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MR imaging of cartilage and its repair
in the knee - a review

Abstract Chondral injuries are
common lesions of the knee joint, and
many patients could benefit from
cartilage repair. Widespread cartilage
repair techniques require sophisticated
noninvasive follow-up using MRI. In
addition to the precise morphological
assessment of this area of cartilage
repair, the cartilage’s biochemical
constitution can be determined using
biochemical MRI techniques. The
combination of the clinical outcome
after cartilage repair together with the
morphological and biochemical
description of the cartilage repair
tissue as well as the surrounding

cartilage can lead to an optimal
follow-up evaluation. The present
article on MR imaging techniques of
cartilage repair focuses on morpho-
logical description and scoring using
techniques from conventional 2D
through advanced isotropic 3D MRI
sequences. Furthermore the ultra-
structure of the repair tissue and the
surrounding cartilage is evaluated
in-vivo by biochemical T1-delayed
gadolinium enhanced MRI of cartilage
(dGEMRIC), T2 relaxation, and
diffusion-weighted imaging
techniques.
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Introduction

Chondral injury is a frequent cause of pain and knee-
function limitation. The very limited capability for self-
repair and subsequent degeneration of injured cartilage and

other articular tissues often lead to osteoarthritis, which
may eventually result in the need for total knee arthroplasty
[1]. Surgical options for cartilage repair in the knee aim to
ease clinical symptoms and to postpone the onset of
osteoarthritis. Cartilage repair surgery is a highly dynamic
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research field, and there is a pressing need for reliable and
objective monitoring in order to evaluate and compare
various surgical treatment options. The advent of high field
MRI and the introduction of knee coils in clinical use yields
new technologies for the noninvasive and objective
assessment of cartilage repair tissue. This article gives a
short survey of the surgical treatment options of cartilage
defects and subsequently reviews the state of the art of
morphological MRI as well as recent advances in molec-
ular imaging of cartilage repair in the knee.

Cartilage repair surgery

The surgical treatment of chondral defects has the goal of
placing repair tissue into the defect in order to stabilize
the adjacent native cartilage. Various approaches to
achieve defect filling have been conducted and currently
include bone marrow-stimulation techniques such as
microfracture (MFX) [2–11], osteochondral graft trans-
plantation (mosaicplasty, osteochondral autograft transfer
system) [12–14], and autologous chondrocyte implanta-
tion (ACI) [15–21].

Microfracture has been shown to be an efficient one-step
procedure but produces mainly fibrous repair tissue with an
incomplete filling of the defect and limited load-bearing
capacity [22–24]. In osteochondral graft transplantation
(OAT), osteochondral plugs are taken from non-weight-
bearing areas in the femoral condyles or areas that less
frequently bear weight using a cylindrical cutting device
and are implanted as a mosaic to fill the defect(s). OAT is
limited with respect to the size of the defect (maximum=
4 cm2) that can be filled because (1) only a limited number
of grafts are available, (2) in a large defect, the fixation of
the grafts becomes instable and may result in uneven
surfaces, and (3) impairment due to the mechanical forces
during implantation may injure the cartilage layer of the
osteochondral plug [25].

ACI requires the excision of a periosteal flap to keep the
injected cultured autologous cell suspension in situ. ACI
has been applied to 30,000 patients worldwide [18, 19],
however, cartilage overgrowth and delamination or fibrous
degeneration of the newly formed tissue in 2.4–20% have
been observed [26, 27]. As a consequence, there is
substantial interest in improving ACI. New ACI techniques
are often referred to as scaffold-guided or matrix-associated
ACI (MACI) since biomaterials based on collagen [28–30],
hyaluronan [31–34], or polylactides [35] are used as
scaffolds for cell growth. MACI is less invasive and can be
performed arthroscopically in central-anterior defects of the
femoral condyle. Moreover, it is applicable to treat defects of
up to 10 cm2 [33, 36–39]. An additional advantage may be
more efficient redifferentiation of chondrocytes and hence
the formation of hyaline-like repair tissue [40].

MR imaging

Magnetic resonance imaging (MRI), radiological scoring
systems, and quantitative image analysis technology have
recently started to provide a wealth of new information on
articular cartilage and other articular tissues under physi-
ological and patho-physiological conditions. These tech-
niques have been applied to the study of healthy joints and
to those suffering from traumatic and degenerative disease.

Given superior tissue contrast and sensitivity to tissue
composition, MRI has tremendous potential in the study of
cartilage repair. Specifically it may (1) help to estimate the
size, nature, and location of lesions preoperatively, in order
to optimize surgical planning, (2) help to evaluate the
quality and success of tissue repair processes after surgical
treatment, and (3) allow one to monitor degenerative
changes in the joint after cartilage repair, potentially in
comparison to patients who have not been treated for
cartilage lesions.

Preoperative estimation of lesion size, nature,
and location

MR technique and sequences

MRI assessment of cartilage repair requires cartilage-
sensitive sequences such as fat-suppressed three-dimensional
gradient echo (3D-GRE) and proton-density (PD) and T2-
weighted (dual) fast spin echo (FSE) techniques with or
without fat-suppression. In general, 3D-GRE sequences with
fat suppression allow the exact depiction of the thickness
and surface of cartilage, whereas dual FSE sequences outline
the normal and abnormal internal structure of hyaline
cartilage [12–15]. Recently developed high-resolution three-
dimensional (3D) isotropic cartilage-sensitive sequences at 3
Tesla will further improve the assessment of quantitative
morphologic aspects of volumetric cartilage, in particular
segmentation and volumetric measurements [41].

Using a model of artificial cartilage lesions in rabbit
joints, it was shown that the ability to detect small cartilage
lesions critically depended on the spatial resolution of the
imaging sequence, and that achieving a high resolution
justified some degree of sacrifice in signal-to-noise ratios
(SNR) and contrast-to-noise ratios (CNR) [42]. Rubenstein
et al. [43] demonstrated that a voxel size under 300 μm is
required to reveal fraying of the articular surface of cartilage.
High-field MRI scanners increase the possibilites of 3D
imaging; GRE images yield high resolution in-plane and thin
slices with a sufficient signal-to-noise ratio, while scan times
can be kept well below 10 min. New coil technologies with
multi-element design allow the use of parallel imaging,
which can additionally decrease the scan time by a factor of
two to three.
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Scoring methods

Most scoring methods for articular cartilage lesions grade
lesion severity from 0–3 or 4 based on subjective
evaluations and commonly differentiate between cartilage
lesions of less than 50% depth, more than 50% depth, and
full thickness. Peterfy et al. [44] have described a com-
prehensive MRI scoring system (WORMS = whole-organ
MRI scoring), in which numerous features (cartilage signal
and morphology, subchondral bone marrow abnormalities,
meniscal and ligmament changes, etc.) are graded within
the knee. The interobserver agreement among two trained
readers was high (intraclass correlation coefficient >0.98
for cartilage abnormalities and >0.80 for most features,
except for bone attrition and synovitis) using a 1.5 Twhole-
body magnet. Another compartment-based scoring system
termed knee osteoarthritis scoring system (KOSS) has also
been published, with intraobserver reproducibility of 0.76–
0.96 (ICC) and interobserver reproducibility (intraclass
correlation coefficient) amongst two independent observers
of 0.63–0.91 [45].

Some limitations of these scoring systems have recently
been identified [46] when applying the WORMS grading
systems to knees of 336 subjects (three readers) and
comparing these with a Rasch measurement model. The
authors commented that adding up individual scoring
subscales, as recommended by WORMS, is problematic,
and that several subscales (in particular those for cartilage
signal and morphology and for osteophytes) may need to
be redeveloped.

In a recent report [47], the reliability of a novel MRI
scoring system for evaluating osteoarthritis (OA) of the
knee was explored. Nine intra-articular anatomical divi-
sions and eight items were tested, including features of
cartilage, bone-marrow lesions (BML), osteophytes, syno-
vitis, effusions, and ligaments, and a scaling of 0–3 was
applied for each of these to yield the Boston-Leeds
Osteoarthritis Knee Score (BLOKS). A series of iterative
reliability exercises was performed to reduce the initial
items. The interreader reliability for the final BLOKS items
ranged from 0.51 for meniscal extrusion up to 0.79 for
meniscal tear, with that for cartilage morphology being
0.72. In another sample, both BLOKS and WORMS were
used to score BML. Maximum BML size in BLOKS had a
positive linear relation with VAS pain, whereas in
WORMS it did not. Baseline BML was associated with
cartilage loss on both the BLOKS and WORMS scale, but
the association was stronger for BLOKS than for WORMS.

Accuracy of MRI for chondral lesions—in vitro
and in vivo studies

Satisfactory specificity and sensitivity for detecting chon-
dral lesions have been demonstrated in knee specimens and
in vivo with arthroscopic verification [48–54]. Bredella et

al. [55] reported a sensitivity of 93% and a specificity of
99% in detecting chondral lesions with MRI versus
athroscopy when axial and coronal images were combined,
and values of 94 and 99% when images in all three planes
were used. In that study, accuracy was highest for severe
cartilage lesions and lowest for smaller lesions, particularly
for signal intensity alterations.

Using a porcine model of artificial cartilage lesions [56],
the highest lesion detection rate was found with an
intermediate-weighted FSE sequence at 3.0 T (90 vs.
62% at 1.5 T), whereas the lesion grade was most
accurately evaluated with SPGR at 3.0 T (83 versus 70%
at 1.5 T). Receiver operator characteristics (ROC) analyses
in the same model confirmed improved diagnostic
performance in detecting cartilage lesions at 3.0 T if
high-resolution imaging protocols (slice thickness ≤2 mm
and in-plane resolution ≤0.39 mm) were used [57].
Quantitative measurements of cartilage lesion depth,
diameter, area, and volume have been validated in a
porcine experimental model of OA [58]. In human knee
cartilage, the mean difference between measured and actual
artificial cartilage defect diameters was reported to be
<0.1 mm, whereas the lesion depth was underestimated in
MRI by >0.4 mm [59]. Graichen et al. [60] reported an
overestimation of the true size of artificial cartilage defects
in the human knee, which decreased from 42% in 3-mm
defects to 4% in 8-mm defects.

Evaluation of the quality of tissue-repair processes
after surgical treatment

This has been the area of the most intense use of MRI in
cartilage repair and has thus received the widest interest.
The MR sequences commonly used for evaluating cartilage
repair morphologically are identical with those that have
been used for evaluating cartilage lesions as described
above (Figs. 1, 2). Figures 1 and 2 show high-resolution
MR images of cartilage repair tissue at different time
intervals after surgery (6 vs. 60 months).

The evaluation of the success of cartilage repair
procedures [61–66] requires specific grading systems,
one of which is MOCART [62–64, 67]. The validity and
reliability of this system has been evaluated for the
assessment of matrix-associated autologous chondrocyte
transplantation (MACI) in the knee [62], using nine
pertinent variables. These included filling of the defect,
integration of the border zone to the adjacent cartilage,
intactness of the subchondral lamina, intactness of the
subchondral bone, relative signal intensities of the repair
tissue compared to the adjacent native cartilage, and others.
An almost perfect agreement between readers (ICC >0.81)
was found for eight of the nine variables. When comparing
the MRI scores with clinical outcome (knee-related quality
of life) 2 years after ACT, a statistically significant correla-
tion was found for “filling of the defect,” “structure of the
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repair tissue,” “changes in the subchondral bone,” and
“signal intensities of the repair issue.”

In addition to morphologic imaging, quantitative MRI
techniques give the option of studying the composition of
the cartilage matrix ultrastructure and can therefore be
considered molecular-imaging techniques [68]. These
techniques are of particular interest for the study of
cartilage repair as they have the potential to evaluate
cartilage maturation and adaptation after surgery in vivo
[63, 67, 69–71]. The most promising techniques in this
context include the transverse relaxation time T2, the
longitudinal relaxation time T1 in the presence of gado-
linium (T1Gd = dGEMRIC index), and diffusion-weighted
imaging.

It has to be emphasized that while much of the initial
validation research for these functional cartilage imaging
techniques was performed on cartilage tissue, there has
been so far limited validation of these techniques in
cartilage repair tissue.

Measurement of T2 in cartilage

The majority of cartilage T2 mapping studies have used
conventional multislice multi spin echo (MSME) sequences,
typically with a minimum of seven echoes. The in vivo
precision errors of the technique have been reported recently
[72]. Measurements of T2 of articular cartilage provide a
potential imaging biomarker of structural changes in the
collagen matrix [73]. Perturbation of the collagen architec-
ture leads to increased T2-weighted signal intensity, whereas
sites of decreased signal intensity can be observed adjacent to
sites of focal cartilage injury [74]. While increased cartilage
T2 is associated with an increase in water content [75] and a
decrease in collagen content [76], the dominant factor

influencing regional variation in T2 appears to be the
anisotropic arrangement of the type II collagen matrix [77,
78]. Dardzinski et al. [79] concluded that the T2 character-
istics in cartilage are strongly influenced by the orientation of
the collagen framework and that the dipole-dipole interaction
anisotropy in the presence of restricted water mobility has an
important influence on spin-spin relaxation in the deep layers
of cartilage. Additionally in-vitro T2 relaxation studies and
animal studies have also demonstrated a close relationship
between T2 and the architecture of collagen [80–82].

A recent study has observed a strong inverse correlation of
fiber anisotropy determined with polarized light microscopy
and the T2 of the cartilage [83].

Whereas the sensitivity of T2 to cartilage degeneration in
osteoarthritis is yet unclear, the sensitivity of T2 to collagen
architecture has been successfully applied to study matura-
tional changes in the collagen matrix of osteochondral plugs
from juvenile animals [83–85] and age-related changes in
mature cartilage [86–88].

T2 mapping in cartilage repair

The line profiles of T2 relaxation times as suggested by
Mosher and Dardzinski [79, 87] provide a very helpful
insight into the maturation process of cartilage repair tissue
over time and facilitate a comparison with native healthy
cartilage. The extracellular matrix of native articular
cartilage is shaped by a highly organized collagen network,
which varies across the histological zones of normal
hyaline articular cartilage tissue [1]. Under ideal circum-
stances, cartilage repair tissue produced following cartilage
repair techniques, should, over time, develop a collagen
network with a similar shape, collagen concentration, and
in particular, a similar zonal organization as normal hyaline
cartilage.

Fig. 2 Axial high-resolution (0.23×0.23×2 mm) proton-density
turbo spin echo (PD TSE) 60 months after matrix-associated
autologous chondrocyte implantation (MACI) of the patella
(arrows)

Fig. 1 Sagittal high-resolution (0.23×0.23×2 mm) proton-density
turbo spin echo (PD TSE) 6 months after matrix-associated
autologous chondrocyte implantation (MACI) (area of cartilage
repair marked with arrows) of the lateral femoral condyle (LFC)
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In a recent study by White et al. [89], normal hyaline
cartilage and cartilage repair tissue were differentiated by
zonal T2 mapping in equine subjects. Arthroscopic OAT
and MFX were performed and evaluation of zonal T2
variation showed a characteristic distribution across the
depth of the cartilage in control and OAT sites, with low T2
values near the subchondral bone and higher T2 values
near the cartilage surface [89]. However no zonal variation
was found within MFX repair tissue. T2 measurement
results in this study were correlated with histology and
collagen structural anisotropy as assessed by polarized
light microscopy. OAT and normal hyaline cartilage sites
illustrated a normal zonal collagen organization, whereas
MFX showed disorganized fibrous reparative tissue [89].

Welsch et al. [90] evaluated T2 in-vivo in normal hyaline
cartilage sites and in cartilage repair tissue after MFX and
MACI in humans. Similar to the in vivo animal study of
White et al. [89], no differences between deep and
superficial layers of cartilage repair tissue were observed
after MFX. After MACI, a characteristic zonal variation in
mean T2 measurements was observed, but compared to
healthy cartilage, the increase in mean T2 values from the
deep to the superficial zones was less pronounced (Fig. 3a, b).
These results suggest differences in quantitative T2 mapping
results between MFX and MACI, possibly reflective of
collagen and/or water concentration and organization. Taking
into account that histological biopsies obtained at postoper-
ative follow-up arthroscopy have reportedmore fibrocartilage
after MFX [91] and more “hyaline-like” cartilage afterMACI
[37], these findings indicate that quantitative T2 mapping
may provide information on the specific structure of different
cartilage repair tissues.

In another study, clinical scores were correlated with T2
values in patients after microfracture [92]. The knees of 24
patients were studied after a mean postoperative interval of
29 months using 3T MRI. An individual relative T2 index
was calculated by expressing the mean T2 of the repair

tissue as a percentage of mean T2 of normal, hyaline
cartilage. The T2 index correlated with the clinical
outcome of the Lysholm Score and the IKDC Subjective
Knee Evaluation Form.

Using quantitative global T2 mapping of patients at
different postoperative intervals after MACI surgery,
significantly higher T2 values were found in cartilage
repair tissue in the early stage (3–13 months) after surgery
in an intraindividual comparison with native hyaline
cartilage [69] (Fig. 4). Furthermore, a decrease in repair-
tissue T2 values was observed over time, with the T2
values becoming similar to native healthy cartilage. This
finding was in agreement with a study by Kurkijarvi et al.
[93] who, using 1.5 T, reported T2 values in the repair
tissue and normal hyaline cartilage of 60±10 and 50±7 ms,
respectively, in 10 patients at 10–15 months after ACI
surgery. The zonal variation in repair tissue [69] has been
demonstrated through analysis of the T2 line profiles
showing the variation in T2 values from the subchondral
bone to cartilage surface. With increasing postoperative
interval the shape of the T2 line profiles (and the calculated
T2 line profile values) was found to become similar to the
reference healthy cartilage sites [69].

After MFX, significantly lower global mean T2 values
of cartilage repair tissue were found whereas after MACI
no significant change in mean T2 values was observed
compared to morphologically normal control sites [90].
These findings imply that the composition of the repair
tissue created with the two procedures is different.

Feasibility in clinical routine and diagnostic value

T2 mapping can be easily implemented in clinical routine
MRI. The duration of T2 mapping sequences at 3 T is
approximately 6 min, and contrast agent is not required.

T2 is highly sensitive to alterations of the cartilage matrix;
free water, collagen concentration, and the orientation of the
collagen fibrils affect T2 values. T2 may differ significantly
among healthy individuals. In cartilage repair patients, it is
therefore important to consider T2 of the adjacent hyaline
cartilage in the evaluation of the repair tissue.

Valuable data result from the zonal variation of the repair
tissue. T2 can assess the repair tissue organization and also
visualize tissue remodeling over time. This may be
considered the main strength of T2 mapping rather than
the assessment of absolute values.

Delayed gadolinium-enhanced MRI of cartilage:
dGEMRIC

Glycosaminoglycans (GAG) are the main source of fixed
charge density (FCD) in cartilage and have been reported to
be lost in the early stage of cartilage degeneration [94].
Intravenously administered gadolinium diethylenetriamine

Fig. 3 Axial T2 maps of the patella 60 months after matrix-
associated autologous chondrocyte implantation (MACI) (a) (same
patient as Fig. 2) and 36 months after microfracture (MFX) (b)
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pentaacetate anion (Gd-DTPA2−) penetrates the cartilage
through both the articular surface and the subchondral
bone. The negatively charged contrast agent equilibrates in
inverse relation to the FCD, which is in turn directly related
to the GAG concentration. Therefore T1, which is
determined by the Gd-DTPA2− concentration, can be
used as a specific measure of tissue GAG concentration.
An increased accumulation of contrast agent due to a
depletion of GAG in cartilage will lead to decreased T1.

T1 relaxation enhanced by delayed administration of
Gd-DTPA2−, the dGEMRIC (delayed gadolinium-en-
hanced MRI of cartilage) technique, is currently the most
widely used method for analyzing proteoglycan depletion
in articular cartilage and has provided valuable results in
vitro and in vivo [95–99]. Post-contrast T1 mapping is
usually performed approximately 90 min after intravenous
injection of Gd-DTPA2−, to allow sufficient time for the
contrast agent (Gd) to diffuse into the cartilage layer before
the images are acquired.

Since standard T1 mapping with inversion recovery is time
consuming or limited to single-slice acquisitions, 3D applica-
tions of dGEMRIC that provide greater coverage and faster
imaging times are currently undergoing validation [100, 101].

dGEMRIC for the assessment of cartilage repair

When evaluating cartilage repair using dGEMRIC, one
must take into account that, contrary to studies in normal or
degenerative cartilage, the repair tissue shows heterogene-
ous T1 values compared to normal cartilage prior to the
administration of Gd. Thus, postcontrast T1 mapping does
not correlate directly with glycosaminoglycan content, but
the difference between pre- and postcontrast imaging (delta
relaxation rate = 1/T1Gd − 1/T1precontrast) does [102].
Watanabe et al. [102] demonstrated that the relative delta
R1 index (delta relaxation rate of repair tissue divided by the
delta relaxation rate of normal hyaline cartilage) correlates
with the GAG concentration in repair tissue as measured by
gas chromatography, an accepted gold standard for the
measurement of GAG content in biopsy samples.

A recent study by Trattnig et al. [70] demonstrated that it
is feasible to apply a 3D variable flip angle dGEMRIC
technique in patients following MACI surgery to obtain
information related to the long-term development and
maturation of grafts within clinically acceptable scan times
(Fig. 5a, b). In accordance with the study by Watanabe et
al. [102], increased T1 values in repair tissue of MACI

Fig. 4 Sagittal high-resolution
(0.42×0.42×3 mm) T2 map of
the same patient visualized in
Fig. 1 with a follow-up interval
of 6 months after matrix-
associated autologous chondro-
cyte implantation (MACI) of the
lateral femoral condyle (LFC)
(arrows)

Fig. 5 Sagittal T1-dGEMRIC
maps of a patient 36 months
after matrix-associated autolo-
gous chondrocyte implantation
(MACI) of the medial femoral
condyle (MFC) before (a) and
after (b) intravenous contrast
medium Gd-DTPA2−
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patients were found precontrast at all time intervals after
surgery. This seems to highlight the necessity of measuring
the native T1 values for evaluation of GAG content at the
repair site. This is also supported by the results of an in
vitro study by Wayne et al. [103] who found that a T1 ratio
calculated as T1Gd/T1 made it possible to distinguish
between collagenase- and chondroitase-treated cartilage,
whereas, while the T1Gd values alone were significantly
different between treated and untreated cartilage, they were
not between the two treatments.

Two other studies reported that dGEMRIC has potential
as a noninvasive MR imaging technique for monitoring the
GAG content after ACI [93, 104]. The findings of both
studies suggest that the GAG concentration in repair
cartilage at month 10 (or longer) after ACI is comparable
to the GAG concentration in the adjacent normal hyaline
cartilage. However the authors performedMR imaging only
after intravenous contrast medium application and may thus
have overestimated the GAG content in the repair tissue.

In contrast to these studies, Trattnig et al. [70] aimed to
assess the maturation of cartilage implants over time. As it
is known from biopsy studies that most of the changes in
cartilage implants occur in the early postoperative period.
Patients were subdivided into early and late postoperative
groups (3–13 months and 19–42 months, respectively).
The mean R1 (in 1/s) for repair tissue was 2.49±1.15
versus 1.04±0.56 at the intact control site in the early
postoperative group and 1.90±0.97 compared to 0.81±
0.47 in the late postoperative group. The difference
between repair tissue and normal hyaline cartilage was
statistically significant (P<0.007) in both groups, but the
difference between repair tissue and normal hyaline
cartilage between the groups was not (P=0.205). The
mean relative relaxation rate R1 was 2.40 in the early group
and 2.35 in the late group.

A possible explanation for these results comes from
histological investigations of biopsies. These have shown
that patients with MACI develop hyaline-like repair tissue
over time, whilst in patients with microfracture fibrous

tissue predominates [27, 105]. dGEMRIC has been used to
evaluate relative glycosaminoglycan (GAG) content of
repair tissue in patients after different surgical cartilage
repair techniques such as MFX, ACI, and MACI [93]
(Fig. 6a, b). In one of these studies [106], 10 patients
treated with MFX and 10 with MACI were compared after
being matched by age and postoperative interval. The mean
delta R1 for MFX was 1.07±0.34 versus 0.32±0.20 at the
control site, whereas for MACI it was 1.90±0.49 versus
0.87±0.44. This resulted in a relative delta R1 of 3.39 for
MFX and 2.18 for MACI, the difference between the
cartilage repair groups being statistically significant.

The repair tissue formed by MFX contained less PGs
and an abnormal distribution of collagen compared to
normal cartilage (analyzed by histology and biochemistry),
which may explain the poor resultant mechanical proper-
ties often exhibited by repair tissue [107, 108]. These
findings are supported by T1 mapping results that showed a
significantly higher relative delta R1 of the repair tissue
after MFX than after MACI, suggesting a lower GAG
content after MFX.

Feasibility in clinical routine and diagnostic value

The dGEMRIC technique has been demonstrated to be
specific for GAG by several investigators [70, 96, 97, 109,
110], and also to be sensitive to the clinical symptoms in
patients with hip dysplasia. The recently developed 3D
GRE T1 sequences are appropriate for the implementation
in clinical MRI protocols. Still, exercise and an interval of
approximately 60 min after contrast-agent administration
are required to ensure the distribution of Gd-DTPA2−

among the negatively charged GAGs. In cartilage repair
both pre- and postcontrast measurements are currently
considered necessary for a maximum sensitivity of the
technique [102]. The resulting overall mesurement time of
2 h diminishes the attractiveness for clinical use. Still,
dGEMRIC can be considered to be the current gold

Fig. 6 Sagittal intravenously
enhanced T1-dGEMRIC maps
of a patient 36 months after
matrix-associated autologous
chondrocyte implantation
(MACI) of the medial femoral
condyle (MFC) (a) and a patient
36 months after microfracture
(MFX) of the MFC (b)
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standard in cartilage ultrastructure MRI imaging and is
valuable for use in clinical studies.

Diffusion techniques in cartilage repair

One encouraging alternative to the techniques mentioned
above is diffusion-weighted sequence [111]. Diffusion-
weighted imaging (DWI) is based on molecular motion that
is influenced by intra- and extracellular barriers. Conse-
quently, it is possible to estimate biochemical structure and
architecture of the tissue by measuring molecular move-
ment. When based on spin-echo (SE) sequences, DWI is
relatively insensitive to susceptibility effects, but diffusion-
weighted SE sequences require acquisition times that
cannot be readily applied in clinical practice. Echo planar
imaging (EPI)-based diffusion sequences are the current
gold standard of DWI in neuro applications, but these
suffer from image distortions (susceptibility artifacts) and
from limitations in contrast (due to the long echo times
required). Both render them impracticable for imaging
tissues with short T2, such as cartilage and muscles.

Alternatively, diffusion imaging can be performed using
steady-state free precession sequences (SSFP), which
provide diffusion weighting at relatively short echo
times. This is achieved by the application of a monopolar
diffusion sensitizing gradient, which leads to a diffusion
weighting of consecutive echoes (spin echoes and
stimulated echoes) under steady-state conditions. For the
assessment of diffusion-weighted images, a three-dimen-
sional steady-state diffusion technique called PSIF has
been used [112]. Note that the PSIF is a time-reversed FISP
(fast imaging by steady state precession) sequence. In order
to assess diffusional behavior of the cartilage semiquanti-
tatively, the diffusion sequence protocol should consist of
two immediately consecutive measurements with 0 and

75 mT·ms−1·m−1 monopolar diffusion gradient moments
for DWI, but identical imaging parameters. For evaluation,
the quotient image (nondiffusion-weighted/diffusion-
weighted image) is calculated on a pixel-by-pixel basis.

In a series of 15 patients, the feasibility of diffusion-
weighted PSIF imaging after MACI was demonstrated with
high resolution in vivo [113] (Fig. 7). The results showed
that at follow-up (different time points) the diffusion
behavior of the transplants was changing. In the earlier
postoperative period (3–13 months), the diffusion was
more restricted, but the restriction was lower in the later
postoperative period. Even after a period of up to
42 months, there was still a difference in diffusion values
between repair tissue and normal hyaline cartilage.

Diffusion-weighted imaging and semi-quantitative analysis
can complement the information obtained from approaches
that rely on relaxation properties, such as T2-mapping or
dGEMRIC. In comparison with dGEMRIC, no contrast
medium is needed, the anatomical coverage is larger, the
spatial resolution higher, and the scan times shorter. Diffusion
therefore is a promising tool for compositional evaluation of
cartilage transplants in the future and may be added to
dGEMRIC and T2 mapping in a clinical setting for
evaluation of cartilage repair outcomes.

Feasibility in clinical routine and diagnostic value

Diffusion-weighted imaging does not require contrast agent,
and current sequences take approximately 5 min. The
technique therefore is appropriate for clinical routine MRI.
A disadvantage is that DWI is not quantitative, and therefore
is not as appropriate as T2 mapping or dGEMRIC for the
direct comparison of cartilage repair techniques. However,
the technique is more sensitive than T2 mapping and might
provide information on the nutrition of the repair tissue.

Fig. 7a–c Sagittal diffusion-weighted image (DWI) of a patient
60 months after matrix-associated autologous chondrocyte implan-
tation (MACI) of the medial femoral condyle (MFC) marked by
arrows. For DWI, a three-dimensional balanced steady-state gradi-

ent echo pulse sequence with diffusion weighting (3D-DW PSIF)
was used with 0 (a) and 75 mT·ms−1·m−1 (b) monopolar diffusion
gradient moments resulting in the divided semi-quantitative DWI
map (c)
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Monitoring degenerative changes in the joint
after cartilage repair

In the context of monitoring progression of osteoarthritis
(OA), methods for quantitative evaluation of articular
cartilage morphology (e.g., volume and thickness) have
been widely applied over recent years [114–116]. A
nomenclature for MRI-based measurements of cartilage
morphology and composition has been proposed [117]. A
recent study [118, 119] has evaluated the feasibility of
quantitative MRI analysis of cartilage morphology in 21
patients after autologous chondrocyte implantation (ACI).
Sagittal fat-suppressed 3D FLASH sequences were obtained
pre-ACI surgery and 1-year post-ACI surgery in the femoral
condyles. The cartilage volume, mean cartilage thickness,
and size of the cartilage-bone interface were determined.

Susceptibility artifacts were a problem in 3 of the 21
patients. The reproducibility error (coefficient of variation
%) of cartilage volume measurement was 3.9 and 4.4% for
the medial and lateral tibia, respectively, and 5.1% for the
femur. A 6% increase in cartilage volume and thickness
was observed in the treated femora (P<0.001 Wilcoxon)
relative to the pre-OP data, but no significant change in the
(nonoperated) tibia. Sensitivity to change for femoral
cartilage was improved when evaluating only the treated
portion of the femur in contrast to the total femur.
Morphological cartilage analysis following cartilage repair
procedures may help to determine the effectiveness of these
procedures to stop degenerative disease progression.

Clinical relevance

The composition of the repair tissue is deemed to be highly
significant for the clinical outcome in the long term.
Fibrous cartilage repair tissue is subjected to degeneration,
which leads to failure [120], and it has been demonstrated
that patients with hyaline-like repair tissue after ACI do
better than those with fibrous repair tissue [121]. Kreuz et
al. found that clinical outcome after microfracture declines
after 18 months [24]. Knutsen et al. [22] did not find a
significant difference between microfracture and ACI in
the knee at 2 years; however, the rate of hyaline-like tissue
was higher in ACI biopsies. At 5 years, no significant
differences were found either; however, there was no
failure in patients with hyaline-like repair tissue [122].
Saris et al. [123] found superior repair tissue after ACI in
histologic evaluation 1 year after surgery. Long-term
follow-up may show if higher repair tissue quality will
be associated with better outcome.

ACI repair tissue quality is subject to a high variability
[22, 26, 71, 105, 121, 124]. This apparently also applies to
MACI [38, 125], but while various MACI techniques are in
clinical use, there are few data regarding MACI repair-
tissue composition.

Due to its noninvasive nature and its reproducibility,
MRI has a substantial potential to evaluate the efficacy of
different cartilage repair techniques. The feasibility of
taking equivalent measurements at different sites if a
common MRI unit configuration is adhered to also gives
the option for use in multicenter studies. This may be of
importance since it is difficult to obtain high numbers of
patients at a single site. The possibility of direct evaluation
of GAG content of the repair tissue may shorten the follow-
up period that is needed to determine the efficacy of a
certain technique, since low GAG at short-term follow-up
will discourage clinicians from pursuing treatment. Patients
might therefore see a direct benefit from molecular MRI
imaging of cartilage repair.

MRI additionally gives a very precise estimate of
progressing degeneration and will be essential for objec-
tively assessing the long-term outcome of cartilage repair.

Conclusion

Exciting technologies have been developed recently for
evaluating cartilage repair in vivo. A challenge, however,
remains demonstrating that cartilage repair can prevent
joint degeneration, preferably in prospective randomized
controlled trials, and clinical validating imaging outcomes,
that is the correlation of imaging biomarkers with how a
patient feels and functions [3–7, 62]. Whereas morpholog-
ical assessment has been used to score or measure cartilage
lesion size and location, to determine cartilage deforma-
tional behavior in vivo and to look at the effect of cartilage
repair on cartilage volume/thickness loss with time,
compositional MR imaging techniques including T2,
dGEMRIC, and diffusion are most promising in studying
cartilage tissue maturation after repair.

There are marked differences in the structure and
composition of repair tissue based on the method of repair
as well as temporal changes as the tissue matures. Because
these tissue properties have substantial influence on the
relaxation and diffusion of water in the tissue, results of
functional cartilage imaging such as T2 mapping, dGEM-
RIC, and diffusion are likely to be different from mature
cartilage tissue. Additional research and validation is needed
to guide interpretation of the results of these techniques as they
are applied to the study and monitoring of cartilage repair.
Future studies will also be needed to determine whether MRI
is prognostic of clinical outcome and can replace arthroscopic
biopsy for monitoring repair-tissue histology. The major
challenge thus is not only in the continued technical
improvement of these tools, but in validating their correlation
with structural and clinical outcome.

Acknowledgements Funding for this study was provided by
Austrian Science Fund (FWF) FWF-TRP-Projekt L243-B15 and
FWF project: P18110 B15.

1590



References

1. Buckwalter JA, Mankin HJ (1998)
Articular cartilage: degeneration and
osteoarthritis, repair, regeneration, and
transplantation. Instr Course Lect
47:487–504

2. Steadman JR, Rodkey WG, Rodrigo JJ
(2001) Microfracture: surgical tech-
nique and rehabilitation to treat chon-
dral defects. Clin Orthop Relat Res:
S362–S369

3. Raynauld JP, Martel-Pelletier J,
Berthiaume MJ et al (2006) Long term
evaluation of disease progression
through the quantitative magnetic res-
onance imaging of symptomatic knee
osteoarthritis patients: correlation with
clinical symptoms and radiographic
changes. Arthritis Res Ther 8:R21

4. Conaghan PG, Felson D, Gold G et al
(2006) MRI and non-cartilaginous
structures in knee osteoarthritis. Os-
teoarthr Cartil 14(Suppl A):A87–A94

5. Cicuttini FM, Jones G, Forbes A et al
(2004) Rate of cartilage loss at two
years predicts subsequent total knee
arthroplasty: a prospective study. Ann
Rheum Dis 63:1124–1127

6. Torres L, Dunlop DD, Peterfy C et al
(2006) The relationship between spe-
cific tissue lesions and pain severity in
persons with knee osteoarthritis. Os-
teoarthr Cartil 14:1033–1040

7. Zhai G, Blizzard L, Srikanth V et al
(2006) Correlates of knee pain in older
adults: Tasmanian Older Adult Cohort
Study. Arthritis Rheum 55:264–271

8. Steadman JR, Briggs KK, Rodrigo JJ et
al (2003) Outcomes of microfracture
for traumatic chondral defects of the
knee: average 11-year follow-up. Ar-
throscopy 19:477–484

9. Steadman JR, Miller BS, Karas SG et al
(2003) The microfracture technique in
the treatment of full-thickness chondral
lesions of the knee in National Football
League players. J Knee Surg 16:83–86

10. Steadman JR, Rodkey WGBriggs KK
(2002) Microfracture to treat full-
thickness chondral defects: surgical
technique, rehabilitation, and outcomes.
J Knee Surg 15:170–6

11. Steadman JR, Rodkey WG, Briggs KK
et al (1999) [The microfracture tech-
nique in the management of complete
cartilage defects in the knee joint].
Orthopade 28:26–32

12. Jakob RP, Franz T, Gautier E et al
(2002) Autologous osteochondral
grafting in the knee: indication, results,
and reflections. Clin Orthop Relat Res
401:170–184

13. Hangody L, Feczko P, Bartha L et al
(2001) Mosaicplasty for the treatment
of articular defects of the knee and
ankle. Clin Orthop Relat Res 391
(Suppl):S328–S336

14. Bobic V (1999) [Autologous osteo-
chondral grafts in the management of
articular cartilage lesions]. Orthopade
28:19–25

15. Brittberg M, Lindahl A, Nilsson A et al
(1994) Treatment of deep cartilage
defects in the knee with autologous
chondrocyte transplantation. N Engl J
Med 331:889–895

16. Petersen L, Brittberg M, Lindahl A
(2003) Autologous chondrocyte trans-
plantation of the ankle. Foot Ankle Clin
8:291–303

17. Peterson L, Brittberg M, Kiviranta I et
al (2002) Autologous chondrocyte
transplantation. Biomechanics and
long-term durability. Am J Sports Med
30:2–12

18. Peterson L, Minas T, Brittberg M et al
(2003) Treatment of osteochondritis
dissecans of the knee with autologous
chondrocyte transplantation: results at
two to ten years. J Bone Joint Surg Am
85-A(Suppl 2):17–24

19. Peterson L, Minas T, Brittberg M et al
(2000) Two- to 9-year outcome after
autologous chondrocyte transplantation
of the knee. Clin Orthop Relat Res
374:212–234

20. Brittberg M (1999) Autologous chon-
drocyte transplantation. Clin Orthop
Relat Res 367(Suppl):S147–S155

21. Brittberg M, Lindahl A, Homminga G
et al (1997) A critical analysis of
cartilage repair. Acta Orthop Scand
68:186–191

22. Knutsen G, Engebretsen L, Ludvigsen
TC et al (2004) Autologous chondro-
cyte implantation compared with mi-
crofracture in the knee. A randomized
trial. J Bone Joint Surg Am 86-A:455–
464

23. Kreuz PC, Erggelet C, Steinwachs MR
et al (2006) Is microfracture of chon-
dral defects in the knee associated with
different results in patients aged 40
years or younger? Arthroscopy
22:1180–1186

24. Kreuz PC, Steinwachs MR, Erggelet C
et al (2006) Results after microfracture
of full-thickness chondral defects in
different compartments in the knee.
Osteoarthr Cartil 14:1119–1125

25. Szerb I, Hangody L, Duska Z et al
(2005) Mosaicplasty: long-term follow-
up. Bull Hosp Jt Dis 63:54–62

26. Henderson I, Tuy BOakes B (2004)
Reoperation after autologous chondro-
cyte implantation. Indications and
findings. J Bone Joint Surg Br 86:205–
211

27. Nehrer S, Minas T (2000) Treatment of
articular cartilage defects. Invest Radiol
35:639–46

28. Nehrer S, Breinan HA, Ramappa A et
al (1998) Chondrocyte-seeded collagen
matrices implanted in a chondral defect
in a canine model. Biomaterials
19:2313–2328

29. Dorotka R, Windberger U, Macfelda K
et al (2005) Repair of articular cartilage
defects treated by microfracture and a
three-dimensional collagen matrix.
Biomaterials 26:3617–629

30. Dorotka R, Bindreiter U, Macfelda K et
al (2005) Marrow stimulation and
chondrocyte transplantation using a
collagen matrix for cartilage repair.
Osteoarthr Cartil 13:655–664

31. Cortivo R, Brun P, Rastrelli A et al
(1991) In vitro studies on biocompati-
bility of hyaluronic acid esters. Bio-
materials 12:727–730

32. Campoccia D, Doherty P, Radice M et
al (1998) Semisynthetic resorbable
materials from hyaluronan esterifica-
tion. Biomaterials 19:2101–2127

33. Nehrer S, Domayer S, Dorotka R et al
(2006) Three-year clinical outcome
after chondrocyte transplantation using
a hyaluronan matrix for cartilage repair.
Eur J Radiol 57:3–8

34. Pavesio A, Abatangelo G, Borrione A
et al (2003) Hyaluronan-based scaf-
folds (Hyalograft C) in the treatment of
knee cartilage defects: preliminary
clinical findings. Novartis Found Symp
249:203–217, discussion 229–33, 234–
8, 239–241

35. Chu CR, Coutts RD, Yoshioka M et al
(1995) Articular cartilage repair using
allogeneic perichondrocyte-seeded bio-
degradable porous polylactic acid
(PLA): a tissue-engineering study. J
Biomed Mater Res 29:1147–1154

36. Behrens P, Bitter T, Kurz B et al (2006)
Matrix-associated autologous chondro-
cyte transplantation/implantation
(MACT/MACI)—5-year follow-up.
Knee 13:194–202

37. Steinwachs M, Kreuz PC (2007) Au-
tologous chondrocyte implantation in
chondral defects of the knee with a type
I/III collagen membrane: a prospective
study with a 3-year follow-up. Ar-
throscopy 23:381–387

38. Marcacci M, Berruto M, Brocchetta D
et al (2005) Articular cartilage engi-
neering with Hyalograft C: 3-year
clinical results. Clin Orthop Relat Res
435:96–105

1591



39. Marcacci M, Zaffagnini S, Kon E et al
(2002) Arthroscopic autologous chon-
drocyte transplantation: technical note.
Knee Surg Sports Traumatol Arthrosc
10:154–159

40. Grigolo B, Lisignoli G, Piacentini A et
al (2002) Evidence for redifferentiation
of human chondrocytes grown on a
hyaluronan-based biomaterial (HYAff
11): molecular, immunohistochemical
and ultrastructural analysis. Biomater-
ials 23:1187–1195

41. Eckstein F, Hudelmaier M, Wirth W et
al (2006) Double echo steady state
magnetic resonance imaging of knee
articular cartilage at 3 Tesla: a pilot
study for the Osteoarthritis Initiative.
Ann Rheum Dis 65:433–441

42. Link TM, Majumdar S, Peterfy C et al
(1998) High resolution MRI of small
joints: impact of spatial resolution on
diagnostic performance and SNR.
Magn Reson Imaging 16:147–155

43. Rubenstein JD, Li JG, Majumdar S et al
(1997) Image resolution and signal-to-
noise ratio requirements for MR imag-
ing of degenerative cartilage. AJR Am
J Roentgenol 169:1089–1096

44. Peterfy CG, Guermazi A, Zaim S et al
(2004) Whole-organ magnetic reso-
nance imaging score (WORMS) of the
knee in osteoarthritis. Osteoarthr Cartil
12:177–190

45. Kornaat PR, Ceulemans RY, Kroon
HM et al (2005) MRI assessment of
knee osteoarthritis: Knee Osteoarthritis
Scoring System (KOSS)—inter-obser-
ver and intra-observer reproducibility
of a compartment-based scoring
system. Skeletal Radiol 34:95–102

46. Conaghan PGHD, Tennant A, Amin S,
Clancy M, Guermazi A et al (2004)
Evaluation an MRI scoring system for
osteoarthritis of the knee using modern
psychometric approaches. Osteoarthr
Cartil 12(Suppl B):118 [abstract]

47. Hunter DJ, Lo GH, Gale D et al (2008)
The reliability of a new scoring system
for knee osteoarthritis MRI and the
validity of bone marrow lesion assess-
ment: BLOKS (Boston Leeds Osteoar-
thritis Knee Score). Ann Rheum Dis
67:206–211

48. Yoshioka H, Stevens K, Hargreaves BA
et al (2004) Magnetic resonance imag-
ing of articular cartilage of the knee:
comparison between fat-suppressed
three-dimensional SPGR imaging, fat-
suppressed FSE imaging, and
fat-suppressed three-dimensional
DEFT imaging, and correlation with
arthroscopy. J Magn Reson Imaging
20:857–864

49. Mohr A, Priebe M, Taouli B et al
(2003) Selective water excitation for
faster MR imaging of articular cartilage
defects: initial clinical results. Eur Ra-
diol 13:686–689

50. Kawahara Y, Uetani M, Nakahara N et al
(1998) Fast spin-echoMR of the articular
cartilage in the osteoarthrotic knee. Cor-
relation ofMR and arthroscopic findings.
Acta Radiol 39:120–125

51. Broderick LS, Turner DA, Renfrew DL
et al (1994) Severity of articular
cartilage abnormality in patients with
osteoarthritis: evaluation with fast spin-
echo MR vs arthroscopy. AJR Am J
Roentgenol 162:99–103

52. Disler DG, McCauley TR, Kelman CG
et al (1996) Fat-suppressed three-di-
mensional spoiled gradient-echo MR
imaging of hyaline cartilage defects in
the knee: comparison with standard
MR imaging and arthroscopy. AJR Am
J Roentgenol 167:127–132

53. Recht MP, Kramer J, Marcelis S et al
(1993) Abnormalities of articular carti-
lage in the knee: analysis of available
MR techniques. Radiology 187:473–
478

54. Recht MP, Piraino DW, Paletta GA et al
(1996) Accuracy of fat-suppressed
three-dimensional spoiled gradient-
echo FLASH MR imaging in the
detection of patellofemoral articular
cartilage abnormalities. Radiology
198:209–212

55. Bredella MA, Tirman PF, Peterfy CG et
al (1999) Accuracy of T2-weighted fast
spin-echo MR imaging with fat satura-
tion in detecting cartilage defects in the
knee: comparison with arthroscopy in
130 patients. AJR Am J Roentgenol
172:1073–1080

56. Masi JN, Sell CA, Phan C et al (2005)
Cartilage MR imaging at 3.0 versus that
at 1.5 T: preliminary results in a porcine
model. Radiology 236:140–150

57. Link TM, Sell CA, Masi JN et al (2006)
3.0 vs 1.5 T MRI in the detection of
focal cartilage pathology—ROC anal-
ysis in an experimental model. Os-
teoarthr Cartil 14:63–70

58. Lee KY, Masi JN, Sell CA et al (2005)
Computer-aided quantification of focal
cartilage lesions using MRI: accuracy
and initial arthroscopic comparison.
Osteoarthr Cartil 13:728–737

59. McGibbon CA, Trahan CA (2003)
Measurement accuracy of focal carti-
lage defects from MRI and correlation
of MRI graded lesions with histology: a
preliminary study. Osteoarthr Cartil
11:483–493

60. Graichen H, Al-Shamari D,
Hinterwimmer S et al (2005) Accuracy
of quantitative magnetic resonance
imaging in the detection of ex vivo
focal cartilage defects. Ann Rheum Dis
64:1120–1125

61. Marlovits S, Trattnig S (2006) Cartilage
repair. Eur J Radiol 57:1–2

62. Marlovits S, Singer P, Zeller P et al
(2006) Magnetic resonance observation
of cartilage repair tissue (MOCART)
for the evaluation of autologous chon-
drocyte transplantation: determination
of interobserver variability and corre-
lation to clinical outcome after 2 years.
Eur J Radiol 57:16–23

63. Trattnig S, Millington SA, Szomolanyi
P et al (2007) MR imaging of osteo-
chondral grafts and autologous chon-
drocyte implantation. Eur Radiol
17:103–118

64. Trattnig S, Ba-Ssalamah A, Pinker K et
al (2005) Matrix-based autologous
chondrocyte implantation for cartilage
repair: noninvasive monitoring by high-
resolution magnetic resonance imaging.
Magn Reson Imaging 23:779–787

65. Winalski CS, Gupta KB (2003) Mag-
netic resonance imaging of focal artic-
ular cartilage lesions. Top Magn Reson
Imaging 14:131–144

66. Brittberg M, Winalski CS (2003) Eva-
luation of cartilage injuries and repair. J
Bone Joint Surg Am 85-A (Suppl
2):58–69

67. Trattnig S, Pinker K, Krestan C et al
(2006) Matrix-based autologous chon-
drocyte implantation for cartilage repair
with HyalograftC: two-year follow-up
by magnetic resonance imaging. Eur J
Radiol 57:9–15

68. Weissleder R, Mahmood U (2001)
Molecular imaging. Radiology
219:316–333

69. Trattnig S, Mamisch TC, Welsch GH et
al (2007) Quantitative T2 mapping of
matrix-associated autologous chondro-
cyte transplantation at 3 Tesla: an in
vivo cross-sectional study. Invest Ra-
diol 42:442–448

70. Trattnig S, Marlovits S, Gebetsroither S
et al (2007) Three-dimensional delayed
gadolinium-enhanced MRI of cartilage
(dGEMRIC) for in vivo evaluation of
reparative cartilage after matrix-asso-
ciated autologous chondrocyte trans-
plantation at 3.0T: preliminary results. J
Magn Reson Imaging 26:974–982

71. Watanabe A, Wada Y, Obata T et al
(2005) Time course evaluation of
reparative cartilage with MR imaging
after autologous chondrocyte implan-
tation. Cell Transplant 14:695–700

72. Glaser C, Mendlik T, Dinges J et al
(2006) Global and regional reproduci-
bility of T2 relaxation time measure-
ments in human patellar cartilage.
Magn Reson Med 56:527–534

1592



73. Mosher TJ, Dardzinski BJ (2004) Car-
tilage MRI T2 relaxation time mapping:
overview and applications. Semin
Musculoskelet Radiol 8:355–368

74. Burstein D, Gray ML (2006) Is MRI
fulfilling its promise for molecular
imaging of cartilage in arthritis? Os-
teoarthr Cartil 14:1087–1090

75. Lusse S, Claassen H, Gehrke T et al
(2000) Evaluation of water content by
spatially resolved transverse relaxation
times of human articular cartilage.
Magn Reson Imaging 18:423–430

76. Menezes NM, Gray ML, Hartke JR et
al (2004) T2 and T1rho MRI in artic-
ular cartilage systems. Magn Reson
Med 51:503–509

77. Nieminen MT, Rieppo J, Toyras J et al
(2001) T2 relaxation reveals spatial
collagen architecture in articular carti-
lage: a comparative quantitative MRI
and polarized light microscopic study.
Magn Reson Med 46:487–493

78. Xia Y, Moody JB, Alhadlaq H (2002)
Orientational dependence of T2 relax-
ation in articular cartilage: A micro-
scopic MRI (microMRI) study. Magn
Reson Med 48:460–469

79. Dardzinski BJ, Mosher TJ, Li S et al
(1997) Spatial variation of T2 in human
articular cartilage. Radiology 205:546–
550

80. Watrin-Pinzano A, Ruaud JP, Cheli Y et
al (2004) Evaluation of cartilage repair
tissue after biomaterial implantation in
rat patella by using T2 mapping.
Magma 17:219–228

81. Goodwin DW, Wadghiri YZDunn JF
(1998) Micro-imaging of articular car-
tilage: T2, proton density, and the
magic angle effect. Acad Radiol 5:790–
798

82. Goodwin DW, Zhu HDunn JF (2000)
In vitro MR imaging of hyaline carti-
lage: correlation with scanning electron
microscopy. AJR Am J Roentgenol
174:405–409

83. Grunder W (2006) MRI assessment of
cartilage ultrastructure. NMR Biomed
19:855–876

84. Nissi MJ, Rieppo J, Toyras J et al
(2006) T(2) relaxation time mapping
reveals age- and species-related diver-
sity of collagen network architecture in
articular cartilage. Osteoarthr Cartil
14:1265–1271

85. Shinar H, Navon G (2006) Multinuc-
lear NMR and microscopic MRI studies
of the articular cartilage nanostructure.
NMR Biomed 19:877–893

86. Goebel JC, Watrin-Pinzano A,
Bettembourg-Brault I et al (2006) Age-
related quantitative MRI changes in
healthy cartilage: preliminary results.
Biorheology 43:547–551

87. Mosher TJ, Dardzinski BJ, Smith MB
(2000) Human articular cartilage: in-
fluence of aging and early symptomatic
degeneration on the spatial variation of
T2—preliminary findings at 3 T. Radi-
ology 214:259–266

88. Mosher TJ, Liu Y, Yang QX et al
(2004) Age dependency of cartilage
magnetic resonance imaging T2 relax-
ation times in asymptomatic women.
Arthritis Rheum 50:2820–2828

89. White LM, Sussman MS, Hurtig M et
al (2006) Cartilage T2 assessment:
differentiation of normal hyaline
cartilage and reparative tissue after
arthroscopic cartilage repair in equine
subjects. Radiology 241:407–414

90. Welsch GH, Mamisch TC, Domayer S,
Dorotka R, Kutsch-Lissberg F,
Marlovits S, White L, Trattnig S (2008)
Cartilage T2 assessment at 3 Tesla: in
vivo differentiation of normal
hyaline cartilage and reparative tissue
in patients after two different
cartilage repair procedures - initial
experiences. Radiology
247(1):154–161

91. Gobbi A, Nunag P, Malinowski K
(2005) Treatment of full thickness
chondral lesions of the knee with
microfracture in a group of athletes.
Knee Surg Sports Traumatol Arthrosc
13:213–221

92. Domayer SE, Kutscha-Lissberg F,
Welsch GH, et al (2008) T2 mapping in
the knee after microfracture at 3.0 T:
correlation of global T2 values and
clinical outcome - preliminary results.
Osteoarthr Cartil 16:903–908
doi:10.1016/j.joca.2007.11.014

93. Kurkijarvi JE, Mattila L, Ojala RO et al
(2007) Evaluation of cartilage repair
in the distal femur after autologous
chondrocyte transplantation using
T2 relaxation time and dGEMRIC.
Osteoarthr Cartil 15:372–378

94. Lohmander LS (1994) Articular carti-
lage and osteoarthrosis. The role of
molecular markers to monitor break-
down, repair and disease. J Anat 184(Pt
3):477–492

95. Bashir A, Gray ML, Hartke J et al
(1999) Nondestructive imaging of
human cartilage glycosaminoglycan
concentration by MRI. Magn Reson
Med 41:857–865

96. Burstein D, Velyvis J, Scott KT et al
(2001) Protocol issues for delayed
Gd(DTPA)(2-)-enhanced MRI
(dGEMRIC) for clinical evaluation of
articular cartilage. Magn Reson Med
45:36–41

97. Kim YJ, Jaramillo D, Millis MB et al
(2003) Assessment of early osteoar-
thritis in hip dysplasia with delayed
gadolinium-enhanced magnetic reso-
nance imaging of cartilage. J Bone
Joint Surg Am 85-A:1987–1992

98. Tiderius CJ, Olsson LE, Leander P et al
(2003) Delayed gadolinium-enhanced
MRI of cartilage (dGEMRIC) in early
knee osteoarthritis. Magn Reson Med
49:488–492

99. Roos EM, Dahlberg L (2005) Positive
effects of moderate exercise on gly-
cosaminoglycan content in knee carti-
lage: a four-month, randomized,
controlled trial in patients at risk of
osteoarthritis. Arthritis Rheum
52:3507–514

100. McKenzie CA, Williams A, Prasad PV
et al (2006) Three-dimensional delayed
gadolinium-enhanced MRI of cartilage
(dGEMRIC) at 1.5T and 3.0T. J Magn
Reson Imaging 24:928–933

101. Kimelman T, Vu A, Storey P et al
(2006) Three-dimensional T1 mapping
for dGEMRIC at 3.0 T using the Look
Locker method. Invest Radiol 41:198–
203

102. Watanabe A, Wada Y, Obata T et al
(2006) Delayed gadolinium-enhanced
MR to determine glycosaminoglycan
concentration in reparative cartilage
after autologous chondrocyte implan-
tation: preliminary results. Radiology
239:201–208

103. Wayne JS, Kraft KA, Shields KJ et al
(2003) MR imaging of normal and
matrix-depleted cartilage: correlation
with biomechanical function and bio-
chemical composition. Radiology
228:493–499

104. Gillis A, Bashir A, McKeon B et al
(2001) Magnetic resonance imaging of
relative glycosaminoglycan distribution
in patients with autologous chondro-
cyte transplants. Invest Radiol 36:743–
748

105. Tins BJ, McCall IW, Takahashi T et al
(2005) Autologous chondrocyte im-
plantation in knee joint: MR imaging
and histologic features at 1-year follow-
up. Radiology 234:501–508

106. Trattnig S, Mamisch TC, Pinker K,
Domayer S, Szomolanyi P, Marlovits S,
Kutscha-Lissberg F, Welsch GH (2008)
Differentiating normal hyaline cartilage
from post-surgical repair tissue using
fast gradient echo imaging in delayed
gadolinium enhanced MRI - (dGEM-
RIC) at 3 Tesla. Eur Radiol 18
(6):1251–1259

107. Minas T, Nehrer S (1997) Current
concepts in the treatment of articular
cartilage defects. Orthopedics 20:525–
538

1593

http://dx.doi.org/10.1016j.joca.2007.11.014


108. Ghivizzani SC, Oligino TJ, Robbins
PD et al (2000) Cartilage injury and
repair. Phys Med Rehabil Clin N Am
11:289–307

109. Kurkijarvi JE, Nissi MJ, Kiviranta I et al
(2004) Delayed gadolinium-enhanced
MRI of cartilage (dGEMRIC) and T2
characteristics of human knee articular
cartilage: topographical variation and
relationships to mechanical properties.
Magn Reson Med 52:41–46

110. Williams A, Gillis A, McKenzie C et al
(2004) Glycosaminoglycan distribution
in cartilage as determined by delayed
gadolinium-enhanced MRI of cartilage
(dGEMRIC): potential clinical applica-
tions. AJR Am J Roentgenol 182:167–
172

111. Miller KL, Hargreaves BA, Gold GE et
al (2004) Steady-state diffusion-
weighted imaging of in vivo knee
cartilage. Magn Reson Med 51:394–
398

112. Deoni SC, Peters TMRutt BK (2004)
Quantitative diffusion imaging with
steady-state free precession. Magn
Reson Med 51:428–433

113. Mamisch TC, Menzel MI, Welsch GH
et al (2008) Steady-state diffusion im-
aging for MR in-vivo evaluation of
reparative cartilage after matrix-
associated autologous chondrocyte
transplantation at 3 Tesla—preliminary
results. Eur J Radiol 65:72–79

114. Eckstein F, Burstein D, Link TM
(2006) Quantitative MRI of cartilage
and bone: degenerative changes in
osteoarthritis. NMR Biomed 19:822–
854

115. Eckstein F, Hudelmaier M, Putz R
(2006) The effects of exercise on
human articular cartilage. J Anat
208:491–512

116. Eckstein F, Cicuttini F, Raynauld JP et
al (2006) Magnetic resonance imaging
(MRI) of articular cartilage in knee
osteoarthritis (OA): morphological as-
sessment. Osteoarthr Cartil 14(Suppl
A):A46–A75

117. Eckstein F, Ateshian G, Burgkart R et
al (2006) Proposal for a nomenclature
for magnetic resonance imaging based
measures of articular cartilage in os-
teoarthritis. Osteoarthr Cartil 14:974–
83

118. Glaser C, Tins BJ, Trumm CG et al
(2007) Quantitative 3D MR evaluation
of autologous chondrocyte implantation
in the knee: feasibility and initial
results. Osteoarthr Cartil 15:798–807

119. Bashir A, Gray ML, Boutin RD et al
(1997) Glycosaminoglycan in articular
cartilage: in vivo assessment with
delayed Gd(DTPA)(2−)-enhanced MR
imaging. Radiology 205:551–558

120. Nehrer S, Spector M, Minas T (1999)
Histologic analysis of tissue after failed
cartilage repair procedures. Clin Orthop
Relat Res 365:149–162

121. Henderson I, Lavigne P, Valenzuela H
et al (2007) Autologous chondrocyte
implantation: superior biologic proper-
ties of hyaline cartilage repairs. Clin
Orthop Relat Res 455:253–261

122. Knutsen G, Drogset JO, Engebretsen L
et al (2007) A randomized trial com-
paring autologous chondrocyte im-
plantation with microfracture. Findings
at five years. J Bone Joint Surg Am
89:2105–2112

123. Saris DB, Vanlauwe J, Victor J et al
(2008) Characterized chondrocyte im-
plantation results in better structural
repair when treating symptomatic
cartilage defects of the knee in a
randomized controlled trial versus mi-
crofracture. Am J Sports Med 36:235–
246

124. Henderson IJTB, Connell D, Oakes B,
Hettwer WH (2003) Prospective clini-
cal study of autologous chondrocyte
implantation and correlation with MRI
at three and 12 months. J Bone Joint
Surg Br 85:1060–1066

125. Gobbi A, Kon E, Berruto M et al
(2006) Patellofemoral full-thickness
chondral defects treated with Hyalo-
graft-C: a clinical, arthroscopic, and
histologic review. Am J Sports Med
34:1763–1773

1594


	MR imaging of cartilage and its repair in the knee - a review
	Abstract
	Introduction
	Cartilage repair surgery
	MR imaging
	Preoperative estimation of lesion size, nature, and location
	MR technique and sequences
	Scoring methods
	Accuracy of MRI for chondral lesions—in vitro and in vivo studies

	Evaluation of the quality of tissue-repair processes after surgical treatment
	Measurement of T2 in cartilage
	T2 mapping in cartilage repair
	Feasibility in clinical routine and diagnostic value
	Delayed gadolinium-enhanced MRI of cartilage: dGEMRIC
	dGEMRIC for the assessment of cartilage repair
	Feasibility in clinical routine and diagnostic value
	Diffusion techniques in cartilage repair
	Feasibility in clinical routine and diagnostic value
	Monitoring degenerative changes in the joint after cartilage repair


	Clinical relevance
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


