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Abstract
Objectives In the face of multiple available diagnostic
criteria in MR-mammography (MRM), a practical algorithm
for lesion classification is needed. Such an algorithm should
be as simple as possible and include only important inde-
pendent lesion features to differentiate benign from malig-
nant lesions. This investigation aimed to develop a simple
classification tree for differential diagnosis in MRM.
Methods A total of 1,084 lesions in standardised MRM with
subsequent histological verification (648 malignant, 436
benign) were investigated. Seventeen lesion criteria were
assessed by 2 readers in consensus. Classification analysis
was performed using the chi-squared automatic interaction
detection (CHAID) method. Results include the probability
for malignancy for every descriptor combination in the
classification tree.
Results A classification tree incorporating 5 lesion descrip-
tors with a depth of 3 ramifications (1, root sign; 2, delayed
enhancement pattern; 3, border, internal enhancement and
oedema) was calculated. Of all 1,084 lesions, 262 (40.4 %)
and 106 (24.3 %) could be classified as malignant and
benign with an accuracy above 95 %, respectively. Overall
diagnostic accuracy was 88.4 %.

Conclusions The classification algorithm reduced the number
of categorical descriptors from 17 to 5 (29.4 %), resulting in a
high classification accuracy. More than one third of all lesions
could be classified with accuracy above 95 %.
Key Points
• A practical algorithm has been developed to classify
lesions found in MR-mammography.

• A simple decision tree consisting of five criteria reaches
high accuracy of 88.4%.

• Unique to this approach, each classification is associated
with a diagnostic certainty.

• Diagnostic certainty of greater than 95% is achieved in
34% of all cases.

Keywords Sensitivity and specificity .MR-mammography .
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Introduction

Contrast-enhanced magnetic resonance imaging of the
breast (MR-mammography, MRM) in comparison with
mammography and ultrasound has high sensitivity for de-
tection of breast cancer [1].

Malignant tumours show the phenomenon of neoan
giogenesis, causing increased vasculature with pathologi-
cal vessel architecture. Consequently, tumours strongly
enhance after intravenous injection of contrast medium,
reflecting pharmacokinetic properties of the tissue of in-
terest. Absence of enhancement in malignant tumours is
extremely rare resulting in a very high negative predictive
value of MRM [2].

On the other hand, a variety of benign and malignant
changes cause enhancement. Considering every enhancement
as suspicious results in unnecessary biopsies; however, the
number of such biopsies can be reduced by application of
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simple diagnostic criteria [3]. Traditionally, dynamic enhance-
ment patterns describing signal intensity changes over time
have been used as diagnostic criteria [4, 5]. Malignant and
benign hypervascularised lesions can thus be differentiated.

The known overlap between dynamic enhancement pat-
terns between these lesion types makes the use of additional
criteria mandatory. These have been mainly morphologic
features, of which a multitude have been described. How-
ever, an increased number of diagnostic criteria does not
always imply an increased diagnostic accuracy as different
features may convey the same information. This has been
shown for the features of the Breast Imaging Reporting And
Data System (BI-RADS, [6]). Integration of morphologic
and dynamic information into a diagnosis is a complex and
experience-dependent task.

Therefore, objective classification schemes integrating
morphological criteria are helpful in providing guidance
for lesion differentiation. Several such schemes have been
proposed [2, 7–12]. Limitations present in these studies
were a lack of case numbers, lack of statistical validation,
lack of feature selection, lack of colinearity consideration
and, last but not least, lack of simplicity.

In clinical practice, an intuitive, transparent and simple
classification algorithm is needed. Furthermore, a general
estimation of diagnostic accuracy is impracticable; the read-
er and the referring clinician want to know what the specific
combination of diagnostic criteria in a certain patient means.
Integration of further information (i.e. high-risk or non-high
risk patient, accidental finding or correlation with suspected
pathology) can thus lead to individualised and flexible
evidence-based diagnosis.

Classification trees are a suitable method for this purpose.
A study population is homogenised by splitting using a
hierarchical statistical selection of best diagnostic criteria
[13]. This implies a selection of the most powerful diagnos-
tic criteria, omitting criteria providing redundant informa-
tion to those selected. The result is an intuitive classification
tree where each possible combination of diagnostic criteria
is associated with a specific predictive value or likelihood
ratio. As a consequence, the reader knows to what degree
his specific diagnosis is certain or not. The aim of this study
was to provide such a simple and robust classification tree
based on a representative large and coherent database.

Materials and methods

Patients and lesions

Consecutive patients examined with MRM at the University
Hospital of Jena, Germany, over a time period of 12 years
were eligible for this ethical review board-approved cross-
sectional investigation. All patients provided written informed

consent. MRI was performed because of unclear findings
upon conventional imaging (BI-RADS 0, 3) or suspicious
conventional findings (BI-RADS 4 and 5) or preoperative
staging of biopsy-proven breast cancer (BI-RADS 6).

Inclusion criteria for the prospectively populated da-
tabase used in this study were histopathology either by
core biopsy or open surgery as reference standard after
MRM. All histopathology workup was performed by
board-certified breast pathologists of our university hos-
pital’s department of pathology in accordance with na-
tional S3 guidelines. Examinations after biopsy, surgery,
chemotherapy or radiation therapy up to 1 year prior to
MRI including BI-RADS 6 cases were excluded. Re-
sults from the same patient collective have been pub-
lished in other contexts [14–23].

Imaging technique

All MRM examinations were performed in prone position
using a field strength of 1.5 T and a dedicated double breast
coil. The examination protocol included axial dynamic 2D
gradient echo images with a temporal resolution of 1 min
performed before and seven times after bolus injection of
0.2 mL Gd-DTPA (Magnevist, Bayer Healthcare, Leverku-
sen, Germany)/kg body weight at a flow rate of 3 mL/s,
immediately followed by a 20-mL flush of saline solution.
The injection procedure was carried out by a power injector.
Subtraction of post-contrast from pre-contrast images was
performed for fat saturation. Each examination was com-
pleted by a T2w TSE sequence. As a result of the timescale
of this study, different MRI scanners were used. An MRI
expert (W.A.K.) carefully supervised the examination pro-
tocol adjustment in order to yield consistent image contrast
on different MR systems. Detailed protocols have been
published previously (e.g. [14]).

Data analysis

Examinations were analysed by a consensus reading of two
out of a pool of six radiologists blinded to histopathological
results. Each radiologist had experience of more than
500 MRMs and all were trained by the same expert in
MRM (W.A.K.).

Lesion size was assessed by means of electronic calipers
and categorised into smaller than 0.5 cm, 0.5–1 cm, 1.1–2 cm,
2.1–3 cm, 3.1–5 cm, larger than 5 cm. Then, 16 further
predefined categorical diagnostic criteria were assessed: initial
enhancement (intermediate, strong), delayed enhancement
curve type (persistent, plateau, washout), internal enhance-
ment pattern (homogeneous, heterogeneous, centrifugal,
centripetal/rim), blooming sign (present, absent), lesion shape
(round, lobulated, irregular), signal intensity on pre-contrast
non-fat-saturated T1w and T2w images (hyperintense,
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isointense, hypointense, respectively), lesion margins
(smooth, irregular), skin thickening (present, absent),
nonenhanced internal structure (homogeneous, heteroge-
neous), destruction of nipple line (present, absent), vessels
(absent, adjacent, prominent), internal septations (present,
absent), hook sign (present, absent), root sign (present, ab-
sent), oedema (perifocal, diffuse ipsilateral, bilateral, absent)
and lesion size. All have been published previously and de-
scribed in detail [7, 14].

This categorical multivariate input data (17 variables) was
used to construct a classification tree using Pearson chi-
squared interaction detection (CHAID) methodology. The
target variable was histopathology dichotomised into “be-
nign” versus “malignant”. Adjustments were as follows: min-
imum number of cases for parent nodes, n=100,;child nodes,
n=50. The significance level for splitting nodes was set to α=
0.05 applying classical Bonferroni correction to avoid α error
accumulation. Tenfold cross-validation was applied to assess
the generalisability of the classification model. For estimation
of general diagnostic accuracy, the area under the receiver
operating characteristics (ROC) curve was calculated. Further-
more the accuracy of individual descriptor combination was
assessed by standard measures. Here, the positive likelihood
ratio (LR+) was chosen instead of predictive values, as it is
independent from pretest probability [24].

Results

A total of 1,084 lesions in 1,012 patients (mean age
55.5, standard deviation 13.1 years) were analysed. Of

these lesions, 648 (59.8 %) were malignant, showing
347 invasive ductal cancers, 108 invasive lobular can-
cers, 84 ductal carcinoma in situ (DCIS) and 109 inva-
sive cancers not belonging to the aforementioned
subgroups (i.e. mixed invasive ductal and lobular, inva-
sive papillary, medullary and mucinous carcinoma). A
total of 436 lesions were benign on histopathological
analysis, revealing 103 fibroadenoma, 10 phylloid tu-
mours, 83 papillomas, 220 proliferative fibrocystic
changes and 20 inflammatory conditions. Median lesion
size was 1.1–2 cm in each benign and malignant lesions
and size ranged from smaller than 5 to larger than 5 cm
in both subgroups (for size distribution, see Fig. 1).

The resulting CHAID tree demonstrated three ramifica-
tions with 10 terminal nodes, retaining 5 out of 17 initial
criteria (cf. Table 1): margins (smooth vs. irregular), root sign
(present vs. absent), oedema (diffuse ipsilateral or perifocal vs.
absent or diffuse bilateral), internal enhancement pattern (in-
homogeneous or centripetal (rim) vs. homogeneous or cen-
trifugal) and delayed phase enhancement curve type (washout
vs. plateau vs. persistent). All other criteria did not increase the
accuracy of the classification algorithm. Tree details are
shown in Fig. 2 and Table 2. Overall diagnostic accuracy (area
under the ROC curve, AUC) was 0.884 (95 % CI 0.863–
0.902, P<0.0001), cf Fig. 3.

The CHAID tree showed three terminal nodes with a
classification accuracy greater than 95 % in 368 (34 %) of
1,084 lesions. A classification accuracy less than 75 % was
identified in a minority of 196 (18.1 %) of 1,084 lesions,
whereas the remaining 520 (48 %) lesions could be classi-
fied with an accuracy of 75.5–85.3 % (cf. Table 2).

Fig. 1 Size distribution in
benign and malignant lesions: 1
<0.5 cm, 2 0.5–1 cm, 3 1.1–2 cm,
4 2.1–3 cm, 5 3.1–5 cm, 6 >5 cm
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Discussion

The result of our study is an easy, intuitive to follow and
valid classification tree for differentiation between benign
and malignant enhancing lesions in MRM. Using a simple
table or tree scheme, one can classify lesions as being
benign or malignant. Such diagnoses can be furthermore
automatically classified into being “definite” or “most like-
ly” or “likely to indeterminate” on the basis of the terminal
nodes of the CHAID tree and corresponding LR+ value.
Definite diagnosis with a diagnostic certainty of greater than
95 % could be achieved in 34 % of all cases. Only a
minority of 18.1 % of cases showed a classification accura-
cy less than 75 %—and the reader knows when such a case
is diagnosed. Such a statistically validated formal diagnostic
decision algorithm providing the user with the diagnostic
certainty of his diagnosis has not been described previously.

This may facilitate lesion classification in clinical prac-
tice: short-term follow-up and biopsy could be omitted in
definitely benign lesions (i.e. high positive likelihood ratio),
whereas a follow-up may be warranted in likely benign
lesions (positive likelihood ratio clearly below 1). Although
biopsy will always be mandatory for malignant lesions in
order to decide whether to administer neoadjuvant chemo-
therapy, the classification tree may guide clinical decisions
in cases of discrepant results between imaging and biopsy
results. While a “likely malignant” diagnosis may be

explained by mastopathic changes, a “definite malignant”
diagnosis in correlation with the same pathology would
make further workup obligatory.

Indeterminate results defined as classification accuracy
less than 75 % where found in only 18.1 % (196/1,084) of
all lesions. This means that reasonable diagnosis is achieved
for the majority of 81.9 % (888/1,084) lesions. Application
of the classification tree does not take extra reading or
computational time and may be specifically helpful to non-
specialised readers.

Broad application is furthermore facilitated, as only sim-
ple dynamic and morphologic features were incorporated,
avoiding the necessity for specific protocols or post-
processing software.

Although quantitative lesion features would be prefer-
able in order to eliminate subjective interpretation bias,
measurement and reader bias still would be present in
such techniques. The most commonly used quantitative
MRI techniques in breast imaging are diffusion-weighted
imaging (DWI), quantitative dynamic contrast-enhanced
(DCE) MRI and proton spectroscopy [25]. Results of
these techniques critically depend on technical acquisi-
tion parameters, limiting their use in clinical general
classification schemes.

There is common ground that DCE and additional
T2w imaging should be applied in every MRM [25].
As a consequence, our classification tree which was

Table 1 Qualitative diagnostic criteria contained in the classification tree

Descriptor Definition Rating scheme

Root sign
Any spicule-like margin irregularity even in an otherwise smooth bor-

dered lesion is considered as positive Root sign.

Delayed 

enhancement

Relative signal difference between early and delayed phase are clas-

sified as follows: persistent signal increase as “Persistent”, a steady 

signal as “Plateau” and a signal decrease as Washout.

Margins
Margins can be either smooth or irregular on a general basis. Note 

that a sharply bordered lesion may present with a root sign.

Internal 

enhancement 

pattern

Internal enhancement pattern is dichotomized by the CHAID algo-

rithm. Inhomogeneous or centripetal (rim) enhancement hint at malig-

nancy whereas homogeneous or centrifugal enhancement are indica-

tive of a benign lesion.

Edema

“Edema” refers to the presence of markedly prolonged T2 times of 

soft tissue not being caused by ductectasia. It causes a water like 

impression on T2w images and is a sign of malignancy if being ipsi-

lateral of the lesion in perifocal or diffuse distribution. Absent or diffuse 

bilateral edema is rated as negative in the classification tree.
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developed on the basis of such a protocol is generally
applicable in clinical practice. Of note, the positive pre-
dictive values given in the terminal nodes of our tree are
only valid for the prevalence of malignancy (59.8 %) in
our patient group as predictive values mathematically
depend on pretest probability, i.e. prevalence. That is
why we generally prefer likelihood ratios for all tree
nodes as a more appropriate statistical means. The reader
can thus convert the individual pretest probability of
malignancy into a post-test probability. This approach is
highly flexible and allows integration of further patient-related
data like prior imaging results, family and personal history.
Our example cases illustrate this (Figs. 4, 5 and 6). Of
particular interest in this context is case 3 (Fig. 6),
which was not part of our study, as no histopathological
tissue sampling was obtained. This was due to the fact
that it was a 48-year-old woman presenting with an architec-
tural distortion on mammography and ultrasound of the left
breast which presented as nonenhancing fibrotic area onMRI,
consistent with the diagnosis of mastopathy; the non-mass
enhancement was an incidental finding without any clinical,

mammographical or ultrasound correlate. Our general preva-
lence of malignancy per individual in MRM examinations
due to regular quality controls is less than 30 %. Assum-
ing a maximum cancer prevalence of 30 %, the positive
predictive value for malignancy is 8.1 %. After informa-
tional conversation with the patient, we chose to refrain
from taking a biopsy. Long-term follow-up of 5 years
confirmed a benign finding, most likely due to
mastopathic changes. Lesion workup would have been
completely different if the lesion showed a correlate with
suspicious clustered microcalcifications, strongly increasing
the probability of malignancy in this case. Our example
case underlines that a classification algorithm should al-
ways be applied in a flexible manner in order to assist but
not replace the radiologist’s diagnosis.

Our study has potential limitations. Firstly, only histopath-
ologically verified lesions were considered, potentially bias-
ing our lesion database towards more difficult diagnosis in
which invasive diagnosis was requested in the first place. We
did so in order to provide a more accurate reference standard.
Furthermore, the selection bias towards higher prevalence of

Fig. 2 Cross-validated chi-squared automatic interaction detection
(CHAID) tree for differential diagnosis of benign (grey) vs. malignant
(black) breast lesions. The initial study population (node 0, 648 ma-
lignant, 436 benign) is split into child nodes (node 1–18) by the
independent variable showing highest discriminatory power based on
chi-squared statistics. After 3 ramifications, the study population is
split into 10 terminal nodes (node 9–18) where no further

differentiation could be achieved (minimum node size was set to n=
50). In each node, bars indicate relative fraction of benign and malig-
nant lesions with the black line on the left as the 100 % denominator.
Nodes 16 and 18 have a positive predictive value for malignancy
greater than 95 %, whereas node 10 has a negative predictive value
for malignancy of 97.3 %. Detailed node results are given in Table 2
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malignancy is addressed by giving prevalence-independent
statistical results. This is a significant difference to previous
work in this field. Second, no quantitative techniques were
used. Recommendations for MRM include dynamic and T2-
weighted protocols, but not DWI, quantitative DCE or spec-
troscopy because the diagnostic value of these techniques has
not been clarified yet. Furthermore, results of quantitative
MRI techniques critically depend on the acquisition parame-
ters. More complex classification algorithms could include
more data—however, at the cost of simplicity and robustness.
It should also be kept in mind that a dynamic plus T2w only
protocol is much shorter than a multiparametric MRI protocol.
Finally, our lesion features are not totally congruent with the
BI-RADS lexicon because our prospectively populated data-
base was started prior to the publication of the BI-RADS
lexicon. Furthermore, the BI-RADS lexicon is not established
in all countries, e.g. the UK [26]. Finally, the BI-RADS
criteria are of limited use in non-mass enhancements (such
as our case 3) and have not been shown to be more valid or
reliable than other diagnostic features. No formal classifica-
tion algorithm is provided in the BI-RADS lexicon. By con-
trast, the diagnostic content of the BI-RADS criteria was not
validated in a multivariate analysis. Furthermore, colinearity
of BI-RADS criteria has been described, meaning that there is
an overlap in the inherent diagnostic information of these
criteria [6]. The results published by Demartini and others
hint at the necessity of reconsidering BI-RADS criteria

Table 2 Detailed node characteristics of the classification tree

Node Definition Malignant,
n (%)

Benign,
n (%)

LR+ (95 % CI)

1 Root sign (−) 172 (33 %) 349 (67 %) 0.33 (0.29–0.38)

2 Root sign (+) 476 (84.5 %) 87 (15.5) 3.68 (3.03–4.47)

3 Root sign (−), persistent (+) 32 (13.9 %) 198 (86.1 %) 0.11 (0.08–0.15)

4 Root sign (−), washout (+) 97 (59.9 %) 65 (40.1 %) 1 (0.75–1.34)

5 Root sign (−), plateau (+) 43 (33.3 %) 86 (66.7 %) 0.34 (0.24–0.48)

6 Root sign (+), persistent (+) 32 (47.1 %) 36 (52.9 %) 0.6 (0.38–0.95)

7 Root sign (+), washout (+) 336 (92.3 %) 28 (7.7 %) 8.07 (5.6–11.64)

8 Root sign (+), plateau (+) 108 (82.4 %) 23 (17.6 %) 3.16 (2.05–4.87)

9 Root sign (−), persistent (+), margin (irregular) 29 (23.4 %) 95 (76.7 %) 0.21 (0.14–0.31)

10 Root sign (−), persistent (+), margin (smooth) 3 (2.8 %) 103 (97.2 %) 0.02 (0.01–0.06)

11 Root sign (−), washout (+), intensity enhancement (inhomogeneous, rim) 77 (75.5 %) 25 (24.5 %) 2.07 (1.34–3.2)

12 Root sign (−), washout (+), intensity enhancement (homogeneous, centrifugal) 20 (33.3 %) 40 (66.7 %) 0.34 (0.2–0.57)

13 Root sign (−), plateau (+), margin (irregular) 29 (43.9 %) 37 (56.1 %) 0.53 (0.33–0.84)

14 Root sign (−), plateau (+), margin (smooth) 14 (22.2 %) 49 (77.8 %) 0.19 (0.11–0.34)

15 Root sign (+), washout (+), oedema (absent, bilateral) 139 (85.3 %) 24 (14.7 %) 3.9 (2.57–5.91)

16 Root sign (+), washout (+), oedema (perifocal, ipsilateral) 197 (98 %) 4 (2 %) 33.14 (12.41–88.51)

17 Root sign (+), plateau (+), oedema (absent, bilateral) 50 (71.4 %) 20 (28.6 %) 1.68 (1.02–2.78)

18 Root sign (+), plateau (+), oedema (perifocal, ipsilateral) 58 (95.1 %) 3 (4.9 %) 13.01 (4.1–41.25)

Tree structure and corresponding node numbers are in accordance with Fig. 2. LR+ denotes positive likelihood ratio if node is rated positive for
malignancy. Nodes 1 and 2 represent 1st ramification, 3 to 8 the second ramification and 9 to 18 the 3rd ramification (terminal nodes)

Fig. 3 Receiver operating characteristics (ROC) curve (black line) of
tenfold cross-validated CHAID tree results. Dotted lines represent
95 % confidence interval margins. The area under the curve is calcu-
lated as 0.885, standard error 0.00995, 95 % confidence interval 0.864
to 0.903. Probability of malignancy increases in the node order 10, 14,
9, 12, 13, 17, 11, 15, 18, 16 (cf. Fig. 2 and Table 2)
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Fig. 4 Example case of a 76-
year-old woman presenting
with a mass lesion in the right
breast at 9 o’clock. a Pre-
contrast T1w, b early enhanced
phase, c delayed enhanced
phase, d T2w-TSE.
Classification according to the
CHAID tree is as follows: root
sign positive (node 2), washout
in delayed phase enhancement
(node 7), positive perifocal
oedema (terminal node 16, cf.
Fig. 2). Resulting probability of
malignancy based on the
database of this paper is 98 %,
prevalence-independent LR+ is
33.2, meaning that the initial
probability of malignancy is
increased 33-fold. Core biopsy
showed invasive ductal
carcinoma G2

Fig. 5 Example case of a 28-
year-old woman showing a
mass lesion in the left breast at
12 o’clock. a Pre-contrast T1w,
b early enhanced phase, c
delayed enhanced phase, d
T2w-TSE. Classification
according to the CHAID tree is
as follows: negative root sign
(node 1), persistent delayed
phase enhancement (node 3),
smooth margins (terminal node
10, cf. Fig. 2). Resulting
probability of malignancy
based on the database of this
paper is 2.8 %, prevalence
independent LR+ is 0.02,
meaning that the initial
probability of malignancy is
decreased 50-fold. Core biopsy
showed benign fibroadenoma
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according to their statistically validated diagnostic use [11, 27,
28]. We did not systematically address the reproducibility of
our results. While the cross-validation performed in this study
is a sufficient method to prove the robustness of the proposed
classification model considering the high number of cases
analysed, a prospective study could give insights into the
applicability of the model in clinical practice. The consensus
reading approach used in our study does not allow assessment
of reproducibility of the diagnostic criteria incorporated into
the model. According to our experience, no significant dis-
agreement in assessment of diagnostic criteria was observed
during data analysis in this study. This may be due to the
simplicity of the criteria used.

Our study is not the first to propose a classification
algorithm in MRM. Nunes et al. initially presented a classi-
fication tree approach in a split sample of 192 patients [8].
The authors included 10 features including the criterion
enhancement vs. no enhancement. No dynamic enhance-
ment features were used. The statistical parameters for mod-
el construction were not given in the article and some effect
of overfitting due to low sample size is likely. Lesions not
palpable or not visible by mammography were omitted,
resulting in a validated accuracy of 83 %. Our own approach
incorporates five criteria including the dynamic curve type
and reaches a cross-validated accuracy of 88.4 % based on
inclusion of all enhancing histopathologically verified le-
sions independent of clinical or mammographic findings.

A more simple approach has been proposed by the
Göttingen group in 2002 [2]. This score is completely em-
pirical and includes five diagnostic criteria, two of which
describe initial and delayed dynamic enhancement patterns.
A scoring sheet is used to classify lesions on the basis of a
BI-RADS analogous five-point confidence scale. Preva-
lence of malignancy was 50.6 % in 265 investigated en-
hancing lesions; only 8 of 136 (5.9 %) of all cancers were
DCIS. Sensitivity and specificity of 92 % were reached. It is
not stated whether the classification scheme was constructed
on basis of the same data it was tested on. Consequently the
Göttingen method achieved lower diagnostic accuracy (sen-
sitivity 83.1 % and specificity of 58.8 %) when used by
another group [29]. By contrast, our classification model
provides diagnostic certainty for all subcategories, is more
intuitive to follow and is based on a larger and more repre-
sentative database (i.e. more DCIS cases). A model describ-
ing the criteria investigated in this study included a variety
of mainly morphologic features [7]. Simple scores were
calculated on the basis of feature prevalences in benign
and malignant lesions. Colinearity was not addressed and
feature selection was not performed. The model was vali-
dated in a group of 132 histologically verified lesions and
revealed a sensitivity and specificity of 90.9 % and 60 %,
respectively. The authors suggested to combine the
Göttingen model with the extended scoring system, achiev-
ing a sensitivity of 97 % and a specificity of 76.5 % [29].

Fig. 6 Example case of a 48-
year-old woman showing an
incidental non-mass
enhancement in the lower right
breast at 6 o’clock (not from the
database of this study). a Pre-
contrast T1w, b early enhanced
phase, c delayed enhanced
phase, d T2w-TSE.
Classification according to the
CHAID tree is as follows:
negative root sign (node 1),
persistent delayed phase
enhancement (node 3), irregular
margins (terminal node 9, cf.
Fig. 2). Resulting probability of
malignancy based on the
database of this paper is 23.4 %,
prevalence independent LR+ is
0.2, meaning that the initial
probability of malignancy is
reduced by five times. The
patient had a negative family
history of breast cancer.
Consequently, 5-year follow-up
including MRI confirmed a
benign finding
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Considering mass lesions only, Tozaki et al. described an
empirical statistically non-validated classification algorithm
having a sensitivity of 100 % and a positive predictive value
of 98 %. The pretest probability of malignancy in their
group was 49 of 63 lesions (77.7 % [10]). The same group
published a similar interpretation model for non-mass le-
sions based on 30 non-mass lesions (18 malignant, preva-
lence of malignancy 60 %). A positive predictive value of
94 % was reported [9]. Application of this model to a group
of 102 lesions (10 malignant) could not reproduce this high
predictive value [30]. Low sample size and patient selec-
tion limit the applicability of this classification system. A
comprehensive approach based on data of 995 conven-
tionally BI-RADS 4 and 5 lesions obtained in a
multicentre study by 27 interpreting radiologists was
published by Schnall and co-workers in 2006 [12]. A
number of protocols were used, some with high temporal
resolution dynamic imaging. The interpretation model
was restricted to mass lesions only and consisted of a
combination of CART algorithm and logistic regression
and finally selected 10 features also including non-MRI
features of age, whether the lesion was palpable and
whether microcalcifications were present. There was no
split sample or cross-validation performed. In a direct
comparison, our model is simpler and intuitive, cross-
validated and was achieved by consistent protocols and
is based on image interpretation by radiologists trained in
the same institution in order to optimise reliability. An-
other interpretation model including qualitative enhance-
ment characteristics, internal enhancement pattern and
lesion margin characteristics was published in 2006
[26]. The model was constructed on the basis of patient
data mainly from a high-risk screening study mixed with
100 symptomatic women (prevalence of malignancy 86
out of 991, 8.7 %). Logistic regression analysis was the
chosen statistical method and the model was validated in
a split sample approach reaching an AUC of 0.88. It
should be kept in mind that the low cancer prevalence
or high number of true negative findings suggests a
higher diagnostic accuracy as compared to studies with
histopathological verification and, consequently, a higher
prevalence of malignancy. A more recent single-centre
study investigated multivariate models for prediction of
malignancy in 855 lesions (155, 18.1 % malignant)
detected in cancer staging or high-risk screening [11].
The best predictive model identified considered three
criteria (indication, size and kinetics) and reached an
AUC of 0.7. Morphologic criteria as included in prior
predictive models [2, 7–10, 12] were less important [11].
By contrast, our own model is independent of lesion size
and mainly relies on morphologic criteria. A likely ex-
planation for our observation is that the specific criteria
retained by our classification tree are not standard

descriptors (e.g. root sign, oedema), whereas “classical”
BI-RADS descriptors have been reported to be of limited
diagnostic potential in previous studies [6, 11, 27, 28].

In summary, a variety of different interpretation models
have been proposed. All contain delayed enhancement
curve type (persistent, plateau, washout). Border character-
istics and internal enhancement pattern seem to be the most
important morphologic criteria [2, 7]. It is assumed that
variability of patient characteristics, diagnostic criteria used
and limited statistical validation is a major reason for the
variety of results of interpretation models published so far.
Predictive values depend on pretest probability and should
thus be considered with care in different clinical contexts.
This is why we provide likelihood ratios which allow one to
model individual results [24].

In conclusion, we provide a simple and robust classifica-
tion model which follows an intuitive tree structure
reflecting a structured step by step diagnostic process for
lesion differentiation. It is based on the largest database
published so far in this context, thus ensuring statistical
stability. Every single combination of diagnostic criteria is
associated with a specific and relative likelihood of malig-
nancy and thus provides the reader with an objective tool for
making clinical decisions.
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