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Abstract
Purpose To compare normalisation to blood glucose (BG)
with scaling to hepatic uptake for quantification of tumour
18F-FDG uptake using the brain as a surrogate for tumours.
Methods Standardised uptake value (SUV) was measured
over the liver, cerebellum, basal ganglia, and frontal cortex
in 304 patients undergoing 18F-FDG PET/CT. The relation-
ship between brain FDG clearance and SUV was theoretically
defined.
Results Brain SUV decreased exponentially with BG, with
similar constants between cerebellum, basal ganglia, and fron-
tal cortex (0.099–0.119 mmol/l−1) and similar to values for
tumours estimated from the literature. Liver SUV, however,
correlated positively with BG. Brain-to-liver SUV ratio there-
fore showed an inverse correlation with BG, well-fitted with a
hyperbolic function (R=0.83), as theoretically predicted.
Brain SUV normalised to BG (nSUV) displayed a nonlinear
correlation with BG (R=0.55); however, as theoretically pre-
dicted, brain nSUV/liver SUV showed almost no correlation
with BG. Correction of brain SUV using BG raised to an
exponential power of 0.099 mmol/l−1 also eliminated the cor-
relation between brain SUVand BG.
Conclusion Brain SUV continues to correlate with BG after
normalisation to BG. Likewise, liver SUV is unsuitable as a

reference for tumour FDG uptake. Brain SUV divided by liver
SUV, however, shows minimal dependence on BG.
Key Points
• FDG standard uptake value in tumours helps clinicians as-
sess response to treatment.

• SUV is influenced by blood glucose; normalisation to blood
glucose is recommended.

• An alternative approach is to scale tumour SUV to
liver SUV.

• The brain used as a tumour surrogate shows that neither
approach is valid.

• Applying both approaches, however, appropriately corrects
for blood glucose.
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Hepatic steatosis

Introduction

In the use of 2-deoxy-2-fluoro-D-glucose 18F-FDG positron
emission tomography–computed tomography (PET/CT) for
cancer management, some form of quantification of tumour
uptake is essential in order to monitor treatment. This is most
often done by measuring the standardised uptake value
(SUV), which is the fraction of administered activity per
millilitre of tissue, multiplied by an index of body size, usually
weight. An alternative approach is to scale tumour count to the
count rate from the liver, which in this context is assumed to
be relatively constant. Because tumour SUV is inversely
related to blood glucose, European Association of Nuclear
Medicine (EANM) guidelines recommend normalisation of
tumour SUV to blood glucose of 5 mmol/l [1]. This approach
assumes a tumour glucose utilisation rate (MRGLU) that is
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independent of blood glucose, in which MRGLU would be
equal to the product of tumour FDG clearance (ignoring the
lumped constant [LC]) and blood glucose. Thus, insofar as
tumour SUV is a surrogate for tumour FDG clearance, the
guidelines assume a hyperbolic relationship between tumour
SUV and blood glucose. EANM guidelines also recommend
rescheduling the study if blood glucose is above 7 mmol/l,
although most departments would tolerate levels up to
10 mmol/l.

Liver SUV (SUVliver) is thought to be relatively constant
[2, 3] and so an alternative approach is to express tumour
count rate as a ratio with liver count rate [4–7]. The validity
of this approach has received recent attention given the poten-
tial effect of hepatic steatosis on liver FDG uptake. Several
groups have examined the relationship between steatosis and
SUVliver. The results, however, were conflicting [8–12], likely
because the effects of blood glucose on hepatic SUV were
ignored.

FDG is dynamically exchanged between hepatocytes and
blood (Fig. 1), resulting in a hepatic FDG concentration that
closely mirrors the blood concentration [13–16]. Indeed, it has
been recommended that in small animal work, the liver is a
better region than the heart for monitoring the time course of
blood activity [15]. Because blood FDG concentration is de-
pendent on blood glucose [13], the hepatic FDG signal, rather
than being constant, is also dependent on blood glucose, as
has been previously shown [17, 18], such that the tumour-to-
liver ratio also depends on blood glucose.

The aim of this study was to compare the normalisation to
blood glucose and scaling to the liver as correction procedures
for quantification of tumour FDG uptake. Tumour SUV is
highly variable in patients with cancer, so we used the brain
as a surrogate for tumours to examine the effects of blood
glucose. The justification for this relies on the premise that
FDG uptake kinetics should be similar for tissues such as
brain and tumour, but unlike liver, in which FDG is metabol-
ically trapped.

In order to evaluate the impact of hepatic steatosis on scal-
ing to the liver, we also compared the relationship between
brain-to-liver SUV ratio and blood glucose in patients with
and without hepatic steatosis. Finally, we explored an

additional procedure that may be useful for correcting tumour
FDG uptake for blood glucose.

Methods

Patients

This was a retrospective service evaluation based on 304 pa-
tients undergoing routine FDG PET/CT. We initially included
a consecutive group of 156 patients over a two-year period
(2011–2012). To increase the numbers of patients with low or
high blood glucose levels, we included 148 additional patients
with blood glucose levels>6 (n =113) or<4 (n=35) mmol/l
who underwent imaging between 2007 and 2012. Most pa-
tients were referred with cancer. Forty-seven patients were
currently receiving chemotherapy and 56 had received che-
motherapy previously.

All patients who visit our PET CT unit are asked to provide
informed consent for use of any of their clinical data for pub-
lication, and all patients in this study did so.

PET/CT acquisition

Departmental protocol dictated that patients fast for at least
6 hours prior to their appointment. Blood glucose was mea-
sured using a glucometer (Accu-Chek Performa, Accu-Chek
Inform II test strips; Roche Diagnostics, Indianapolis, IN,
USA). FDG was injected intravenously via the antecubital
fossa or hand. Patients were required to relax in a semi-
recumbent position in a warm, quiet area during the uptake
period. Imaging was performed 60 min post-injection of
400 MBq (±10 %) FDG.

A Siemens Biograph 64-slice PET with immediate non-
enhanced CT imaging (120 kVp/50 mA—CARE Dose 4D;
slice, 5 mm; pitch, 0.8; rotational speed, 0.5/sec), was used to
cover the area from the orbital margin to the lesser trochanters.
Arms were up, as arms down may result in artificial elevation
of the liver FDG signal due to beam-hardening effects. Three-
dimensional emission data were then acquired at 3 min per
bed position (PET reconstruction: 4 iterations; subset, 8;
Gaussian pre-filter; full width at half maximum (FWHM),
5 mm; matrix size, 168×168; zoom, 1).

Image analysis

Regions of interest (ROIs) were drawn over the right lobe of
the liver (3 cm diameter, avoiding any focal lesions), frontal
cortex (1.5 cm), basal ganglia (0.9 cm), and cerebellum
(1.6 cm). The whole-body sweep did not include frontal cor-
tex and basal ganglia in 107 patients. Maximum and average
standardised uptake values (SUVmax and SUVave) were re-
corded for all four regions. An ROI identical to the liver

FDG FDG FDG-6-P glycogen

BLOOD      HEPATOCYTE
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Fig. 1 Model depicting the kinetics of FDG between blood and
hepatocyte. FDG is phosphorylated in the hepatocyte (k3) but is not
incorporated into glycogen. Following dephosphorylation (k4), it
diffuses back into blood (k2). K1 represents hepatic blood flow
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ROI drawn on the PET image was drawn on the CT scan for
measurement of CT density in Hounsfield units (HU). SUV in
brain regions was multiplied by blood glucose and divided by
5 to give normalised SUV (nSUV).

Statistical analysis

The relationships between variables were quantified using
Pearson’s linear regression analysis of continuous data. In
addition, patients were categorised into six subgroups based
on blood glucose within the following ranges (patient num-
bers in brackets): < 4 (59), 4–4.9 (76), 5–5.9 (38), 6–7.9 (38),
8–9.9 (58), and 10+ (35) mmol/l. Patients were also
subdivided into those with hepatic steatosis (CT density<40
HU; n=71) and those without (>39 HU; n=233) [19, 20].

Results

Relationship between blood glucose and hepatic CT density

There was an inverse relationship between blood glucose
and hepatic CT density (R=−0.39, p<0.0001; Fig. 2).
Thus, patients with fatty liver tend to have high blood
glucose.

Relationships of brain and hepatic SUV values with blood
glucose

Cerebellar SUVmax declined non-linearly as a function of
blood glucose (Fig. 3). The relationship was better fitted with
an exponential function, the constant of which was
−0.0993 mmol/l−1 (R=0.75), than a hyperbolic function (R=
0.60). Corresponding exponential constants for frontal cortex
and basal ganglia SUVmax were −0.119 mmol/l−1 (R=0.76)

and −0.114 mmol/l−1 (R=0.75). Exponential constants for
brain SUVave were similar: −0.113 (R=0.77), −0.110
(R=0.76), and −0.097 (R=0.74) mmol/l−1 for the frontal
cortex, basal ganglia, and cerebellum, respectively. In
contrast, liver SUV increased non-linearly as blood glu-
cose increased (Fig. 4).
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Relationship between cerebellum-to-liver SUV ratio
and blood glucose

The ratio of cerebellum-to-liver SUVmax declined non-linearly
as blood glucose increased (Fig. 5). The relationship appeared
hyperbolic (R=0.83), as theoretically predicted (see
Appendix; Eq. 12). The relationship between cerebellum
SUVmax/liver SUVave and blood glucose was similar (data
not shown).

Effect of hepatic steatosis on the relationship
between cerebellum/liver SUV ratio and blood glucose

The relationships between cerebellum-to-liver SUV ratios and
blood glucose were similar patients with and without hepatic
steatosis, whether SUVmax or SUVave was the denominator
(Fig. 6).

Correction of brain SUV for blood glucose

Correction of tumour SUV for blood glucose by normalisation
to 5 mmol/l (nSUV) aims to abolish the dependence of tumour
SUVon blood glucose, and the same should apply to the brain.
However, normalisation gave nSUVmax values for the cerebel-
lum that correlated in a complex manner with blood glucose
(Fig. 7a, upper panel). Thus, there was a positive correlation
up to blood glucose level of 7 mmol/l, with a gradient of ~1
SUV per mmol/l (R=0.44; p<0.0001), but no further increase
above 7 mmol/l. The overall relationship was therefore better
fitted with a second-order polynomial (R=0.55).

Division of cerebellar nSUVmax by liver SUVmax almost
abolished its relationship with blood glucose, leaving a small
gradient of 0.04 SUV per mmol/l (R=0.17; p<0.01; Fig. 7b,
upper panel). There was no difference in this relationship be-
tween patients with and without hepatic steatosis. Results were
similar when cerebellar nSUVmax was divided by liver SUVave

instead of SUVmax, although the correlation coefficient and
regression gradient were slightly higher (Fig. 7b, lower panel).

Based on the exponential constant of −0.099 mmol/l−1

derived from the relationship between cerebellum SUVmax

and blood glucose, multiplication of basal ganglia SUVave

with e0.099.glucose gave corrected SUV values that showed no
correlation with blood glucose (R=0.03; Fig. 7a, lower panel).
Application of this correction procedure to the frontal cortex
yielded similar results (data not shown).

Discussion

Brain SUVas a function of blood glucose

FDG enters the cell using the same transport system and phos-
phorylation enzymes as glucose, but is then metabolically
trapped. As Hasselbalch et al. [21] found no change in regional
cerebral MRGLU in response to acute hyperglycaemia, elevated
blood glucose levels should result in decreased FDG uptake in
the brain. Accordingly, we found an inverse nonlinear relation-
ship between brain SUVand blood glucose that was well fitted
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by an exponential function. An inverse relationship between
brain SUV and blood glucose has been shown previously in
works by others [22, 23]. Buchert et al. [24] showed that acute
reversal of hyperglycaemia increased FDG uptake in the brain
by up to 80 %, while Kawasaki et al. [25] found that mild
hyperglycaemia affected the distribution of FDG uptake in
the brain of normal subjects. Critically, exponential constants
of the relationships between brain SUV and blood glucose in
the current study were similar for the cerebellum, basal gan-
glia, and frontal cortex.

Validity of liver SUV for scaling tumour SUV: effects
of steatosis and blood glucose

Liver SUV, in contrast to brain SUV, showed a positive rela-
tionship with blood glucose (Fig. 4). The brain/liver SUV
ratio, therefore, showed a strong inverse relationship with
blood glucose (Fig. 5). As theoretically predicted (Appendix),
this was hyperbolic. Although much attention has recently
been focussed on the influence of hepatic steatosis on the
validity of liver SUVas a comparator for tumour FDG uptake
[8–12], blood glucose clearly has a more dramatic effect than
hepatic fat on the brain-to-liver SUV ratio. Recent studies
addressing the validity of the fatty liver as a comparator did
not consider the influence of blood glucose on hepatic SUV,
even though patients with fatty liver disease tend to have high

blood glucose, as shown in Fig. 2. Two recent studies from our
group [26, 27] confirmed that when blood glucose is taken
into account, FDG accumulation in the liver is increased in
hepatic steatosis. However, as shown in the current study,
steatosis has much less impact on scaling brain SUV to liver
SUV in comparison to blood glucose.

Use of brain SUVas a surrogate for tumour FDG uptake

Hasselbalch et al. [21] measured MRGLU in the brains of nor-
mal subjects using the Sokoloff model. The authors showed
that during acute hyperglycaemia in comparison to
normoglycaemia, there was no change in global or regional
MRGLU in cortical and subcortical grey matter. Most studies
[23, 28–30], though not all [31, 32], have shown that tumour
SUV also decreases at high blood glucose levels, as is
recognised in both the EANM and the Society of Nuclear
Medicine guidelines [1, 33]. Lindholm et al. [28] showed no
change in tumour MRGLU in response to oral glucose loading
in five patients with head and neck cancer. Moreover, Crippa
et al. [29] recorded a decrease in mean SUV of 20 hepatic
colorectal metastatic deposits from 9.4 to 4.3 in a study in
which patients underwent imaging on two separate occasions:
fasting, and following a glucose load that increased blood
glucose from 5 to 9 mmol/l. Ishizu et al. [23] recorded a
decrease in brain glioma SUV from 4.41 to 1.54 associated
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with an increase in blood glucose from 5.9 to 13.5 mmol/l.
Insofar as the brain can be regarded as a surrogate for tumours,
in that both display no change inMRGLU in relation to glucose
levels, the liver clearly cannot be used as a tissue comparator
for tumour FDG uptake.

Correction of tumour SUV for blood glucose

The similarity between brain and tumour FDG kinetics can be
extended to the correction of tumour SUV for blood glucose.
EANM guidelines recommend normalising tumour SUV to
5 mmol/l [1]. To be successful, this procedure is required to
abolish any relationship between tumour SUVand blood glu-
cose. Its validity in this respect is supported by some studies
[34, 35] but not by others [31].

A critical assumption underlying the use of the brain as a
surrogate for tumour FDG uptake is that MRGLU in the brain
and tumours is independent of blood glucose. There is little
robust quantitative data in the literature concerning the effects
of blood glucose on tumour SUV. Assuming an inverse expo-
nential relationship between tumour SUVand blood glucose,
it can be calculated from the data of Lindholm et al. [28] that
the exponential constant for tumours would be −0.1 to
−0.15 mmol/l−1. Based on the data of Crippa et al. [29], the
constant would be about−0.2 mmol/l−1, although their SUV
values had very high standard deviations. Based on the data of
Ishizu et al. [23], the constant would be −0.093 mmol/l. These
estimated exponential constants are broadly similar to those
recorded here for the brain (−0.099 to −0.119 mmol/l−1).

Given the variation in tumour SUV, it is difficult to deter-
mine the relationship between blood glucose and tumour SUV
in large heterogeneous patient populations. Nevertheless, in
such an attempt, Zhuang et al. [30] recorded a weak inverse
correlation between tumour SUV and blood glucose, without
indicating whether the relationship was hyperbolic, exponen-
tial, or linear. In contrast, in 248 patients with lung cancer,
Hallet et al. [31] found no significant correlation between
tumour SUV, expressed logarithmically (thereby implying
an exponential relation), and blood glucose. Differing levels
of metabolic activity across tumours would not rule out a
unique exponential constant that could be universally applied
to tumours, provided that tumour MRGLU, like brain MRGLU,
is independent of blood glucose.

In the current study, normalisation failed to achieve inde-
pendence of the brain nSUV in relation to blood glucose, and
instead generated a significant nonlinear correlation (Fig. 7).
However, when brain nSUVmax was divided by liver SUVmax,
it showed almost no relationship with blood glucose, regard-
less of whether patients had hepatic steatosis (Fig. 7). This
finding is consistent with Eq. 12 (Appendix), which shows
that (tissue SUV [SUVi]×blood glucose)/SUVliver is constant.
When brain nSUVmax was divided by liver SUVave instead of
SUVmax, a moderate linear positive correlation remained with

blood glucose. We believe this is the result of a ‘signal dilu-
tion’ effect on liver SUVave of excess hepatic fat, the distribu-
tion of which is not homogeneous [36]. Such a dilutive effect
is less with SUVmax than SUVave because SUVmax is selec-
tively based on a voxel that is relatively free of fat [26]. The
correlation between brain nSUVmax/liver SUVave and glucose
is then the result of higher levels of hepatic fat in patients with
high blood glucose. As such, for this dual correction proce-
dure, liver SUVmax is recommended. The sense of the proce-
dure is evident when, for example, there is heavy uptake of
FDG by bone marrow. This would reduce the availability of
FDG uptake elsewhere and reduce left ventricular blood SUV
(SUVLV) and SUVliver. Division of nSUV by SUVliver would
then appropriately increase nSUV. Another attractive feature
of this approach is that it avoids the emerging issue of the best
whole-body index—weight, lean body mass, or body surface
area—upon which to base SUV [37], since whatever index
used for measuring SUV is cancelled out.

Multiplication of SUV by e0.099 x glucose (based on the ex-
ponential constant of 0.099 mmol/l−1 for the relationship be-
tween cerebellar SUVmax and blood glucose) is another po-
tential correction procedure. It abolishes the relationship be-
tween basal ganglia SUV and blood glucose (Fig. 7a). If a
constant of approximately −0.1 mmol/l−1 is not universal for
tumours, this correction would then not be valid for tumours.
Further work is needed to address this issue, particularly in
regard to the independence of tumour MRGLU and blood glu-
cose level.

Study limitations

Limitations of the study include its retrospective design and
heterogeneous patient population. Whilst every effort was
made to avoid any focal liver pathology when drawing the
liver ROI, it is possible that covert pathology, such as diffuse
colorectal micrometastases, may have increased liver SUV.
Moreover, the frontal cortex and basal ganglia were included
in the whole-body sweep in only two-thirds of the patients,
although patient numbers were still high.

Conclusions

In conclusion, tumour FDG uptake cannot be factored to liver
SUV because of the effects of blood glucose rather than any
influence of hepatic fat. Normalisation of brain SUV to blood
glucose results in a complex relationship with blood glucose
and is therefore also invalid. Combining the two correction
procedures, however, gives corrected values that show almost
no relationship with blood glucose, and the success of this
dual correction procedure is explained theoretically in the
Appendix. Normalisation to blood glucose using an exponen-
tial constant could also be useful.
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Appendix

The EANM guidelines recommend normalisation of tumour
SUV to blood glucose of 5 mmol/l. This presupposes a hyper-
bolic relationship (i.e., y=constant/x) between SUVand blood
glucose.

MRGLU in tissues in which FDG is metabolically trapped is
related to tissue FDG clearance rate (Zi) and blood glucose
concentration (G), as follows [21]:

MRGLU ¼ Zi � G � LC ð1Þ

Where LC is lumped constant.
Rearranging Eq. 1 and ignoring LC,

Zi ¼ MRGLU=G ð2Þ

Assuming MRGLU is constant, this indicates a hyperbolic
relationship between Zi and G.

Tissue SUV (SUVi) is a surrogate for Zi but is not identical
to it. It is related to Zi as follows.

Zi ¼ M tð Þ=area tð Þ; ð3Þ

where M(t) and area(t) are respectively the quantity of FDG
accumulated in the tissue and the area under the blood FDG
time-concentration curve at time t (60 min in the current
study).

Substituting for Zi in Eq. 1

MRGLU ¼ M tð Þ=area tð Þ � G ð4Þ

Now SUVi ¼ M tð Þ=V x W=M 0ð Þ; ð5Þ

where V is tissue volume, W is body weight and M(0) is
administered activity.

Rearranging Eq. 5

M tð Þ ¼ SUVi x V=W x M 0ð Þ ð6Þ

Substituting for M(t) in Eq. 4 and rearranging,

MRGLU=V ¼ SUVi x M 0ð Þ=W � G=area tð Þ ð7Þ

For typical FDG blood clearance half-times of around
50 min from completion of early mixing (~10 min)
[20], area(60 min) is approximately proportional to
C(60 min), where C(t) is the blood concentration of
FDG. For example, comparing clearance half-times of
69 and 50 min, the concentration and area ratios are
1.28 and 1.11, respectively, similar to the corresponding
ratios for half-times of 50 and 39 min (1.26 and 1.11); i.e.,
same error.

So, substituting C(t) for area(t) in Eq. 7 and ignoring the
proportionality constant,

MRGLU=V ¼ SUVi � M 0ð Þ=W � G=C tð Þ ð8Þ

Analogous to Eq. 5,

left ventricular blood SUV SUVLVð Þ
¼ C tð Þ � W=M 0ð Þ ð9Þ

Substituting for C(t) in Eq. 8,

MRGLU=V ¼ SUVi=SUVLV � G ð10Þ

Rearranging Eq. 10,

SUVi=SUVLV ¼ MRGLU=V � 1=G ð11Þ

So SUVi/SUVLV, rather than SUVi, has a hyperbolic
relationship with blood glucose and therefore more
closely represents Zi. Because of the kinetics of FDG
distribution between hepatocytes and blood, liver FDG
concentration closely reflects blood FDG concentration
[13–16]. In Eq. 11, therefore, SUVLV can be replaced
by SUVliver:

SUVi=SUVliver ¼ MRGLU=V� 1=G ð12Þ

Alternatively, the relationship between SUVi and blood
glucose can be regarded as exponential, i.e.,

SUVi ¼ A:e‐k:G ð13Þ

The exponential constant k is the fractional decrease in
SUVi per unit increase in blood glucose, and intuitively
should be constant for tissues that metabolically trap FDG.
Tissue MRGLU would then be reflected by A.
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