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Abstract

Purpose To develop and validate a decision support tool for
mammographic mass lesions based on a standardized descriptor
terminology (BI-RADS lexicon) to reduce variability of practice.
Materials and methods We used separate training data (1,276
lesions, 138 malignant) and validation data (1,177 lesions,
175 malignant). We created naive Bayes (NB) classifiers from
the training data with tenfold cross-validation. Our “inclusive
model” comprised BI-RADS categories, BI-RADS descrip-
tors, and age as predictive variables; our “descriptor model”
comprised BI-RADS descriptors and age. The resulting NB
classifiers were applied to the validation data. We evaluated
and compared classifier performance with ROC-analysis.
Results In the training data, the inclusive model yields an
AUC 0f 0.959; the descriptor model yields an AUC of 0.910
(P<0.001). The inclusive model is superior to the clinical
performance (BI-RADS categories alone, P<0.001); the de-
scriptor model performs similarly. When applied to the vali-
dation data, the inclusive model yields an AUC of 0.935; the
descriptor model yields an AUC of 0.876 (P<0.001). Again,
the inclusive model is superior to the clinical performance
(P<0.001); the descriptor model performs similarly.
Conclusion We consider our classifier a step towards a more
uniform interpretation of combinations of BI-RADS descriptors.
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We provide our classifier at www.ebm-radiology.com/nbmm/

index.html.

Key Points

* We provide a decision support tool for mammographic
masses at www.ebm-radiology.com/nbmm/index.html.

* Our tool may reduce variability of practice in BI-RADS
category assignment.

* A formal analysis of BI-RADS descriptors may enhance
radiologists’ diagnostic performance.

Keywords Mammography - Bayesian analysis -
Decision support techniques - BI-RADS, CAD

Introduction

To date, no guidelines exist to link the full morphological
description of a mass lesion detected on x-ray mammography
to a definitive risk of malignancy. Standardized description of
mass lesions is based on the BI-RADS (breast imaging:
reporting and data system) lexicon provided by the American
College of Radiology [1]. The BI-RADS lexicon requires the
interpreting radiologist to assign a final assessment category
to a described lesion, which reflects the level of suspicion the
radiologist has that this particular lesion is malignant.

Most likely due to the missing links of descriptor combi-
nations to assessment categories, there is a substantial vari-
ability among radiologists for the assignment of BI-RADS
assessment categories [2—4]. Variability is found on the level
of practicing site [5] and on the level of single readers [2—4]. A
possible way to reduce the variability of assignment of BI-
RADS assessment categories has been found to be training of
radiologists in usage of the lexicon [3,6]. Additionally, the
development of computer assisted diagnostic systems for
mammographic lesions based on the BI-RADS lexicon has
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gained substantial attention in the past. Classification algo-
rithms have been developed that feature neural networks,
Bayesian networks, logistic regression, and decision trees;
these approaches resulted in impressive diagnostic accuracy
[7-12]. However, none of these diagnostic systems has been
provided as an actually usable research tool to the scientific
community.

In the long run, such a diagnostic system could help to
reduce the variability of practice in BI-RADS assessment
category assignment. Unambiguous communication between
radiologists (even at different practicing sites) and clinicians
could be enhanced, and so could be uniform patient manage-
ment. The purpose of this study is, therefore, to develop a
naive Bayes classifier based on combinations of BI-RADS
descriptors for mammographic mass lesions, validate its per-
formance, and provide this tool to the research community.

Materials and methods
Study population

We considered all mammography examinations rated BI-
RADS 0, 2, 3, 4, or 5 [1] performed between October 2005
and December 2011 in our university hospital as potentially
eligible for this retrospective, institutional ethical review
board-approved investigation. This resulted in 28,857 (23,
093 screening, 5,443 diagnostic, 321 unknown reason) pa-
tients examined during the data collection period. In our
practice, all lesions detected on x-ray mammography are
prospectively assigned BI-RADS descriptors by the
interpreting radiologist; these descriptors are stored in an
electronic database. In cases of mass lesions, the shape (round,
oval, lobulated, or irregular), margin (circumscribed,
microlobulated, obscured, ill-defined, or spiculated), and den-
sity (fat-dense, low, isodense, high) of the lesion can be
assessed. Our system does not require the radiologist to assign
a value to all of these variables: for example, it is possible to
enter a descriptor for shape, but to leave the margin and
density fields blank. Additional information about the location
of the single lesion is stored (required are side and clockwise
location).

During the data collection period, 11,769 mass lesions
were described in 5,894 patients. We included all lesions in
our analysis for which a match with our institutional (United
States Comprehensive Cancer Center) cancer registry could
be established based on histopathology. We considered a
report of in situ or invasive cancer within 365 days after the
mammography as malignant. The cancer registry provides
information about the side and clockwise location of the
lesion, so that matching on a per lesion basis is feasible. The
cancer registry thus provided us with information for 1,719
mass lesions (989 benign, 730 malignant). We secondly

included mass lesions with available follow-up examination
>365 days (n=7,910). We regarded lesions rated as benign
with a sufficient follow-up that established the lesion’s stabil-
ity as benign. We then selected lesions with complete infor-
mation for shape (missing in 1,654 lesions), margin (missing
in 3,103 lesions), and density (missing in 5,297 lesions); the
rationale for this approach is detailed in the Discussion. This
selection resulted in 2,453 lesions for our analysis (2,140
benign, 313 malignant), the pretest probability in our study
population, therefore, was 313/2,453=12.8 %.

Naive Bayes classifiers

Bayesian network classifiers calculate the posttest probability
(of malignancy) for a case (herein mass lesion in mammogra-
phy) given the values of various predictive variables. In our
work, predictive variables denote BI-RADS descriptors, BI-
RADS assessment categories, and patient age. Information
regarding the side and clockwise location of the lesions was
not used as predictive variable. Table 1 lists the BI-RADS
mass lesion descriptors assessed in the first column. For
pictorial examples of the descriptors, refer to [13].

The structure of a Bayesian network classifier can be
visualized with a directed acyclic graph, where nodes repre-
sent variables and edges between the nodes represent depen-
dencies among the variables. Within a node a variable can take
several distinctive values, each with a certain probability. A
special case of Bayesian network classifiers is the naive Bayes
classifier. The ground truth is considered the root node of the
network, it has a connection to all predictive variables and
does not itself depend on any other variable (compare for
Fig. 1). In mathematical terms, for each predictive variable P
(variable value|ground truth) is estimated — i.e. the sensitivity
and false-positive rate are estimated for the BI-RADS
descriptors.

The calculation of the posttest probability is achieved using
Bayes’ theorem with the estimated probabilities for the imag-
ing features observed. For a more detailed and accessible
review of Bayesian network classifiers, refer to [14]; for a
discussion of the naive Bayes, see [15]. We perform all
analyses using R 2.15.3 [16] and use the e1071 package [17]
to generate naive Bayes classifiers. We perform ROC (receiv-
er operating characteristic) curve analysis with the ROCR
package [18] and compare ROC curves with the DeLong test
[19,20]. We employ the AUC (area under the curve) of an
ROC curve as measure for diagnostic accuracy [21]. We
consider a P-value <0.05 to denote statistical significance.

Classifier construction
We split our dataset into training data (n=1,276 lesions,

thereof 138 malignant) and external validation data (n=1,
177 lesions, thereof 175 malignant). The split was performed
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Table1 Distribution of BI-RADS mass lesion descriptors, age, and BI-
RADS assessment categories in the training data (n=1,276 lesions,
thereof 138 malignant). Percentages denote the proportion of lesions
with the specific descriptor in the respective descriptor subgroup

Descriptor N malignant (%) N benign (%)
Mass shape
Round 22 (15.9 %) 293 (25.7 %)
Oval 26 (18.8 %) 569 (50.0 %)
Lobulated (4th edition) 16 (11.6 %) 152 (13.3 %)
Irregular 74 (53.6 %) 124 (10.9 %)

Mass margin

Circumscribed 15 (10.9 %) 733 (64.4 %)
Microlobulated 7 (5.1 %) 13 (1.1 %)
Obscured 12 (8.7 %) 169 (14.9 %)
[lI-defined 51 (37.0 %) 205 (18.0 %)
Spiculated 53 (38.4 %) 18 (1.6 %)
Mass density
Fat-like 1 (0.7 %) 64 (5.6 %)
Low 1 (0.7 %) 57 (5.0 %)
Isodense 35(25.4 %) 690 (60.6 %)
High 101 (73.2 %) 327 (28.7 %)
Age
<50 years 18 (13.0 %) 465 (40.9 %)
50 — 64 years 57 (413 %) 476 (41.8 %)
>=65 years 63 (45.6 %) 197 (17.3 %)

BI-RADS category

0 37 (26.8 %) 566 (49.7 %)
2 0 (0 %) 431 (37.9 %)
3 0 (0 %) 77 (6.8 %)
4 40 (29.0 %) 60 (5.3 %)
5 61 (442 %) 4(0.4 %)

on a temporal basis: all lesions detected earlier than 01/01/
2009 were sorted into the training data; lesions detected later
were sorted into the validation data. This approach is consid-
ered, contrary to a random split of the data, a particular type of
external validation [22].

From the training data we generate our naive Bayes classi-
fier, internal validation is secured by tenfold cross-validation.
Table 1 lists the diagnostic variables employed and their
distribution in the training data. These data allow the reader
to rebuild our classifier completely. We split the numerical
variable patient age into three subgroups comparable to those

Ceaneen
ORI

Fig. 1 Representation of our naive Bayes classifier as a directed acyclic
graph. “Cancer” represents disease status, i.e. “malignant” or “benign”.
Note that the predictive variables BI-RADS descriptors and age depend
solely on the ground truth
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used in the literature [23]: <50 years, 50 — 64 years, and>
65 years. We included patient age as a predictive variable
since it is proven to be one of the major risk factors for breast
cancer [24]. To assess the influence of the final BI-RADS
assessment category, we build the classifier a) with age, BI-
RADS descriptors, and BI-RADS assessment categories (re-
ferred to as “inclusive model”’) and b) with age and BI-RADS
descriptors, but without BI-RADS assessment categories (re-
ferred to as “descriptor model”). We compare classification
performance of BI-RADS assessment categories alone (“clin-
ical performance”) with the inclusive model and descriptor
model. A classification aid would only be meaningful if the
performance of the tool is better than or equal to the clinical
performance.

Classifier validation

We apply the inclusive model and descriptor model to the
separated validation data (n=1177 lesions, thereof 175 malig-
nant). We compare validated ROC curves between the inclu-
sive and descriptor model, and compare both with the clinical
performance in the validation data.

Calibration of the classifier

Measurement of performance of classification algorithms
commonly focuses on discriminative performance (as sum-
marized by ROC curves). The naive Bayes classifier achieves
generally a high discriminative performance [15,25], but at the
same time is not well calibrated [26]. That is, the probabilities
are not accurate in estimating the actual risk of malignancy. To
overcome this problem we calibrate our classifier according to
the method proposed by Zadrozny and Elkan [27]:

During cross-validation, each lesion in the training data is
assigned a probability of malignancy. We sort the lesions
according to these probabilities, and then divide the lesions
into ten equally sized subsets (called bins). Each bin conse-
quently has a lower and upper probability threshold. For each
bin we calculate how many lesions actually are malignant;
bins that comprise low values of the calculated probability
have a low cancer yield, and bins that comprise higher prob-
abilities have a high cancer yield. The cancer yield in the
respective bin is considered the “true” classifier score. This
method reduces the degree of detail of the classifier, but also
decreases the variance of classifier scores [27]. When new
lesions are classified, they are sorted into the bins depending
on the probability of malignancy the classifier assigns them. A
well calibrated classifier, when applied to new data, will have
for each bin an equal predicted probability of malignancy and
actual probability of malignancy.

We then continue to analyze the cancer yield in the bins
created with our calibration step and define diagnostic groups
that allow risk stratification in a fashion analogously to the BI-
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Fig. 2 Results from tenfold cross
validation of the naive Bayes
classifiers in the training data (n=
1,276). a inclusive model, with
age, BI-RADS descriptors, and
BI-RADS assessment categories
as predictive variables b
descriptor model, with age and
BI-RADS descriptors as
predictive variables. Gray lines,
cross-validation runs; black lines,
overall performance. ROC curves
from a and b differ with P<0.001

sensitivity

0.2 0.4 0.6 0.8 1.0

0.0

inclusive model

AUC merged: 0.959
AUC maximum: 0.991
AUC minimum: 0.922

sensitivity

0.0

T T T T
0.2 0.4 0.6 0.8

1 - specificity

1
1.0

0.2 0.4 0.6 0.8 1.0

0.0

descriptor model

AUC merged: 0.910
AUC maximum: 0.947
AUC minimum: 0.857

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

1 - specificity

RADS assessment categories. In the BI-RADS lexicon, cate-
gory 2 denotes a definitely benign lesion (0 % risk for malig-
nancy), category 3 denotes a probably benign lesion (<2 %
risk of malignancy), category 4 denotes lesions with a risk of 2
- 95 %, category 5 denotes lesions with a risk >95 % of being
malignant. To address the central point of our paper, we
compare the performance of the validated descriptor model
based on these diagnostic groups with the clinical
performance.

Results
Classifier performance in the training data

The clinical performance (BI-RADS assessment categories
alone) in the training data yields an AUC of 0.909. The tenfold
cross-validated descriptor model yields an AUC of 0.910; the
tenfold cross-validated inclusive model yields an AUC of 0.959
(compare for Fig. 2). The descriptor model performs similar to
the clinical performance (P=0.953); the inclusive model per-
forms superior to the clinical performance (P<0.001) and the
descriptor model (P<0.001) (compare for Fig. 3).

Classifier performance in the validation data

The clinical performance in the validation data yields an AUC
of 0.880. The descriptor model yields an AUC of 0.876; the
inclusive model yields an AUC of 0.935 (compare for Fig. 4).
The descriptor model performs similar to the clinical perfor-
mance (P=0.799); the inclusive model performs superior to
the clinical performance (P<0.001) and the descriptor model
(P<0.001). The inclusive model performs marginally worse
when compared to the training scenario (P=0.04); the

descriptor model performs similar when compared to the
training scenario (P=0.07).

Calibration of the classifier

Table 2 gives the results for the calibrated inclusive model.
The cancer yield in the single bins for the validated inclusive
model is comparable to the cancer yield in the bins estimated
from the training data. Table 3 gives the results for the cali-
brated descriptor model. As expected, given the lower AUC
value of the model compared to the inclusive model, cancer

Model comparison in the training data (n=1276)
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Fig. 3 Comparison of ROC curves for models developed in the training
data (n=1,276). The inclusive model significantly outperforms the
descriptor model and the clinical performance (P<0.001 for both

comparisons). No difference is found between the descriptor model and
the clinical performance
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Model comparison in the validation data (n=1177)
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Fig. 4 Comparison of ROC curves for models applied to the validation
data (n=1,177). The inclusive model significantly outperforms the
descriptor model and the clinical performance (P<0.001 for both

comparisons). No difference is found between the descriptor model and
the clinical performance

yield in the bins 1 to 5 is higher than in the inclusive model.
For both models, Tables 2 and 3 show that higher bin rankings
correlate with higher cancer yield.

From the cancer yield in the bins (Tables 1 and 2, training
data column) we define diagnostic groups analogously to the
BI-RADS assessment categories. For the inclusive model,

Table 2 Inclusive model. Calibrated classifier performance in the
training data (tenfold cross-validated), the calculated probabilities are
sorted into ten equally sized bins. Additionally, the results from
applying the calibrated inclusive model to the validation data are given

Training data Validation data

Bin N N Cancer N N Cancer
benign malignant yield benign malignant yield

1 128 0 0 174 1 0.005714
2 128 0 0 152 0 0

3 128 0 0 115 2 0.017094
4 128 0 0 68 1 0.014493
5 128 0 0 89 0 0

6 126 2 0.015625 83 1 0.011905
7 123 5 0.039063 53 4 0.070175
8 119 9 0.070313 122 20 0.140845
9 104 24 0.1875 125 43 0.255952
10 26 98 0.790323 21 103 0.830645
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Table 3  Descriptor model. Calibrated classifier performance in the
training data (tenfold cross-validated), the calculated probabilities are
sorted into ten equally sized bins. Additionally, the results from
applying the calibrated descriptor model to the validation data are given

Training data Validation data

Bin N N Cancer N N Cancer
benign malignant yield benign malignant yield

1 128 0 0 80 2 0.02439
2 128 0 0 95 0 0

3 128 0 0 191 5 0.02551
4 124 4 0.03125 102 2 0.019231
5 128 0 0 137 6 0.041958
6 126 2 0.015625 101 7 0.064815
7 119 9 0.070313 82 12 0.12766
8 110 18 0.140625 79 26 0.247619
9 94 34 0265625 100 27 0.212598
10 53 71 0.572581 35 88 0.715447

bins 1 to 5 denote benign lesions (0 % risk of malignancy),
bin 6 denotes a probably benign lesions (<2 % risk of malig-
nancy), bins 7 to 9 denote lesions indicative for malignancy,
and bin 10 denotes lesions highly indicative for malignancy.
For the descriptor model, bins 1 to 3 denote benign lesions
(0 % risk of malignancy), bins 4 to 6 denote probably benign
lesions (<2 % risk of malignancy), bins 7 to 9 denote lesions
indicative for malignancy, and bin 10 denotes lesions highly
indicative for malignancy. Our classifier reports the diagnostic
group a described lesion is sorted into. Thus, a direct link
between combinations of BI-RADS descriptors and risk cat-
egories is established. Figure 5 gives the ROC curves for the
calibrated descriptor model with “bin” as predictive variable,
and secondly with the derived “diagnostic group” as predic-
tive variable. Both curves do not differ from the clinical
performance (P=0.444 and P=0.197, respectively).

The accessible classifier

We provide our classifier as a research tool at www.ebm-
radiology.com/nbmm/index.html. We require the user to
choose from the BI-RADS descriptors for shape, margin,
and density of the observed mass lesion as well as age. We
do not require the user to set a specific BILRADS assessment
category. If the “not sure” option is chosen here, the descriptor
model is employed as detailed above. The online classifier
reports the calculated posttest probability. More important,
however, the classifier automatically bins this calculated prob-
ability into one of the ten bins generated with our calibration
approach. Based on this result, the classifier sorts the posttest
probability into one of the derived diagnostic groups. The
classifier finally reports this diagnostic group.
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Applying the descriptor model to the validation data
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Fig. 5 Diagnostic performance of the descriptor model in the validation
data, a) when posttest probabilities are binned according to the results
from the training data, and b) when these bins are used to form diagnostic
groups comparable to the assessment categories used by the BI-RADS
lexicon. The two resulting classifiers do not differ significantly from the
clinical performance (BI-RADS assessment categories alone, P=0.444
and P=0.197, respectively). Our online classifier reports the diagnostic
group for a given descriptor combination

Discussion

The main result of our study is the establishment of a func-
tional linking of arbitrary combinations of BI-RADS descrip-
tors to a risk assessment category. We demonstrate that our
descriptor model achieves a similar diagnostic performance as
the clinical performance (BI-RADS assessment categories
alone). Second, our inclusive model demonstrates that the
clinical performance can be significantly enhanced when a
formal analysis of morphological BI-RADS descriptors and
patient age is taken into account for mammographic mass
lesions.

We consider our descriptor model to be a step towards a
more uniform interpretation of mammographic findings. Inter-
observer agreement about the assignment of a specific BI-
RADS assessment category tends to be low: kappa values (as
measure for agreement) between 0.28 and 0.37 have been
reported [2—4]. A more uniform interpretation of mammo-
graphic findings leads ultimately to a more uniform commu-
nication between radiologist and referring physicians, and
thus to a more uniform patient management. Second, the
superior performance of our inclusive model compared to
the clinical performance suggests that BI-RADS assessment
categories do at the moment not capture the full information
that can be derived from a mammogram. This point has been
made before [8], and it underlines the importance to become

more consistent in the interpretation of combinations of mor-
phological descriptors. The inclusive model is significantly
better in separating clearly benign findings from other find-
ings when compared to the descriptor model (compare for
Tables 2 and 3). We regard this as evidence that radiologists
evaluate additional diagnostic information different from pure
morphological BI-RADS descriptors and the risk factor pa-
tient age.

Computer assisted diagnostic (CADx) systems for mam-
mographic lesions have received substantial attention in the
past [28]. In an early work, Baker and colleagues employed
artificial neural networks to diagnose mammographic lesions
based on BI-RADS descriptors, their work resulted in an AUC
of 0.89 [7]. Fischer and colleagues reported an AUC for
Bayesian networks based on BI-RADS descriptors applied
to mammographic mass lesions of 0.88 [10]. Burnside and
colleagues reported an AUC of 0.96 for mammographic le-
sions with a Bayesian network taking into account BI-RADS
descriptors, assessment categories and various patient charac-
teristics [8]. Elter and colleagues proposed a case-based learn-
ing approach and a decision tree model, with corresponding
AUCs 0f 0.89 and 0.87, respectively [9]. Although all of these
approaches demonstrate good diagnostic performance in
terms of AUC, none of them has been implemented as an
interactive interface to allow its actual application (the deci-
sion tree proposed by Elter and colleagues [9] could be used as
an offline aid, though). Our classifier, with a validated AUC of
0.935 for the inclusive model and 0.876 for the descriptor
model, is in accordance with these past studies in terms of
classification performance.

However, deriving AUC values of predictive models is
only a first step towards the development of a working clas-
sification aid. First, it is impossible for the reader to infer from
a given AUC meaningful decision thresholds (or rules) at
which to call lesions malignant or benign, given a set of
predictive variables. Second, even if a classifier performs well
in terms of discrimination, it does not follow that it is well
calibrated [22,29]. In the case of mammographic lesions, a
well-calibrated classifier is clinically desired, since patient
management depends on the risk category the patient is placed
into after the test [1]. Contrary to past studies, we provide an
actually usable, calibrated decision aid as a tool for further
research.

A prerequisite for an actually usable decision aid is the
existence of a standardized terminology to describe findings.
The BI-RADS lexicon lends itself to such an analysis. Having
been established in 1992, it currently is in its 5th edition [1].
Through the years the lexicon has undergone a process of
refinement, with misleading terms being eliminated or re-
placed [30]. We collected our data when the fourth edition
of the BI-RADS lexicon was in place, thus the mass shape
“lobulated” is included in the classifier. We highlighted it as a
term from the 4th edition in the interface, since in 5th edition
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the term was eliminated to avoid confusion with the descriptor
“microlobulated margin” [1].

The problem with the usage of manually extracted features
in CADx approaches, even if the features are highly standard-
ized as in the case of the BI-RADS lexicon, is a potential inter-
observer variance of the evaluation. For mass lesion descrip-
tors, Baker and colleagues report substantial agreement be-
tween readers, with kappa values >0.6 [31], somewhat lower
values were reported by Berg and colleagues [2] and Lazarus
and colleagues [4]. Generally, agreement about the assign-
ment of mass lesion descriptors is higher than agreement
about the final BI-RADS assessment category [2—4]. Howev-
er, we cannot exclude bias introduced by inter-observer vari-
ance in feature assignment. To address this issue, future ex-
ternal validation of the classifier is required, as detailed in the
next paragraph.

External validation is the empirical evaluation of a predic-
tion model with data that was not used to generate the model
[22]. In our work, we use a temporal split to generate training
data and validation data, and thus provide a true external
validation with cases from the same practice [22]. However,
it does not plainly follow that our model is applicable to
different practices [22,32]. Differences in the patient popula-
tion considered may affect the diagnostic performance of the
classifier. This phenomenon is known as spectrum effect [32].
On the other hand, the above described inter-observer vari-
ance (possibly being practice dependant) may cause differ-
ences in classifier performance. We will expand our research
project into this direction and plan to investigate the perfor-
mance of our classifier among a variety of different practices,
featuring populations with different pretest probability.

A further limitation of the present study concerns the
lesions included in the analysis. Since we excluded a large
proportion of lesions that had missing values for mass lesion
descriptors, we cannot guarantee that the sample considered
was representative for our practice. Maybe fully described
lesions were especially easy to evaluate, or on the other hand,
especially hard to read and the radiologist spent more than the
usual amount of time contemplating the case. This possible
selection bias [33] is another reason to perform a future
external validation study to establish stability of our results.
The restriction to lesions with complete information for de-
scriptors, however, was not an arbitrary decision. The posttest
probability calculated by the naive Bayes classifier depends
on the number of features considered and their corresponding
predictive potential [15]. Since we are interested in the inter-
pretation of combinations of descriptors, we want the calcu-
lated posttest probabilities to be as comparable as possible.
E.g. the comparison of a mass lesion labelled “round” with a
mass lesion labelled “round, obscured, and isodense” is not
the focus of this study, but may be addressed in future re-
search. We did not employ the split of BI-RADS category 4
into categories 4A, 4B, and 4C [1]. This step could in principle
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result in a more differentiated ROC curve in future versions of
our decision support tool.

Our decision support tool focuses on mass lesion morphol-
ogy and patient age as predictive variables. Of course, other
factors like a family history of breast cancer [34] or breast
parenchyma density [35] affect the posttest probability for
breast cancer. The framework of the naive Bayes classifier
allows us (or other researchers) to incorporate these variables
in future work without having to alter our probabilities as
provided in Table 1, and thus the diagnostic accuracy of the
descriptors already used. Ultimately, the aim for a highly
standardized mammography interpretation aid should be an
augmented descriptor model that performs as good as the
inclusive model.

In conclusion, in our work we present a probabilistic clas-
sifier to link combinations of BI-RADS descriptors and pa-
tient age to risk categories analogously to those used by the
BI-RADS lexicon. Our classifier performs well when validat-
ed with an external dataset from the same practice, and shows
a similar diagnostic performance when compared to the clin-
ical performance (BI-RADS assessment categories alone). We
consider this as a step towards a more uniform interpretation
of combinations of BI-RADS descriptors for mammographic
mass lesions, and thus as a step towards a more uniform
patient management. We furthermore demonstrate that a for-
mal analysis of descriptors and patient age may significantly
enhance diagnostic performance of the BI-RADS assessment
categories. Our classifier is at a research stage; the logical next
step is the conduction of an external validation study to
establish stability of the classification algorithm, taking into
consideration multiple datasets from a range of different prac-
tices [22]. We provide our classifier online at http://www.ebm-
radiology.com/nbmm/index.html, and the scientific and
clinical communities are invited to test it on their own
databases.
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