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Abstract
Objectives To evaluate both in vivo and in phantom studies,
dose reduction, and image quality of body CT reconstructed
with model-based iterative reconstruction (MBIR), performed
during patient follow-ups for lymphoma.
Methods This study included 40 patients (mean age 49 years)
with lymphoma. All underwent reduced-dose CT during

follow-up, reconstructed using MBIR or 50 % advanced sta-
tistical iterative reconstruction (ASIR). All had previously un-
dergone a standard dose CT with filtered back projection
(FBP) reconstruction. The volume CT dose index
(CTDIvol), the density measures in liver, spleen, fat, air, and
muscle, and the image quality (noise and signal to noise ratio,
SNR) (ANOVA) observed using standard or reduced-dose CT
were compared both in patients and a phantom study (Catphan
600) (Kruskal Wallis).
Results The CTDIvol was decreased on reduced-dose body
CT (4.06 mGy vs. 15.64 mGy p<0.0001). SNR was higher in
reduced-dose CT reconstructed with MBIR than in 50 %
ASIR or than standard dose CT with FBP (patients, p≤0.01;
phantoms, p=0.003). Low contrast detectability and spatial
resolution in phantoms were not altered on MBIR-
reconstructed CT (p≥0.11).
Conclusion Reduced-dose CTwith MBIR reconstruction can
decrease radiation dose delivered to patients with lymphoma,
while keeping an image quality similar to that obtained on
standard-dose CT.
Key Points
• In lymphoma patients, CT dose reduction is a major
concern.

• Reduced-dose body CT provides a fourfold radiation dose
reduction.

• Optimized CT reconstruction techniques (MBIR) can main-
tain image quality.
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Introduction

During the past several years, medical radiation expo-
sure has increased mostly because of the growing use
of computed tomography (CT) [1–3]. Recent studies
have stressed the potential relationship between medi-
cal radiation exposure and the risk of developing can-
cer [4–8]. Patients undergoing repeated CTs seem the
most at risk of developing radiation-induced diseases,
although this result is still debated [9–11]. Patients
with lymphoma often have a high survival rate; 80 %
to 90 % of them are alive 3 years after treatment [12].
These patients may be young at the time of the diag-
nosis and may have an extended survival without re-
lapse leading to repeated follow-up CT [13–15]. As
effects of medical radiation on outcome are still un-
clear, it is wise to apply the ALARA principle, espe-
cially in this specific population [16].

Despite the key role of PET-CT in aggressive lymphoma
patient management, CT for lymphoma follow-up is indi-
cated in patients with indolent lymphomas, diffuse large
B-cell lymphoma (DLBCL) with international prognosis
index (IPI) ≥3 and patients included in clinical trials, as
recently confirmed in expert recommendations [17]. CT
also plays a significant role in various other lymphoma
histologies both at diagnosis and follow-up according to
the latest European Society for Medical Oncology
(ESMO) or National Comprehensive Cancer Network
(NCCN) guidelines [13–15].

CT dose reduction strategies rely on decreasing ra-
diation output of the CT tube, inducing a higher level
of image noise. Traditionally, images have been recon-
structed from CT data using analytical reconstruction
algorithms such as filtered back-projection (FBP). But
noise and artefact reductions are necessary steps to-
wards a further dose reduction in CT [18, 19].
Hence, all CT manufacturers have developed new re-
construction algorithms [20] including iterative recon-
struction techniques such as adaptive statistical iterative
reconstruction (ASIR) [21–25]. More recently, a com-
plex model-based iterative reconstruction method
(MBIR, Veo®, GE Healthcare, WI, USA) has been re-
ported [26, 27]. MBIR allows the modelling of projec-
tion and electronic noise, and introduces optic chain
modelling for greater noise reduction. The use of
MBIR has been reported in various fields including
paediatric imaging [28], chest examinations [29] and
oncology patients [30].

The objective of our study was to evaluate both
in vivo and in phantom studies, the dose reduction
and image quality of reduced-dose body CT, recon-
structed with MBIR, performed during the follow-up
of lymphoma patients.

Materials and methods

The study was approved by our institutional review board and
the requirement for informed consent was waived. The
industry-independent authors maintained full control of the
data at all times.

Study population

Between September 2012 and December 2013, 45 consecu-
tive patients referred to our institution for the CT follow-up of
Hodgkin or non-Hodgkin lymphoma in complete remission
according to 2007 Cheson’s criteria [31] (n=41), or with sta-
ble indolent lymphoma (n=4) were considered eligible for this
retrospective study. Five patients for whom no prior CT per-
formed at our institution less than 48 months before referral
was available were excluded. As a result, 40 patients were
finally included (see Table 1 for population description). On
referral, the median overall follow-up time of all patients was
32 months (mean=35 months, range 9 to 96 months).
Following reduced-dose CT, 35 patients were considered in
persistent complete response, four patients with indolent lym-
phoma were considered stable and remained untreated, and
one patient was considered as showing disease relapse (con-
firmed with biopsy). Following the reduced-dose CT, the me-
dian follow-up was 15.7 months (range 7 to 23 months).

Table 1 Study population

Specifications Our population

Age (years) Mean: 49; range, 20 – 80

Male/Female 30/10

Ann Arbor initial staging 6 stage I,
11 stage II
5 stage III
18 stage IV

Type of lymphomas 16 Hodgkin Lymphoma
10 Diffuse Large B-Cell Lymphoma
4 Follicular Lymphoma
2 Mantle B-Cell Lymphoma
2 Peripheral T-Cell Lymphoma
6 Others

Delay between complete remission
and date of reduced-dose CT
scan

Mean (months): 25.7
Range (months): 2-102

Response status according to 2007
Cheson’s criteria [31] using the
reduced-dose CT scan

35 maintained complete response
1 Disease Relapse (confirmed with
PET-CT and biopsy)

4 Patients with stable disease with
no treatment (indolent
lymphoma, only active
surveillance)

Follow up duration after reduced-
dose CT scan

Mean (months): 15.7
Range (months): 7-23
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CT technique

Reduced-dose CT All included patients underwent reduced-
dose body CT - including neck, chest, abdomen, and pelvis
coverage - at our institution on a 64-row MDCT system (HD
750 Discovery, GE Healthcare, Milwaukee, WI, USA). Scan
parameters are described in Table 2. All images were recon-
structed using raw-data acquisitions. Both native, 50 % ASIR,
and MBIR images were reconstructed. A 50 % ASIR level
was selected as it appears to be a good compromise for reduc-
ing noise without affecting image quality [19].

Standard dose CT All included patients had previously under-
gone, at our institution, a standard-dose follow-up CTon a 64-
slice MDCT (Lightspeed VCT®, GE Healthcare, Milwaukee,
WI, USA), called standard-dose CT, at a mean delay of
20 months prior to the reduced dose CT. Imaging parameters
are also shown in Table 2. All standard-dose CTs were full
filtered back projections reconstructed without iterative recon-
structions. All standard-dose CT examinations complied with
national reference dose recommendations.

For both standard-dose CTscan and reduced-dose CTscan,
a monophasic contrast enhanced CT (CECT) acquisition was
performed covering the cervical region to the pelvic groin,
initiated at portal phase 70 s after the injection of 1.5 cc/kg
of iomeprol 350 (Iomeron 350, Bracco Imaging France,
Courcouronnes, France) at a 3.5 cc/sec injection rate.

Reconstruction of standard-dose and reduced-dose CT For all
CTs, post-processing reconstructions were performed on all
native data in the transverse plane to yield 2.5-mm-thick sec-
tions, allowing comparison between reconstruction techniques.

Dosimetric analysis

For each reduced-dose and standard-dose CTscan, the follow-
ing parameters were collected including CTDIvol (volume
computed tomography dose index), length of helical acquisi-
tion, and dose length product (DLP).

Image analysis

For all reconstructed images – namely FBP reconstructed
standard-dose CT images, and both 50 % ASIR and MBIR
reconstructed images on reduced-dose CT – the mean density
(HU), the noise – defined as the standard deviation (SD) of
each density measurements – and the signal-to-noise ratio
(SNR) of the liver, spleen, abdominal subcutaneous fat, lum-
bar muscle, and air were determined. The SNR for each organ
was defined as follows (Eq. 1):

SNR ¼ D

SD

Where D is the mean density for each organ and SD the
mean standard deviation of density within the regions of in-
terest (ROIs) described below.

Three identically sized ROIs (mean size = 100 mm2 +/-
10 %) were manually positioned on the liver, carefully
avoiding liver vessels or heterogeneous liver segments. In a
similar manner, two ROIs, of the same dimension, were posi-
tioned within the spleen parenchyma, two ROIs within the
lumbar muscle, two ROIs within the abdominal sub cutaneous
fat, and two ROIs within the anterior-located air. All ROIs
were placed by two of the authors (E.H. and A.L., with a
respective 3 and 15 years experience in CT) on all reconstruct-
ed acquisitions – FBP of standard-dose CT, 50 % ASIR, and
MBIR reconstructed images for reduced-dose CT – and were
automatically synchronized, using integrated registration soft-
ware (GE Healthcare), allowing the propagation of each ROI
when scrolling different acquisitions at the same anatomical
location.

Phantom study

A CATPHAN 600 phantom (The Phantom Laboratory,
Greenwich, NY, USA) was included in this study for quality
control. This cylindrical phantom allows the determination of
low contrast detectability, signal to noise ratio, and spatial
resolution in z and x-y planes. The phantom was imaged on
both CT devices (Lightspeed VCT and Discovery 750) using
the same parameters used in the clinical study besides the tube
current, which was set at a constant 365 mA, and 130 mA for
the standard-dose CT (LightspeedVCT) and reduced-dose CT
(Discovery 750), respectively. Chosen mA corresponds to the

Table 2 CT image acquisition parameters of reduced-dose CT and of
standard-dose CT

CT imaging parameters Reduced-dose CT
(ASIR- and MBIR-
reconstructed)

Standard-dose
CT (FBP-
reconstructed)

Slice thickness (mm) 0.625 1.25

Kilovoltage (kV) 100 120

Rotation time (s) 0.7 0.6

mA modulation (range) 100-300 150-650

mA observed on 40 patients
acquisitions (mean)

130 365

Pitch 1.375 1.375

Noise index (HU) 60 25

Advanced Statistical Iterative
Reconstruction (ASIR®) (%)

50 N/A

Model-Based Iterative
Reconstruction (MBIR)

Yes No

Kernel Standard Standard

Field of View (FOV) Large body Large body
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mean mA values observed in the study population on each
machine whether with the standard-dose or the reduced-dose
CT imaging parameters.

Native raw data obtained were 1.25 mm thickness with
FBP or ASIR, and 0.625 mm with MBIR reconstruction tech-
nique. For MBIR acquisition, post-processing reconstructions
was performed on native data, in the transverse plane to yield
1.25-mm-thick sections, allowing comparison between recon-
struction techniques.

Quantitative and qualitative phantom analysis All qualitative
phantom analyses were performed independently by two
readers (E.H. and A.L. with a respective 3 and 15 years expe-
rience in CT), blinded to the type of acquisition and recon-
struction assessed. The low contrast detectability and the
highest spatial resolution were qualitatively evaluated. The
signal to noise ratio was quantified by a single reader (F.G.),
for each acquisition and reconstruction. Five phantom acqui-
sitions using the standard-dose and the reduced-dose CT scan
parameters were evaluated by each reader.

– Low contrast detectability:
To evaluate low contrast detectability, the Catphan 600

phantom contains a total of nine targets varying in both
maximum transverse diameter (namely 2 mm to 15 mm)
and contrast level (namely 1%, 0.5%, and 0.3%). The two

readers independently determined how many targets they
could entirely see for each acquisition and reconstruction.

– Spatial resolution:
To allow spatial resolution quantification in the trans-

verse plane, the Catphan phantom contains spaced alu-
minium line pairs, with decreasing interspace ranging
from 1 to 21 line pairs per centimetre. The highest spatial
resolution providing indistinguishable line pairs was not-
ed by the two readers independently.

– Signal to Noise Ratio:
To determine signal to noise ratio, image analysis soft-

ware was used (Artiscan, Aquilab, France). The SNRwas
evaluated on axial images, with the CTP486 Image uni-
formity module, using the following formula (Eq. 2):

SNR ¼
ffiffiffi

2
p DPhantom

SDPhantom

Where DPhantom corresponds to the mean density of a ROI
encompassing the entire uniformity module in transverse
plane and SDPhantom corresponds to the mean standard devia-
tion measured within the ROI. Two consecutive scan acquisi-
tions of the Catphan phantom were performed to provide a
mean SNR ratio.

Table 3 Dosimetric comparison of standard-dose CT and of reduced-dose CT acquisitions

Dosimetric parameters Reduced-dose CT (ASIR-
and MBIR-reconstructed)

Standard-dose CT
(FBP-reconstructed)

p (Two independent
samples t-test)

CTDIvol (mGy) [mean±SD] 4.06±1.1 15.6±4.2 p<0.0001

DLP (mGy.cm) [mean±SD] 345±99 1,252±339 p<0.0001

Length of acquisition (cm) [mean±SD] 78.8±6.3 75.0±7.6 p=0.018

Table 4 Mean density, noise, and signal to noise ratio (SNR) measured
within the liver, spleen, lumbar muscle, abdominal subcutaneous fat, and
air on all CT acquisition and reconstruction techniques. The highest SNR

was observed on reduced-dose CT reconstructed using MBIR. HU,
Hounsfield unit

Density measures Standard-dose CT
with FBP
reconstruction

Reduced-dose CT
with 50 % ASIR
reconstruction

Reduced-dose CT
with MBIR
reconstruction

p (one-way
ANOVA)

Liver density (HU) [Mean±SD] 97.2±12.6 121.8±18.4 121.1±11.5 p<0.0001

SNR 8.4 7.0 10.8 p<0.0001

Spleen density (HU) [Mean±SD] 100.5±13.2 130.0±18.5 129.3±11.6 p<0.0001

SNR 7.7 7.1 11.2 p<0.0001

Muscle density (HU) [Mean±SD] 55.4±12.8 63.0±17.2 63.7±11.3 p=0.0017

SNR 4.9 3.9 5.9 p<0.0001

Subcutaneous fat density (HU) [Mean±SD] -103.5±13.5 -116.0±16.3 -118.2±11.5 p=0.0001

SNR 8.2 7.5 10.8 p<0.0001

Air density (HU) [Mean±SD] -995.1±7.7 -972.0±10.2 -993.7±3.6 p=0.35

SNR 143.3 102.7 325.0 p<0.0001
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Statistical analysis

The mean CTDIvol, DLP and helical length were com-
pared for each patient on the standard-dose CT and the
reduced-dose CT (two independent samples t-test). For
each organ, and for each reconstruction of both
standard-dose CT and reduced-dose CT, variations in
both mean organ density, and signal to noise ratio were
compared by one-way analysis of variance (ANOVA)
followed by Bonferroni post-hoc test. For each CT ac-
quisition and each reconstruction technique, low contrast
detectability, spatial resolution, and signal to noise ratio
of the Catphan 600 phantom were compared (Kruskall
Wallis followed by Dunn post-hoc test). p<0.05 was
considered to indicate a statistically significant differ-
ence. All statistical analyses were conducted using XL
STAT®, 2013 version 5.09, for Windows (Microsoft,
Inc).

Results

Patients study

Dosimetric analysis

The mean CTDIvol, DLP, and length of acquisition for the
standard-dose CT and the reduced-dose CT are presented in
Table 3. Both the CTDIvol and the DLP were significantly
lower on the reduced-dose CT (p<0.0001) while the length of
acquisition was higher on the reduced-dose CT (p=0.018).

Image analysis

The mean densities of all ROIs within the selected organs are
shown in Table 4. Identical mean densities were found for air,
whatever acquisition and reconstruction protocol (one-way
ANOVA; p=0.35). The mean densities of liver, spleen,

Fig. 2 71 year-old patient, followed up for stage IV diffuse large B-cell
lymphoma in complete remission on standard-dose CT performed in
December 2011 with FBP reconstructions (a). In October 2012, the
reduced-dose CT suggested disease relapse with enlarged supra-
diaphragmatic lymph nodes, which were well depicted both on 50 %

ASIR- (arrow and arrowhead, b) and on MBIR-reconstructed (arrow
and arrowhead, c) images. Disease relapse was confirmed by 18F-FDG-
PET-CT and biopsy. The CT dose was significantly lower on reduced-
dose CT than on standard-dose CT (respectively, CTDIvol of 6.06 and
20.0 mGy)

Fig. 1 31 year-old patient followed for stage III diffuse large B-cell
lymphoma in complete remission on both standard-dose CT performed
in November 2011 with FBP reconstruction (a), and on reduced-dose CT
obtained 12 months later using 50 % ASIR (b) and MBIR reconstruction

algorithm (c). The mean dose is significantly higher with the standard-dose
protocol than with the reduced-dose protocol (respectively, CTDIvol =
11.14 mGy and CTDIvol = 3.62 mGy; respectively, DLP of
885 mGy.cm and of 301 mGy.cm)
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muscle and fat varied among reconstructions (one-way
ANOVA, p<0.001), with lowest densities found on
standard-dose CT scan acquisition (Bonferroni post test p val-
ue <0.009), which are performed at higher kV. Examples of
CT acquisition performed in identical patients using standard-
dose CTor reduced-dose CTand with different reconstruction
techniques are shown in Figs. 1 and 2.

The variations of noise and SNR according to the CTacqui-
sition and reconstruction techniques are shown in Fig. 3. The
mean noise and SNR of liver, spleen, muscle, and air varied
among reconstructions (one-way ANOVA, p<0.0001). For
each organ, the mean noise was lower with MBIR, and signif-
icantly lower for the spleen, air, and fat measurements

(respectively, p=0.04, p=0.027, and p=0.0001 with
Bonferroni post test). For each organ, the mean SNR was sig-
nificantly higher on MBIR reconstructed images compared to
ASIR or FBP for every organ (Bonferroni post test p<0.02).

Phantom study

The comparative analysis of phantom experiments is pro-
vided in Table 5. Neither low contrast detectability mea-
surements nor spatial resolution varied significantly be-
tween the different reconstructions techniques. Every ac-
quisition and reconstruction technique allowed the detec-
tion of up to seven or eight lines per centimetre. The
SNR measurements were signif icantly different
(Kruskall Wallis, p=0.003) between all acquisitions and
reconstruction techniques with highest values observed
with MBIR-reconstructed images obtained with the
reduced-dose CT (mean SNR of 138±0.7) as opposed
to 50 % ASIR reconstructed images obtained with the
reduced-dose CT (mean SNR of 77±0.4; p=0.001) or
FBP-reconstructed images obtained with the standard-
dose CT (mean SNR of 85±1.0; p=0.11).

Discussion

Results of this study, focusing on follow-up body CT
image acquisitions for lymphoma patients show that
MBIR-reconstruction leads to reduced X-ray exposure
with maintained objective image quality. Hence, mean
CTDIvol values of 4.06 mGy can be reached in adult
patients, results similar to recent reports in paediatric
populations, or in various clinical applications [30,
32–38]. In addition, MBIR outperforms ASIR in terms
of image quality, when using stringent acquisition param-
eters enabling very low-dose CT examinations.

The role of CECT for early response assessment has been
recently questioned, as 18F-FDG-PET now plays a key role
for metabolic assessment of tumour response in aggressive
lymphoma [39]. However, CECT still plays a central role in
lymphoma patient management: in close to 10 % of patients,
CECT enables the detection of conditions un-related to lym-
phoma, such as pulmonary embolism, infections, or incidental
findings [16]. Furthermore, CECT still remains today the cor-
nerstone for the follow-up of many lymphoma patients, as still
recommended by international work-groups [13–15] and in-
ternational experts [17]. According to literature, X-ray expo-
sition is a major inconvenient in lymphoma CT-surveillance,
optimizing CECT acquisition and reducing dose is thus of
utmost importance. In addition, dose reduction techniques
could be applied to hybrid PET-CT modality or to simulta-
neous diagnosis CECT and PET-CT acquisition when re-
quired, performed at the lowest dose [16].

Fig. 3 Comparison of CTDIvol (a) noise (b) and signal to noise ratio
(SNR) (c) in patients followed up with standard-dose CTor with reduced-
dose CTand 50 %ASIR- orMBIR-reconstructed images. The mean dose
is significantly reduced on reduced-dose CT, together with increased
noise on 50 % ASIR-reconstructed images. On reduced-dose CT
MBIR-reconstructed images, the noise is significantly reduced with
increased SNR

Eur Radiol (2015) 25:2362–2370 2367



The SNR observed on the reduced-dose CT was signifi-
cantly improved using MBIR reconstruction algorithms when
compared to 50%ASIR. Interestingly, the level of noise with-
in the images was similar between FBP reconstructed images
using standard-dose CT acquisition parameters and MBIR-
reconstructed images acquired with a reduced-dose CT that
is four times less than the standard. The mean density values
were, however, different between standard-dose CTs and
reduced-dose CT acquisition. This difference is directly relat-
ed to the different tube voltage used in both protocols – name-
ly 120 kV for standard-dose CT imaging protocol and 100 kV
for reduced-dose CT protocol. Such difference was previously
observed [40–42]. In addition, a lower tube voltage favours
the attenuation of contrast material, owing to greater photo-
electric effect and decreased Compton scattering. It is note-
worthy that the densities measured in the study concerned
contrast-enhanced acquisitions, which accounts for the rela-
tively high mean densities of liver, spleen, and muscle record-
ed in this study.

To our knowledge, few studies have compared ASIR
and MBIR using objective criteria [33]. This is especial-
ly important as the use of subjective criteria is ham-
pered by the absence of a truly blinded evaluation:
MBIR, ASIR, and FBP reconstructed images all have
different appearances that are unique and recognizable.
Also, the use of a phantom allowed the comparison
between both low contrast resolution detectability and
spatial resolution. Moreover, the SNR was significantly
improved with MBIR reconstructions, while the average
dose was decreased, results in accordance with previous
publications [28]. MBIR also significantly reduces the
noise within the image, which was observed in this
patient study.

Volders et al. [30] have suggested that a lower threshold
value for CTDIvol of 5.18 mGy could be targeted for clinical
practice when dealing with liver metastases. Interestingly, the
CTDIvol values obtained on reduced-dose CT in our study are
even lower. The clinical rationale in lymphoma patients is

different from that of patients with liver metastases: the chal-
lenge for contrast enhanced CT (CECT) is to provide optimal
staging at baseline and detection of relapse on follow-up.

One limitation of the study is that all but one patient was in
complete remission. However, our aim was first to test the
objective performance of MBIR in reduced-dose CT per-
formed on phantoms and in patients at low risk of tumour
recurrence. Future studies should be carried out in order to
prospectively evaluateMBIR, together with PET-CT for base-
line staging and response assessment, in order to detect both
nodal and organ involvement by lymphoma. Furthermore,
radiation dose and objective image quality are independent
of lymphoma treatment response. This study also suggests that
MBIR-reconstructed images obtained with reduced-dose ac-
quisitions and FBP-reconstructed images obtained with
standard-dose acquisitions share the same contrast detectabil-
ity on phantom. Reduced-dose CT imaging parameters were
specifically selected to significantly impact dose reduction.
Moreover, CT doses were compared with CT examinations
performed without ASIR capacity. However, a 4.06 mGy
CTDIvol provides noisy raw images where ASIR reconstruc-
tions appear insufficient to restore sufficient SNR.

Overall, the use of reduced-dose CT together with MBIR
reconstruction can significantly decrease radiation dose deliv-
ered to patients followed for lymphoma, while keeping an
image quality similar to that obtained on standard-dose CT.
Prospective trials could further evaluate the role of such
reduced-dose CECT together with 18F-FDG PET CT for lym-
phoma patients management.
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Table 5 Image quality parameters obtained on Catphan 600 phantom
for all CT acquisition and reconstruction techniques. The number of
targets at different low contrast detectability and the spatial resolution

were similar with the different techniques used. The mean SNR was
significantly higher on reduced-dose CT acquisitions reconstructed using
MBIR.

Image quality parameters
measured on Catphan 600
phantom

Standard-dose
CTwith FBP
reconstruction

Reduced-dose
CTwith 50 %
ASIRreconstruction

Reduced-dose
CTwith MBIR
Reconstruction

p (KruskalWallis)

Number of targets [Mean±SD]
at different low contrast
detectability levels (%)

1 %: 5.6±0.7
0.5 %: 2.8±1.1
0.3 %: 0

1 %: 5.6±0.7
0.5 %: 2±0
0.3 %: 0

1 %: 5±1
0.5 %: 2.8±0.7
0.3 %: 0

1 %: p=0.47
0.5 %: p=0.24
0.3 %: p=N.A.

Spatial resolution (line Pairs)
[Mean±SD]

7±0 7±0 7.4±0.4 p=0.11

SNR [Mean±SD] 85±1.0 77±0.4 138±0.7 p=0.003
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