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Abstract
Objective To investigate posterior visual pathway damage
in multiple sclerosis using ultrahigh-field magnetic reso-
nance imaging (MRI) at 7 Tesla (7 T), and to determine
its correlation with visual disability and retinal fibre layer
(RNFL) damage detectable by optic coherence tomogra-
phy (OCT).
Methods We studied 7 T MRI, OCT, functional acuity con-
trast testing (FACT), and visually evoked potentials (VEP, n=
16) in 30 patients (including 26 relapsing-remitting MS and
four clinically isolated syndrome patients) and 12 healthy
controls to quantify RNFL thickness, optic radiation lesion
volume, and optic radiation thickness.

Results Optic radiation lesion volume was associated with
thinning of the optic radiation (p<0.001), delayed VEP (p=
0.031), and visual disability indicated by FACT (p=0.020).
Furthermore, we observed an inverse correlation between
optic radiation lesion volume and RNFL thickness
(p<0.001), including patients without previous optic neuritis
(p<0.001).
Conclusions Anterior visual pathway damage, but also
(subclinical) optic radiation integrity loss detectable by 7 T
MRI are common findings in MS that are mutually affected.
Given the association between optic radiation damage, visual
impairment, and increased VEP latency in this exploratory
study of a limited sample size, clinicians should be aware of

Jan Dörr and Jens Wuerfel are equally contributing senior authors

Electronic supplementary material The online version of this article
(doi:10.1007/s00330-014-3358-8) contains supplementary material,
which is available to authorized users.

T. Sinnecker : T. Oberwahrenbrock :H. Zimmermann :
C. F. Pfueller :C. Ramien : F. Paul (*) :A. U. Brandt : J. Dörr :
J. Wuerfel
NeuroCure Clinical Research Center, Charité - Universitaetsmedizin
Berlin, Charitéplatz 1, 10117 Berlin, Germany
e-mail: Friedemann.Paul@charite.de

T. Sinnecker
Department of Neurology, Asklepios Fachklinikum Teupitz, Teupitz,
Germany

I. Metz :W. Brück
Institute of Neuropathology, University Medicine Goettingen,
Goettingen, Germany

C. F. Pfueller : L. Harms :K. Ruprecht : F. Paul : J. Dörr
Clinical and Experimental Multiple Sclerosis Research Center,
Charité - Universitaetsmedizin Berlin, Berlin, Germany

L. Harms :K. Ruprecht :K. Hahn : F. Paul
Department of Neurology, Charité - Universitaetsmedizin Berlin,
Berlin, Germany

T. Niendorf : J. Wuerfel
Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrueck Center for
Molecular Medicine, Berlin, Germany

T. Niendorf : F. Paul
Experimental and Clinical Research Center, Charité –
Universitaetsmedizin Berlin and Max Delbrueck Center for
Molecular Medicine, Berlin, Germany

J. Wuerfel
Institute of Neuroradiology, University Medicine Goettingen,
Goettingen, Germany

Eur Radiol (2015) 25:122–131
DOI 10.1007/s00330-014-3358-8

http://dx.doi.org/10.1007/s00330-014-3358-8


acute lesions within the optic radiation in patients with
(bilateral) visual disturbances.
Key Points
• Focal destruction of the optic radiation is detectable by 7 T
MRI.

• Focal optic radiation damage is common in MS.
• Optic radiation damage is associated with RNFL thinning,
detectable by OCT.

•Optic radiation damage is associated with delayed VEP and
visual dysfunction.

• RNFL thickness in non-optic neuritis eyes correlates with
optic radiation demyelination.

Keywords Multiple sclerosis .Magnetic resonance imaging .

Retinal nerve fibre layer . Optic radiation . Trans-synaptic
degeneration

Introduction

Multiple sclerosis (MS) is considered an inflammatory demy-
elinating and neurodegenerative central nervous system dis-
order. The underlying pathophysiology of axonal loss [1–3],
however, has remained unclear, impeding the development of
neuroprotective drugs.

The visual system is highly susceptible to MS related
damage. Visual disturbances are frequent and cause serious
disability, but imaging of the visual pathway posterior to the
optic chiasm – comprising the optic radiation (OR) – has
remained challenging due to technical limitations. The OR
as part of the posterior visual pathway transmits information
from the ipsilateral temporal and contralateral nasal hemi-
retinae, projecting from interneurons of the lateral geniculate
nucleus (LGN) to the striate cortex. The LGN, in turn, directly
receives axons from retinal ganglion cells. These large and
highly myelinated axons pass through the periventricular
white matter [4, 5], being susceptible to focal inflammatory
damage in MS.

Diffusion tensor imaging (DTI) recently enabled the exam-
ination of OR integrity loss, but could not visualise focal
demyelination. Today, owing to increased susceptibility ef-
fects and a very high signal-to-noise ratio, high resolution
magnetic resonance imaging (MRI) at 7 Tesla (7 T) [6, 7]
picks up alterations of MS brain parenchyma with great ana-
tomical details, and hence facilitates the distinction between
MS and non-MS lesions, e.g. of vascular origin [8–10], le-
sions in patients with Susac syndrome [11, 12], or neuromy-
elitis optica [13]. Moreover, 7 T MRI delineates the OR
against surrounding white matter with great distinction. The
anatomical details revealed by T2* weighted (T2*w) fast low
angle shot (FLASH) provides an opportunity not only to
visualise, but also to quantify focal damage causing OR
integrity loss.

In addition, retinal nerve fibre layer (RNFL) thinning de-
tectable by optical coherence tomography (OCT) [14–16],
delayed visually evoked potentials (VEP) [17], and visual
dysfunction [16, 18] also in MS patients without a history of
ON may indicate subclinical damage to the visual system.

Realising the excellent visibility of the OR in
7 T T2*w MRI, we aimed to quantify (subclinical) focal
damage and atrophy of the optic radiation in MS. Fur-
thermore, we investigated whether focal damage of the
OR is related to delayed VEP, impaired visual function,
OR thickness, and RNFL thinning in eyes with and with-
out history of ON.

Materials and methods

Study participants

Patients with relapsing-remitting (RR) MS according to the
2010 panel criteria [1], or with clinically isolated syndrome
(CIS) without history of ON were consecutively and prospec-
tively enrolled between March 2010 and December 2012 at
the Clinical and Experimental MS Research Center at the
Charité-Universitaetsmedizin Berlin, Germany. Inclusion
criteria were 1) RRMS disease course or patients with CIS
who were aged 18 to 80 years and 2) informed written con-
sent. Exclusion criteria were any contraindication for
ultrahigh-field MRI at 7 T (e.g. pacemaker, claustrophobia
or pregnancy). Patients underwent 7 T MRI at the Berlin
Ultrahigh Field Facility (B.U.F.F.). In addition, OCT, func-
tional acuity contrast testing (FACT), and VEP were per-
formed during the routine workup at the NeuroCure Clinical
Research Center (NCRC) by investigators that were not in-
volved in MR imaging. VEP, OCT, and FACT investigators
were not blinded with respect to clinical data. OCTand FACT
were usually performed on the same day or within two days.
Patients showing an interval betweenMRI and OCTmeasure-
ments of more than 200 days were excluded after initial
inclusion, and VEP measurements with an interval between
MRI and VEP of more than 6 months were not further
analysed. A flow chart is presented in Fig. 1. RRMS patients
with time since first symptoms of up to 3 years were defined
as “early MS”. Neurological disability was rated by the Ex-
panded Disability Status Scale (EDSS) [19], and history of
ON was determined clinically by patient history and medical
records. Healthy controls comparable to our patient cohort
with regard to sex and age served as controls to investigate
potential age and sex effects, and underwent 7 T MRI, OCT,
and FACT. The study was approved by the local ethics com-
mittee and was conducted in accordance to the Declaration of
Helsinki in its currently applicable version. All participants
gave informed written consent.
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MRI data acquisition

Ultrahigh-field MR images were acquired on a 7 T whole
body MR system (Magnetom, Siemens, Erlangen, Germany),
using a 24-channel RF coil equipped with one transmit chan-
nel (Nova Medical, Wilmington, MA, USA). The imaging
protocol included axial T2*w FLASH (TE=25 ms, TR=
1,820 ms, acquisition time 12:11 min, in plane spatial resolu-
tion=0.5×0.5 mm2, slice thickness=2 mm), and fluid attenu-
ated inversion recovery imaging (FLAIR; TE=90 ms, TR=
16,000 ms, TI=2,925.5 ms, acquisition time=12:50 min, in
plane spatial resolution=1.0×1.0 mm2, slice thickness=
3 mm).

Algorithms quantifying optic radiation damage

The lesion fraction affecting the OR on consecutively
pseudonymised T2*w images was manually delineated by a
trained observer unaware of paraclinical (VEP, OCT, FACT)
data, and was confirmed by a clinical neuroradiologist with
more than 10 years’ experience in clinical and scientific MS
imaging, who was not aware of paraclinical (VEP, OCT,
FACT) and clinical data (disease duration, EDSS) (Fig. 2a–
d). For obvious reasons, blinding the MRI reader to MS
diagnosis was not possible. The optic radiation lesion volume
was calculated using the OsiriX software package (OsiriX
Foundation, Geneva, Switzerland, version 3.8.1). The T2*w
optic radiation thickness of each hemisphere was quantified in
separate analyses (Fig. 2e): for each subject, seven continuous
axial slices characterised by a high inter-individual compara-
bility were selected: (i) one slice tangential to the inferior
splenium of the corpus callosum and superior of the vein of
Galen, (ii) three slices in parallel inferior to the first slice, and
(iii) three slices in parallel superior to the first slice. A straight
line was plotted orthogonal to the interhemispheric fissure and
in parallel to the posterior part of the splenium. This line was
propagated to the inferior slices. The observer then measured

the OR thickness twice in an anterior and posterior position
(Fig. 2e). Finally, the mean OR thickness for each slice and
hemisphere was calculated.

Image analyses

T2 lesion count was determined by counting all T2*w hyper-
intense brain lesions with a volume of at least three voxel at
T2*w FLASH, showing a corresponding signal
hyperintensity on FLAIR. Virchow-Robin spaces were ex-
cluded by their tubular appearance and FLAIR hypointensity.
Lesions were masked manually using OsiriX integrated ROI
functions. Third ventricle width and bicaudate ratio were
assessed as described previously [20, 21], calculated as a
mean value derived from three measurements. Two healthy
controls were excluded for technical reasons (missing/modi-
fiedMR sequence affectingmeasures of third ventricle width).
Automated procedures for brain volume quantification, as
routinely used in conventional field strengths, suffered mainly
from the magnetic field heterogeneities and thus could not be
reliably applied.

MR images of nine MS patients were analysed by a second
blinded observer (CR) to estimate inter-rater reliability as a
two-way mixed average measure intra-class correlation coef-
ficient (ICC), using the consistency model. We achieved a
high inter-rater reliability for OR thickness (ICC=0.972), OR
volume (ICC=0.882), third ventricle width (ICC=0.976) and
bicaudate ratio (ICC=0.938).

Optical coherence tomography

OCT was performed on non-dilated eyes using a spectral-
domain (SD)-OCT device (Heidelberg Spectralis® SD-OCT,
Heidelberg Engineering, Heidelberg, Germany). All partici-
pants were examined with the peripapillary ring scan, mea-
suring the RNFL thickness encircling the optic nerve head in a
diameter of approximately 3.4 mm, forming a composition of

Fig. 1 Flow chart
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1536 A-scans. All scans were reviewed for correct centring
and image quality according to the OSCAR-IB guidelines
without knowing 7 T MRI data [22].

Visual perception and VEP

FACT was acquired by trained investigators using the Optec
6500 P system (Stereo Optical, Chicago, IL, USA) with the
best correction under photopic conditions (‘daylight’ with
target luminance value of 85 cd/m2) not knowing 7 T MRI
data, as previously described [23]. VEP measures were re-
corded from the Oz electrode against a Cz reference electrode
following standard checkerboard stimulation. Between 40 and
80 recordings were averaged twice and P100 peak latency was
measured.

Statistical analyses

The nasal, superior-temporal and inferior-temporal RNFL-
sectors reflect visual information from both hemi-retinae
[24]. Therefore, we calculated mean values from both eyes
and brain hemispheres.

Group differences were assessed using Mann-Whitney
U test (MWU) for age, bicaudate ratio, third ventricle
width, RNFL, OR thickness, and Pearson’s Chi squared
test (alpha=0.05) for gender. A potential gender-related
effect on OR thickness was analysed using MWU. Associa-
tions between the variables examined were investigated using
Spearman’s correlation and ranked partial correlation.

All analyses were performed in SPSS (version 20, IBM,
Somers, NY, USA). P-values <0.05 were considered signifi-
cant. All tests should be understood as exploratory data anal-
yses, as no previous power calculation and adjustments for
multiple testing were made.

Results

We prospectively enrolled 30 patients and 12 healthy controls.
The patient cohort included 26 RRMS patients, including nine
patients with early MS and four patients with CIS. The demo-
graphic details are summarised in Table 1. FACTwas analysed
in 29 patients and 11 healthy controls (median time interval

Fig. 2 Focal optic radiation damage. Lesions in MS patients (white
arrow) commonly affected the optic radiation as shown here in two
exemplary patients (a–d); healthy controls (e) did not present with any
OR pathology. The quantified part of the white matter lesion covering the

optic radiation was marked in blue for better visualisation (b, d). In
addition, optic radiation thickness was measured in four positions in each
of seven consecutive slices (e). Sequence parameters: 7 T T2*w FLASH,
TE=25 ms, TR=1,820 ms, spatial resolution=(0.5×0.5) mm2
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between MRI and OCT/FACT 2.6 months, range 0 – 6.4).
VEP was performed in 16 patients (median time interval
between MRI and VEP 3.2 months, range 0 – 5.2). Group
differences for patients/healthy controls as well as ON sub-
groups are presented in Table 2. In total, we detected 898
white matter lesions in patients with RRMS and CIS on T2*w
FLASH images (mean ± SD 30±33, range 1 – 116). Sixteen
white matter lesions visible in three healthy controls did not
exhibit unusual characteristics. It is noteworthy that all anal-
yses mentioned below should be understood as exploratory in
nature.

Evaluation of the optic radiation

T2*w imaging at 7 T visualised the OR with great anatomical
detail. Hence, all further analyses were made on 7 T T2*w
MR images: the mean OR thickness was 3.9 mm in healthy
controls (Fig. 2e), and significantly lower in patients (2.9 mm,
p<0.001). No gender differences in OR thickness were ob-
served in healthy controls (p=0.49) or patients (p=0.82), nor
did OR thickness decrease with age in healthy controls (p=
0.27) or patients (p=0.22). Likewise, no association between
RNFL and OR thickness was found in healthy controls.

Evaluation of optic radiation damage in MS

We found 120 OR lesions (mean OR lesion volume ± SD 142
±201, range 0 – 632 mm3) in 24/30 patients that were often
characterised by a central vein considered typical of MS
(Fig. 2a–d) [7, 13, 25]. Involvement of the OR was already
detectable in 10 of 13 CIS and early MS patients (mean OR
lesion volume ± SD 106±184, range 0 – 531 mm3).

Quantification of T2*w OR lesion volumes (Table 2) con-
firmed an inverse association between OR lesion volume and
thickness (supplemental Fig. 1; Spearman’s-Rho -0.614,
p<0.001). This correlation between OR atrophy and OR

lesion volumes remained significant after correcting for i)
brain atrophy reflected by two methods, bicaudate ratio (p=
0.001) and third ventricle width (p=0.001), and ii) for global
T2w lesion count (p=0.013).

Association between optic radiation damage, OCT, and VEP
in MS

We observed an inverse relationship between OR lesion vol-
ume and RNFL thickness (Spearman’s-Rho -0.640, p<0.001,
Figs. 3, 4a). Decreased RNFL thickness was also associated
with increased bicaudate ratio asmeasure of brain atrophy (p=
0.045), and higher T2 lesion count (p=0.017). The observed
association of RNFL thickness reduction with increasing OR
lesion volume remained significant after correcting for brain
atrophy determined by both third ventricle width (p<0.001) or
bicaudate ratio (p<0.001), and T2 lesion count (p=0.002).
Likewise, we observed a significant correlation between OR
thickness reduction and RNFL thinning (Spearman’s-Rho
0.499, p=0.005, adjusted for bicaudate ratio p=0.018, adjust-
ed for third ventricle width p=0.013, Fig. 4b). Furthermore,
VEP latency was prolonged with increasing OR lesion vol-
umes (Spearman’s-Rho 0.606, p=0.013).

Optic radiation damage is associated with visual dysfunction
in MS

When further exploring visual dysfunction in MS patients by
automated testing of high and low contrast acuity (Table 2),
we observed an association of high OR lesion volume with
poor low contrast sensitivity under photopic conditions
(Spearman’s-Rho -0.429, p=0.020). However, the relation-
ship between FACT and OR lesion volume is not necessarily
an independent phenomenon. It might well be explained by
RNFL thinning, that was also associated with poor low con-
trast sensitivity (p=0.004). Consequently, statistical analysis

Table 1 Cohort description

Key: ON, patients with a history
of acute optic neuritis; nON, pa-
tients without any history of acute
optic neuritis; EDSS, Expanded
Disability Status Scale; MWU,
Mann-Whitney U test; Chi2,
Pearson’s Chi squared test; n/a,
not applicable; SD, standard de-
viation. p-values describe differ-
ences to healthy controls

Healthy controls Patients ON nON

n 12 30 11 19

Sex female [n]

Chi2
6 12

p=0.55

4

p=0.51

8

p=0.67

Age (years) mean ± SD

range

MWU

34±11

20-54

35±8

19-49

p=0.54

38±6

29-46

p=0.29

34±9

19-49

p=0.86

Time since MS diagnosis (years) mean ± SD

range

n/a 4.6±4.5

0.2-14.7

5.6±5.4

0.2-14.7

3.8±3.8

0.2-11.3

Time since first symptoms (years) mean ± SD

range

n/a 6.4±6.5

0.1-27.7

9.1±7.9

0.2-27.7

4.8±5.1

0.1-14.1

EDSS Median, range n/a 1.5

0-4.5

1.5

1-4.5

1.5

0-4.5
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revealed no significant association between OR lesion volume
and FACT when factoring RNFL thickness in the statistical
model (p=0.407).

Optic radiation and retinal damage in patients without history
of optic neuritis

OR damage was detectable in 14 of 19 patients without
previous history of ON (nON, Table 2). Surprisingly, those
patients also showed pronounced OR thinning (mean OR
thickness 3.0 mm) in comparison to healthy controls (mean
OR thickness 3.9 mm, p=0.001, Table 2). Likewise, OR
lesion volume in nON was correlated inversely with thinning
of both, the RNFL (p<0.001) and the OR (p=0.035). This
relationship was still significant when correcting for T2 lesion
count (p<0.001), brain atrophy determined by bicaudate ratio
(p=0.001), and third ventricle width (p=0.003). Accordingly,
we observed a dependency between higher measures of
OR lesion volume and impaired visual function (FACT
p=0.009) as well as delayed VEP (p=0.024) in nON.

Optic radiation and retinal damage in patients with history
of optic neuritis

History of simultaneous or sequential bilateral (n=7) and
unilateral (n=4) ON was recorded in 11 MS patients. As
expected, we did not observe any correlations between OR
lesion volume and FACT, VEP, and RNFL measures in MS
patients with a history of ON since ON itself may cause severe
visual dysfunction and RNFL thinning.

Discussion

Ultrahigh-field MRI offers a distinct visualisation of the OR.
Using dedicated morphological imaging of brain (7 T MRI)
and retinae (OCT), as well as functional measures (FACT,
VEP), we here investigated damage to the visual pathway in
MS patients in comparison to healthy controls. We demon-
strate that i) focal OR damage is present in earliest disease
stages and in the majority of MS patients, and ii) the extent of

Table 2 Group differences

Healthy controls All patients ON nON

n 12 30 11 19

T2 lesion count mean ± SD
range [n]

1±4
0-13

30±33
1-116 p<0.001

42±37
6-116 p<0.001

23±28
1-96 p<0.001

Bicaudate ratio mean ± SD
range [mm]
MWU

10.8±1.7
8.6-14.3

8.6±1.9
5.5-14.5
p=0.001

8.1±2.1
5.5-11.2
p=0.016

8.8±1.7
7.0-14.5
p=0.002

Third ventricle width mean ± SD
range [mm]
MWU

2.3±1.1
0.8-4.8

3.7±1.4
1.8-7.8
p=0.001

4.4±1.6
2.6-7.8
p=0.001

3.3±1.2
1.8-5.6
p=0.012

RNFL mean ± SD
range [um]
MWU

98±9
83-119

87±15
59-116
p=0.022

84±19
59-116
p=0.059

89±13
60-109
p=0.039

VA mean ± SD
range

1.3±0.3
0.8-1.6

1.1±0.3
0.4-1.6
p=0.052

1.1±0.2
0.8-1.6
p=0.104

1.1±0.3
0.4-1.6
p=0.087

FACT 85 cd/m2 mean ± SD
range

2.0±0.1
1.8-2.2

1.8±0.3
1.0-2.3 p=0.041

1.8±0.2
1.5-2.3 p=0.005

1.9±0.3
1.0-2.3
p=0.256

VEP latency n
mean ± SD
range [ms]

n.d. 16
108±9
93-123

4
114±7
107-122

12
106±9
93-123

OR lesion volume mean ± SD
range [mm3]

0 142±201
0-632

226±241
0-632

93±161
0-490

OR thickness mean ± SD
range [mm]
MWU

3.9±0.6
3.0-4.9

2.9±1.0
0.6-4.7
p<0.001

2.7±1.2
0.6-4.3
p=0.011

3.0±0.8
1.4-4.7
p=0.001

Key: ON, patients with a history of optic neuritis; nON, patients without any history of acute optic neuritis; RNFL, retinal nerve fibre layer; MWU,
Mann-Whitney U test to assess differences between patient subgroups and healthy controls; VA, visual acuity; FACT, functional acuity contrast testing;
VEP, visual evoked potentials; OR, optic radiation; SD, standard deviation. Because of technical limitations, we excluded unilateral visual acuity in one
patient and unilateral FACT in one control. N.d., not determined. P-values describe differences to healthy controls. P values <0.05 are considered
significant and thus shown in bold
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focal damage to the posterior visual pathway is associated
with thinning of the OR and retinal axonal degeneration.

A histological analysis of a post mortem specimen con-
firmed that the identified T2*w-hypointense periventricular
structures indeed reflect the OR; however, in alignment with
other reports [4, 26], these were negative in Prussian blue
staining for iron (data not presented), a more common cause
of T2*w signal extinction. Thus, the signal extinction of the
OR observed at 7 T T2*w sequences may rather reflect
anisotropic phase phenomena [27] caused by tightly packed,
highly aligned axons with compact myelin. This phase

phenomenon caused by high anisotropy may induce signal
loss on T2*w imaging. 7 T gains from substantially increased
susceptibility effects in comparison to lower field strengths [4,
5]. Consequently, 7 T T2* offers the unique potential to reveal
very small focal lesions affecting the OR in a high in-plane
spatial resolution.

A plausible explanation for the observed relationship be-
tween region-specific atrophy of the OR and occurrence of
lesions within the OR is focal axonal trans-section within MS
plaques, as reported by MRI and histological studies to occur
in both, active and chronic MS lesions [6, 28].

Fig. 3 Combined retinal and optic radiation damage in one exemplary
MS patient. T2*w imaging visualises MS lesions of the atrophic right OR
(arrowheads). The contralateral OR exhibits only minor abnormalities on
7 T T2*w images. OCT revealed corresponding RNFL thinning (arrows)
of the ipsilateral temporal and contralateral nasal hemi-retinae. The nasal
hemi-retina of the right eye and the temporal hemi-retina of the left eye
present RNFL-thinning to a much lesser extent. One more speculative
explanation for corresponding RNFL thinning is trans-synaptic

degeneration remote from the damaged right OR. Following this assump-
tion, bilateral optic neuritis was presumably misdiagnosed in this patient
with bilateral visual disturbances and bilateral increased VEP latencies.
However, we cannot exclude the possibility of independent phenomena
simultaneously affecting the anterior and posterior visual pathway. Se-
quence parameters: 7 T T2*w FLASH, TE=25 ms, TR=1,820 ms,
spatial resolution=(0.5×0.5) mm2
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Although the cross-sectional design of this study may not
answer questions about the causality, we hypothesise that our
findings on retinal and OR degeneration result from subclin-
ical and potentially independent damage of both, the anterior
and the posterior visual pathway. In fact, primary retinal
pathology in a small proportion of MS patients was recently
discussed [29, 30]. Therefore, one could assume that the
relationship between retinal and optic radiation damage results
from a common underlying disease process causing axonal
damage.

A more speculative explanation is trans-synaptic retrograde
degeneration, a phenomenon controversially discussed for
decades [31–40], induced by optic radiation damage causing
retinal thinning detectable by OCT. In our study, the associa-
tion between focal tissue destruction in the OR and thinning of
the RNFL remained significant even when considering exclu-
sively patients without a history of ON, indicating that retinal
axonal degeneration inMS occurs partially independent of ON
- a notion also supported by previous OCTstudies [14–16, 41].
The fact that no association between OR damage and RNFL
thinning was detectable in MS patients with ON supports this
assumption as the latter itself may cause substantial RNFL
destruction [42]. Furthermore, OR and retinal damage in our
study kept their significant association when factoring global
brain atrophy and total T2*w lesion load in the statistical
models. Hence, clinical and subclinical damage to the anterior
and posterior visual pathways appear linked to each other and
contribute to the correlation between brain atrophy and retinal
degeneration in MS [43, 44]. However, trans-synaptic degen-
eration in MS remains controversially discussed.

In addition, our data suggest that both retinal and OR
damage can cause visual impairment which is in alignment

with previous data demonstrating a correlation of T2*w lesion
load [18] or DTI measures such as fractional anisotropy [45,
46] with visual dysfunction.

Future longitudinal studies are warranted to prove the
causal relationship between OR damage and visual disability,
since in our study the latter was statistically also explicable by
RNFL thinning. Given the high number of OR lesions and the
association between focal OR damage, visual disability, and
delayed VEP in our study, it is nevertheless conceivable that
an acute MS plaque within the OR affects visual function or
VEP latency. Thus, a proven relationship between visual
impairment and optic radiation integrity loss may directly
impact clinical decisions.

Some limitations of our exploratory study of a limited
sample size with multiple comparisons need to be addressed:
Non-uniformities of the magnetic field at 7 T prevented us
from performing automated computational white and grey
matter volume measurements, nevertheless the reliability of
the applied brain atrophy methodology was demonstrated
before [20, 21]. We cannot exclude subclinical optic nerve
damage, and the inferior part of the Meyer loop was not
always visualised due to technical limitations. Furthermore,
OR quantification may be influenced by MS lesions.

In summary, our study revealed a high prevalence of focal
OR damage in MS from the earliest clinical stages correlating
with visual dysfunction, VEP latency and retinal axonal dam-
age. Hence, acute lesions affecting the optic radiation should
be considered when diagnosing patients suffering from bilat-
eral visual disturbances.
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