatically perform skull stripping and eye-ball removal on
axial CT head examinations (Fig. 1).

& Pixels between -50 to 200 HU were assigned to a Btissue-
mask^ (for calibrated CT scanners, brain tissue and CSF
information lies within this range). Pixels with values
greater than 200 HU contain mainly bone information
and were assigned to a bone-mask.

& Starting from the apex of the skull and following the su-
perior to inferior direction, the slice in which the brain
initially appeared was selected as the starting point and
from that point every slice was traced by binary operations
until the eye-balls were first visible.

& Starting at the level of the eye-balls, information from the
traced slice just above the current one was used to estimate
a region-of-interest (ROI) and correctly extract the brain
tissue (at this level, the brain inside the skull does not form
a closed connected component).

& A probability distribution function (PDF) was generated
by accumulating intensity histograms from each slice.
Using maximum likelihood estimation (Bregman soft-
clustering [18]) the parameters of a mixture of binomial
distributions were estimated.

& Robust estimation of minimum Imin and maximum Imax

intensities was obtained from the fitted distribution. Imin/
Imax corresponds to the minimum/maximum intensity val-
ue having a probability greater than 10-5 of belonging to
the fitted distribution (due to floating/double arithmetic,
any value less than 10-5 was set to zero).

& Pixels between the Imin and Imax were selected and the
resulting mask was processed by applying an opening
morphological operation (erosion followed by dilation
using an elliptical structural element) and kept as Bmost-
probable-brain-mask.^ For successful eye-ball removal,
information from the traced slice just above the current
one was used as prior spatial information and only over-
lapping ROIs were retained.

Whether application of the previous algorithm was suc-
cessful was determined by visually inspecting the resulting
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masks and looking for missing regions or incomplete removal
of non-brain tissue. Manual corrections can be performed if
necessary, and in case of failure, the algorithm can be run
again with different parameters. Optionally, a refinement can
be achieved by applying the watershed algorithm. We did not
observe any failure, and manual corrections were not
necessary.

Statistical analysis

The Pearson’s correlation coefficient was computed to test
for linear correlation. P-values less than 0.05 were con-
sidered statistically significant. Agreement was compared
in terms of volume difference and average volume as
shown in a Bland-Altman analysis graph. Reliability as-
sessment based on volume differences was complemented
by computation of the Dice coefficient [19] to assess the
overlap between manual and automated segmentation
masks. The Dice coefficient (DC) is defined as

DC ¼ 2� V 1∩V 2ð Þ
V 1þV 2

.

Results

Eight out of 18 patients were used to validate our algorithm
against manual delineation. The remaining ten were used to
assess the robustness of our algorithm. Finally, the eight pa-
tients used to validate our algorithm also had an MRI per-
formed within seven days and were thus used to estimate the
comparability of tICV measurements between CT and MRI.
Table 1 presents all resulting volumes obtained and considered
for this analysis. A schematic representation of our proposed
segmentation algorithm is shown in Fig. 1. After every image
was processed, the resulting segmented images were visually
inspected (Fig. 2). Typical segmentation masks for manual
and automated CTsegmentation and automated MRI segmen-
tation are shown in Fig. 3.

tICV from CT

The average intracranial volume obtained by applying the
developed algorithm was smaller than the average volume
obtained from manual delineation by a trained radiologist
(Student’s t-test one-tailed, paired means, P=0.011; Fig. 4a).
The difference in tICV between images, applying the devel-
oped algorithm, showed less variability compared to those
manually traced (F statistics=0.004; P<10-7). Bland-Altman
analysis showed a bias of 31 mL and an SD of 30 mL over a
range of 1265 to 1526 mL. Linear regression analysis showed
a good correlation (Fig. 5a):

tICV manual½ � ¼ 1:05� tICV automated½ �−33:78 R2 ¼ 0:88; inmilliliters
� �

The degree of correlation as measured by the Pearson’s
correlation coefficient was r=0.94 between the algorithm
and manual tracing. The overlap between manually and auto-
matically segmented volumes (average Dice coefficient was
0.90±0.02) was indicative of good reliability.

Agreement between repeated CTs on the same day
(Fig. 4b) obtained by applying our algorithm was very good,
as shown by a Bland-Altman analysis graph (Fig. 6).
Automated measurements showed a bias of -1.5 mL and an
SD of 6.4 mL over a range of 1010 to 1520 mL (one sample
Student’s t-test , one-tail, P=0.76).

tICV from CT compared to tICV from MRI

The average tICV obtained by applying the developed algo-
rithm was smaller than the average volume obtained from
automated segmentation on MRI (Student’s t-test one-tailed,
paired means, P=1×10-5; Fig. 4a). Comparison of the vol-
umes generated by FSL on MRI and our algorithm on CT
showed a bias of 116.9 mL and a SD of 33.4 mL over a range
of 1309 to 1558mL. The degree of correlation as measured by
the Pearson’s correlation coefficient was r=0.92 (linear

Fig. 1 Diagram illustrating the proposed algorithm for automated CT
image segmentation. CT = computer tomography
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regression R2=0.84) between automatically calculated vol-
umes in MRI and CT (Fig. 5b).

Phantom measurements

Phantom volumes assessed with CT/MRI differed from the
actual volume of the phantom (MRI: 3 % larger; CT: 1.5 %
smaller); results are presented in Table 2. A reason for this
may be that the BET (MRI-based skull-stripping algorithm
from FSL) was optimized to follow a brain-like shape instead
of a spherical contour, while our proposed algorithm was op-
timized to find intensity differences but not to compensate for
partial volume artefacts.

Discussion

In this study, we developed and validated a new algorithm
to automatically compute tICV from CT images by
modelling the intensity histogram using maximum likeli-
hood estimation, while removing extracranial tissue and

the eye-balls. The algorithm is fully automated, and when
applied to our dataset, resulted in successful segmentation
without requiring manual post-processing. The algorithm
demonstrated good agreement with manual segmentation
performed by a trained radiologist, and high correlation
with the FSL pipeline. Moreover, the observed subject
variability was low on repeated acquisitions performed
the same day or six months apart, suggesting good
consistency.

There are examples in the literature of successful morpho-
metric analysis based on CT images. However, they are based
on manual segmentation, only single-slice segmentation
[20–22], the use of MRI templates, linear measurements [23,
24], or require user interaction [25]. We have opted for a fully
automated, template-free approach, since manual segmenta-
tion of the brain is time consuming and requires training and
care; single-slice segmentation suffers from low reliability;
and the use of MRI templates requires optimal registration.
Although linear measurements have been previously explored
and used as an indirect marker of brain atrophy [23], its accu-
racy and reliability are subject-dependent.

Table 1 Intracranial volumes
from eight patients imaged twice
six months apart and ten patients
imaged twice the same day

tICV [mL] Algorithm (CT) Manual (CT) FSL (MRI)

Baseline Replicate Baseline Replicate Baseline Replicate

Six months 1441 1442 1492 1497 1591 1627

1441 1434 1443 1439 1550 1545

1522 1514 1536 1532 1604 1592

1464 1465 1484 1539 1581 1582

1374 1374 1372 1386 1462 1454

1262 1255 1276 1269 1360 1360

1405 1397 1469 1509 1564 1570

1434 1431 1450 1451 1540 1543

Mean

[SD]

1418

[76]

1414

[77]

1440

[81]

1453

[91]

1532

[82]

1534

[87]

Same day 1264 1267

1182 1185

1216 1216

1143 1137

1520 1519

1386 1388

1481 1490

1011 1009

1132 1125

1205 1219

Mean

[SD]

1254

[162]

1255

[164]

tICVobtained by applying the proposed algorithm, manual delineation and FSL to eight patients with a replicate
six months later and ten patients with a replicate the same day. tICV: total intracranial volume (GM + WM +
CSF), GM: grey matter, WM: white matter, CSF: cerebrospinal fluid, MRI: magnetic resonance imaging, CT:
computed tomography, SD: standard deviation
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Fig. 2 Visual inspection of automated CT image segmentation by the proposed algorithm
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Fig. 3 Visual comparisons of
tICV segmentation results. (a)
Original CT axial slice displaying
a manual delineation result and
(d) reconstructed sagittal slice, (b)
automated segmentation original
axial mask using our proposed
algorithm and (e) reconstructed
sagittal slice, (c) automated
segmentation reconstructed axial
mask of a T1w MRI scan using
sienax from FSL, and ( f )
reconstructed sagittal slice.
T1w = T1 weighted;
CT = computer tomography; MRI
= magnetic resonance imaging;
tICV = total intracranial volume

Fig. 4 Comparisons of tICV
segmentation results. (a) Eight
patients were segmented by our
proposed algorithm, manually
traced and its MRI processed
using sienax from FSL, (b) the
remaining ten patients were
segmented by our proposed
algorithm. A pair of consecutive
points represents a single patient
with [B] baseline and [R]
repeated scans. tICV = total
intracranial volume;
CT = computer tomography;
MRI = magnetic resonance
imaging
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Our study adds to the current literature by providing results
of successful automated brain segmentation on CT from a
retrospective selection of elderly patients referred to a local

memory clinic. We took the approach of using manual delin-
eation by a trained radiologist as the gold-standard, repeated
measurements on the same day and six months apart and
combined MRI and CT acquisitions. This enabled assessment
of reliability and consistency and a comparison of tICVs ob-
tained from MRI to those obtained from CT.

Advantages of this algorithm are computation of robust
intensity ranges by modelling the intensity histogram as a
mixture of binomial distributions and fitting the sample via
maximum likelihood estimation.

We believe this new algorithm has clinical importance be-
cause CT remains widely used in primary care for dementia
investigation [26]. The likelihood of developing dementia is
increased in subjects with low tICV [27]. Also, in morpho-
metric studies, tICV is a measure of interest since models of
brain regions associated with cognitive measures vary de-
pending on how tICV is included [28]. Future work to extend
the algorithm to estimate brain and CSF volumes could

Fig. 5 Scatter plots and correlations for tICV calculations. (a)
Comparison between our proposed algorithm vs. manual delineation (b)
comparison between our proposed algorithm vs. MRI segmentation using
sienax from FSL. tICV = total intracranial volume; CT = computer
tomography; MRI = magnetic resonance imaging

Fig. 6 Bland-Altman analysis
comparing automated tICV
calculation for two images (same
day). Blue horizontal line
represents the mean and green
horizontal lines represent the
mean ±2 SD; SD = standard
deviation; tICV = total
intracranial volume

Table 2 Segmented volumes of a phantom scanned on both MRI and
CT systems

Volume [mL] Volume
difference (%)

Phantom 2750

Manual MRI 2888 +5.0

CT 2670 -2.9

Automated MRI 2835 +3.1

CT 2709 -1.5

Volume difference = (Volume – Phantom)/Phantom. A phantom volume
was segmented manually and by automated software. MRI: magnetic
resonance imaging, CT: computed tomography
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potentially be clinically relevant, since the ratio between brain
volume and CSF volume has been shown to be a sensitive
measure of atrophy [29].

The significant differences observed between modalities
(MRI vs. CT) suggests that comparison between modalities
in absolute terms is not possible, since MRI-derived volumes
were systematically larger than the CT-derived ones. While
CT allows a great delineation of the skull, beam-hardening
and partial volume artefacts contaminate the pixels in the
boundary bone vs. brain tissue/CSF. We believe this is the
main reason why CT volumes are systematically smaller than
MRI-derived ones (a phenomenon also observed in phantom
measurements). Although the FSL pipeline was used since it
is fully automated, other software libraries might be used in-
stead, yielding different results [7, 8]. On MRI, T1w alone
gives a good estimate of tICV but the precise boundary cannot
be reliably delineated. The presence of artefacts reduces the
size of the intracranial cavity; MRI-based software corrects
the by registration to a standard space where prior spatial
information helps guide and compensate intensity-based seg-
mentation. Our proposed algorithm was based on intensity
information and neighbouring spatial information to guide
the segmentation and no prior information was used.

This study has some limitations. First, the sample popula-
tion was relatively small but the encouraging results demon-
strated smaller variation in volumes obtained by using auto-
mated methods as opposed to manual tracing. Second, other
sources of measurement error on CT exist and were not con-
sidered, including beam-hardening artefacts, partial volume-
averaging, and slice thickness and separation. Third, the pre-
sented algorithm is based on pixel intensity, and is, therefore,
highly sensitive to beam-hardening artefacts, resulting in dis-
tortions that create attenuation values higher than the actual
ones. However, the application of robust statistics by con-
struction of the probability distribution function and further
maximum likelihood estimation allowed for adjustment to the
degree of intensity variability seen in this sample. Fourth, the
absence of large, manually segmented CT datasets prevents
the creation of spatial priors that could be used to further refine
the segmentation as done for MRI.

Conclusion

This study demonstrates that it is possible to estimate tICV in
an unbiased and automated way. Although CT imaging re-
stricts the quantitative analyses that can be performed, given
the great contrast between bone and brain, it seems sufficient
to give a reliable and consistent estimate of tICV. Our results
suggest that measures of tICV depend on the modality used
for acquiring the image and that results might not be compa-
rable among different modalities. The simplicity and practi-
cality of automated software and the clinical availability of

CT, highlights the need to develop more tools and algorithms
that could be used in clinical research.
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