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Abstract This paper reviews the trophic ecology of
benthic suspension feeders in Antarctic shelf communi-
ties, studied within SCAR’s EASIZ Programme, in
comparison with published information from other seas.
Dense benthic suspension-feeder communities capture
large quantities of particles and may directly regulate
primary, and indirectly, secondary production in littoral
food chains. Most work has been performed in tem-
perate and tropical seas; however, little is known about
suspension feeders in cold environments. Recent studies
on Antarctic littoral benthic suspension feeders suggest
the period of winter inactivity may last only a few weeks.
This contrasts with the hypothesis that in Antarctic
communities there is a prolonged period of minimal
activity lasting at least 6 months during the austral
winter. Results from other oceans may explain how
dense benthic communities could develop under such
conditions. Alternative food sources, i.e. the “fine frac-
tion”, sediment resuspension, lateral advection and ef-
ficient food assimilation may play a significant role in
the development of suspension-feeder dominated, very
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diversified, high biomass and three-dimensionally
structured communities on the Antarctic shelf.

Introduction
What are we talking about?

Primary producers, together with the products of their
biological activity, generate the most abundant available
food for heterotrophic organisms in the oceans: the se-
ston. Small particles and cells predominate in such sus-
pended communities (Wottom 1994), providing food for
primary consumers and substrata for bacteria. The
physical properties of seawater allow living creatures
and particulate matter to remain in suspension, thereby
creating a niche for a trophic strategy that does not
occur on land: suspension feeding (Jergensen 1990).
Suspension feeders are common on all sea-bottom types,
and are the main animal component in hard-bottom
communities (Gili and Coma 1998).

Filtration rates of benthic suspension feeders are
typically between 1 and 10 m® m 2 day ' (Riisgard et al.
1996a) and dense assemblages of benthic suspension
feeders may thus have a pronounced grazing effect
(Kimmerer et al. 1994; Riisgard 1998). Large parts of
Antarctic benthic communities consist of sessile sus-
pension feeders such as sponges, cnidarians, bryozoans,
ascidians and certain echinoderms (Dayton et al. 1986).
Fully developed epifaunal assemblages in Antarctica
may not be quite as diverse as some tropical reefs, but
between 10 and 1,000 m water depth benthic biomass in
the Antarctic is higher than in temperate and subtropical
communities (Brey and Gerdes 1997). Antarctic benthic
communities are highly structured, with a complex
functional diversity and a considerable degree of
patchiness in species composition at small or interme-
diate spatial scales (Gutt and Starmans 1998).

The ecological role of suspension feeders in Antarc-
tica is related to the trophic ecology and environmental
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conditions that facilitate the processes of energy transfer
between benthic and water-column systems. In this re-
view we focus in particular on: (1) the trophic adapta-
tions of suspension feeders that make them successful
foragers worldwide, and (2) the processes responsible for
the availability of food to suspension feeders, such as
vertical transport, resuspension and lateral advection.

Exploitation of food resources: suspension feeding
as an ecologically efficient strategy

Life in patches: a food capture strategy at individual,
colony, population and community level

Suspension-feeding colonies or individuals interfere
with current flow and they have evolved a multitude of
adaptations designed to attract and trap particles in

Fig. 1 Idealized diagram of Antarctic shelf suspension-feeder
communities considering the patch theory explained in the text.
The development of dense, three-dimensional communities involves
a continuous process of patch spreading and aggregation during
slow succession

suspension (Gili and Coma 1998). Downstream of
those structures that are exposed to the flow, such as
the axis of a pennatulacean, viscosity increases and
turbulence also increases slightly, generating small
eddies (Vogel 1994). This hydrodynamic effect may
help not only to increase the residence time of particles
on the downstream side of the colony in times of
heavy flow, but also to enhance settling of particles in
the area adjacent to such structures. This phenomenon
is of great importance when different species of sus-
pension feeders aggregate in the same community
(Fig. 1).

Pliancy of colonies is one of the most widespread
adaptations employed to meet the conflicting demands
of minimum drag and maximum flux of capturable
particles through the feeding structures (Harvell and
LaBarbera 1985). As an adaptation to slow flow rates,
the colonies of certain species of ascidians and bryozo-
ans have evolved systems for circulating water through
their feeding structures and refreshing the colony
boundary layer (Vogel 1994). Such conditions are not a
problem in active suspension feeders or in filter feeders
that pump water through an internal exchange circuit




(such as sponges, ascidians, etc.), which is more efficient
at moderate flow rates (Shimeta and Jumars 1991)
though considerably less efficient at higher flow rates
(Wildish and Miyares 1990).

The formation of monospecific patches not only
lowers competition (Best and Thorpe 1986) but also
improves capture rates among the colonies of the species
concerned. Experiments on alcyonarians (MacFadden
1986), actinians and corals (Sebens et al. 1996) have
shown that particle capture rates vary among colonies of
different size within the population. This, in turn, gives
rise to a spatial pattern determined by the optimum
distance between colonies or individuals (Eckman and
Duggins 1993). Larger colonies have been observed to
be more efficient at lower rates of flow, and vice versa.
Maximum and mean colony size in each patch are de-
termined by the total food concentration and the in-
tensity of water movement (Anthony 1997). The effect in
dense aggregations of barnacles is similar (Pullen and
LaBarbera 1991), with larger, asymmetrically shaped
aggregates oriented towards the prevailing currents and
smaller, more evenly shaped aggregates where current
flow is bidirectional. Large assemblages of suspension
feeders can deplete food sources under low flow condi-
tions (Best and Thorpe 1986). However, because fast
flow is the prevailing condition, enhancement of feeding
among neighbours is the more significant interaction
(Okamura 1990).

Benthic suspension feeders as optimal foragers

Recent studies of natural feeding show that suspension
feeders can feed on a broad spectrum of prey items,
which range from bacteria to zooplankton and detrital
particulate organic matter (POM). Some taxa exhibit an
important diet variability among species (Sorokin
1991), whereas the diet appears to be rather homoge-
neous in other taxa (Gili et al. 1998). The diet spectrum
within most species is rather broad. Examples are oc-
tocorals (Fabricius et al. 1995; Ribes et al. 1999a),
sponges (Ribes et al. 1999b), ascidians (Klumpp 1984;
Ribes et al. 1998) and hydrozoans (Gili et al. 1998).
Even species that feed mainly on zooplankton may
prefer different prey types and sizes (Sebens and Koehl
1984) (Fig. 2). Certain suspension feeders may change
their diet when different food becomes available (e.g.
tropical crinoids, Rutman and Fishelson 1969; polar
octocorals, Slattery et al. 1997; temperate sponges and
ascidians, Ribes et al. 1998, 1999b). Thus, much of the
diet variability among species of the same taxa may be
due to differences in availability of resources in their
environment. Few studies, however, have accounted for
seasonal differences in feeding.

The exceptional ecological success of benthic suspen-
sion feeders appears to be due to two main features of
prey capture mechanisms. First, there is the low cost of
prey capture, which is almost nil in passive suspension
feeders, while it is below 5% in active ones (Larsen and
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Riisgard 1996). Second, there is the heterogeneity of their
diet, mainly restricted by morphological constraints
(Okamura 1990), which agrees with the hypothesis that
prey selection cannot be a common phenomenon in or-
ganisms that depend on flow to bring resources to their
capture structures (Hughes 1980). This trophic plasticity
may represent an advantage because it might attenuate
the effects of seasonal environmental fluctuations in
availability of different resources in the water column.

Seston ergo particles: the role of the fine fraction

The major part of marine primary production is not
consumed by herbivores (Fenchel 1988) but is mainly
transferred to the detrital and microbial food web
(Azam et al. 1983), the latter dominating pelagic
plankton communities in terms of biomass (Wottom
1994) and production (Burkill et al. 1993). The small
particles and cells, which dominate water-column com-
munities, provide surface area for bacterial colonization
(Fenchel and Jergensen 1977), which increases their
quality as a feeding resource and favours their utilization
(Mann 1988).

Sessile predators must be adapted to capture the most
abundant food items, i.e. detrital POC and live carbon in
the forms of pico- and nanoplankton. Uptake of Dis-
solved Organic Matter (DOM) has been reported and
discussed for a wide range of invertebrates (Stephens
1982; Frost 1987), but it is generally felt that DOM
represents a small source of dietary requirements for
marine invertebrates (Valiela 1995).

Live carbon is assimilated to a greater degree than
detrital POC but the type of live carbon will affect its
assimilation by suspension feeders (Wottom 1994). Plant
particles colonized by microorganisms provide a better
food value (Mann 1988), besides containing a high
concentration of nitrogen. Feeding rates depend on the
food quality and quantity; when both are high, lower gut
retention time is required to extract nutritive products,
and the opposite applies especially when the quality of
food is poor (Taghon 1981). Another factor that could
modify feeding rates is temperature, but animals that are
adapted to very cold temperatures do not show a posi-
tive relationship with temperature increase (Anderson
and Dyrssen 1989).

Filter feeders can modify the seston composition by
several mechanisms: sponges may break up aggregates
into small particles and/or introduce other particles and
substances generated by their feeding activity into the
system (e.g. Witte et al. 1997); other organisms such as
gorgonians decrease the velocity of the particle so they
become available to other organisms. Many species ag-
gregate small particles in the form of faecal pellets,
which are an important food source for deposit feeders
(e.g. Amouroux et al. 1990) or for near-bottom micro-
bial production. The bivalve Laternula elliptica plays an
important role in enhancing particle flux from the water
column to the sea bed through biodeposition and may
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Fig. 2 Prey type and prey size in different suspension-feeder
groups, modified after Riedl (1966), considering the recent findings
on suspension feeders’ natural diet, which increased the range of
quality and quantity of prey both at small size (pico- and
nanoplankton, continuous prey) and at large size (zooplankton
and microplankton, occasional prey). Shaded areas and black
crosses refer to information that has been added to Ried!’s original
figure. Potential for filtering water (right side) of each group is also
shown

thus provide food for other benthic fauna, particularly
in phytoplankton-impoverished near-shore waters (Ahn
1993).

Many benthic invertebrates have the capacity to feed
on the fine fraction (i.e., pico-, nano-, microplankton
and detrital POM) of the water column (Jorgensen et al.
1984). Studies on temperate bivalves (Fréchette et al.
1989; Riisgard 1998), tropical and temperate sponges
(Pile et al. 1996) and on temperate and tropical oc-
tocorals (Ribes et al. 1999a) have shown, or suggest, a
high grazing impact of benthic suspension feeders on
near-bottom plankton. A recent study on the Antarctic
hydroid Oswaldella antarctica shows a diet based on the
fine fraction of seston and small zooplankton organisms
(Orejas et al., in press). The importance of the fine
fraction in the diet of Antarctic suspension feeders is
also demonstrated by the hydroid Silicularia rosea off
King George Island (Gili et al. 1996), other species of
sponges (Gaino et al. 1994) and brittle stars (Kellogg
et al. 1982), which mainly ingest benthic diatoms and
probably other detritus.

The activity of benthic suspension feeders also influ-
ences the nutrient concentration near the sea floor. High
values of organic nutrients compared with their con-
centration in the water column are evidence for the role
of benthic communities in organic matter remineraliza-
tion (e.g. Davoult et al. 1990; Orejas et al. 2000).

The importance of large prey: zooplankton
as an example

Capture of zooplankton prey items by benthic passive
suspension feeders such as hydrozoan and anthozoan
species has been demonstrated in many temperate and
tropical regions (Sebens et al. 1996; Gili et al. 1998). Its
contribution to the requirements of benthic suspension
feeders is still a little-studied subject. Recent studies in-
dicate the trophic significance of zooplankton in coral
reef metabolism (Sorokin 1995), contributing signifi-
cantly to the carbon and nutrient budget of some coral
species (Dubinsky and Jokiel 1994).

Studies on the diet and feeding rate of reportedly
macrophagous (mainly zooplanktivorous) suspension
feeders (e.g. the hydrozoan Campanularia everta and the
gorgonian Paramuricea clavata, Coma et al. 1998) have
revealed that (1) the amount of zooplanktonic prey
items captured could not cover the energy demand of the
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species, and (2) in terms of ingestion, detrital POM
contributed about 50% to the diet. Mixed diets with
frequent or occasional zooplankton prey capture are
needed to satisfy energy needs of temperate benthic
suspension feeders (Coma et al. 1995).

In the Antarctic, many zooplankton species under-
take extended vertical migrations (i.e. more than 400 m),
with salps, copepods or krill approaching the shelf
bottom almost daily (Shulenberger et al. 1984). More-
over, several zooplankton species migrate to deep waters
during austral winter to hibernate (Smith and Schnack-
Schiel 1990). Recent gastrovascular cavity content
analysis of Weddell Sea shelf benthic suspension feeders,
such as the hydroid Tubularia ralphii and the anthozoans
Clavularia cf frankliniana and Anthomastus bathyproctus
(Orejas et al., in press), demonstrated significant feeding
on zooplankton.

Ecological impact of suspension feeders in coastal
and shelf ecosystems: the grazing impact

Benthic filter-feeding populations can have a pro-
nounced grazing impact on the plankton in littoral sys-
tems (Kimmerer et al. 1994; Gili and Coma 1998).
Without externally generated currents and mixing,
however, only a thin layer of near-bottom water will be
subject to “‘biomixing” by the action of inhalant and
exhalant currents generated by the filter-feeders them-
selves. A number of models on the effects of filter feeders
on phytoplankton concentration gradients (Nowell and
Jumars 1994; Larsen and Riisgard 1996) and empirical
evidence (Fréchette et al. 1989; Riisgard et al. 1996b)
indicate that usually turbulence and resuspension gen-
erated by currents are the primary mixing forces,
whereas biological mixing may be dominant under low
current conditions.

The distinct trophic plasticity of benthic suspension
feeders indicates that in littoral ecosystems their preda-
tory impact should be higher than food selection theo-
ries previously assumed. The grazing impact of several
species is summarized and compared with data on two
Antarctic mollusc species, the bivalves Adamussium
colbecki (Chiantore et al. 1998) and L. elliptica (Ahn
1993). According to Table 1, grazing impact of Ant-
arctic species seems to be of the same order of magnitude
as in temperate and tropical seas. Recent observations
on littoral ascidians (Kowalke 1999), however, indicate
filtration rates 1 order of magnitude less than those of
non-Antarctic species.

Seasonality and physiological adaptations of benthic
suspension feeders: a time-scale approach

The activity of benthic suspension feeders in temperate
and polar seas is strongly seasonal, in contrast to most
tropical environments (Harrison and Wallace 1990).
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Similar seasonal activity patterns, e.g. feeding-related
polyp expansion in anthozoans (Robbins and Shick
1980), have been observed in temperate (Coma et al.
2000) and cold-water (Barnes and Clarke 1995) sus-
pension-feeder populations.

Seasonality in activity is either coupled to water tem-
perature (Giese and Pearse 1974) or to trophic constraints
(Clarke 1980). There is little direct experimental evidence
for temperature control, however there is increasing evi-
dence for trophic control of life-cycles in benthic sus-
pension feeders inhabiting cold (Clarke 1991) and
temperate (Hughes 1989; Coma et al. 2000) environments.

Life in a hydrodynamically active environment:
hydrodynamics as a stochastic mechanism
of food supply

Physical-biological coupling

Prey availability in the water column is dependent
largely on hydrographic conditions. For benthic sus-
pension feeders, input of suspended food is closely re-
lated to flow intensity and periodicity (Wildish and
Kristmanson 1997). Therefore, water movement plays a
fundamental role in determining diversity, biomass,
structure and distribution of suspension-feeder com-
munities (Fig. 3). Near-bottom currents enhanced by
topographic features and internal waves create a hy-
drodynamical environment which favours particle sedi-
mentation at the slope and near it (Frederiksen et al.
1992). Substratum heterogeneity and biogenic structures
interfere with the flow pattern, increasing its turbulence,
which enhances particle capture by benthic suspension
feeders (Witte et al. 1997). These environmental condi-
tions favour the development of dense populations of
suspension feeders (Rice et al. 1990).

There are several examples of a wide distribution and
dominance of benthic suspension feeders throughout
continental shelves. The pennatulacean Pennatula
aculeata represents the major component of benthic
macrofauna of the Gulf of Maine (Langton et al. 1990).
The ophiuroid Ophiothrix fragilis dominates the sessile
epifaunal pebble community of the English Channel,
with patches of over 200 ind. m 2 (Davoult et al. 1990).
Banks of the coral Lophelia pertusa associated mainly
with a rich sponge and bryozoan fauna are frequent
throughout the continental shelf and slope in the north-
eastern Atlantic (Jensen and Frederiksen 1992). Other
examples of dense benthic suspension-feeder assemblages
present in the shelf-slope region, and therefore subject to
similar conditions of considerable water motion and
abundant suspended material, are the high concentra-
tions of hexactinellid sponges in the North Atlantic (Rice
et al. 1990), the coral banks with associated brittle stars
and crinoids in Florida (Neumann et al. 1977), and the
antipatharians on top of the vertical walls of seamounts
(Kaufmann et al. 1989). All these dense assemblages live
in areas of considerable water movement and abundant
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Fig. 3 Bottom-water currents along the continental shelf and
slope, composed of oscillatory, longitudinal and lateral coast
currents including resuspension processes (black circular arrows in
the general view, and white arrows in the detailed view) (modified
from Riedl 1966). Diagrams show the orientation of suspension-
feeder colonies and where development of dense suspension feeder-
communities is likely

suspended material. We can conclude that small- and
medium-scale environmental variability, particularly
hydrodynamics, is conducive to the growth of dense
populations of benthic suspension feeders (e.g. Eckman
and Duggins 1993; Josefson et al. 1993). Accordingly, the
diverse and dense benthic suspension-feeder communi-
ties found along the eastern Weddell Sea shelf and slope
(Gutt and Starmans 1998), where a structure of large
sponges and bryozoans enhances the presence of other
groups, appear to coincide with the hydrodynamically
more active regions of this area.

The Antarctic shelf is unique regarding its depth, av-
eraging about 500 m, with troughs to over 1,000 m
(Dayton 1990). High-Antarctic benthic habitats share
relatively constant physical parameters such as temper-
ature, salinity and substrata, with few if any important
barriers. The major disruptive effects on benthic sus-
pension-feeding communities in Antarctic shallow water
are abrasion by ice (Gutt et al. 1996), which replaces the
wave and hydrodynamic effects in other areas, and
plucking by anchor ice (Dayton 1990). In deeper waters,
iceberg scouring has marked effects on the Antarctic shelf
benthos (e.g. Gutt et al. 1996). Community destruction is
followed by a seemingly long process of recolonization.
During the second EASIZ cruise, in iceberg scour marks
with early stages of recolonization, two gorgonian spe-
cies, Primnoisis antarctica and Ainigmaptilon antarcticus,

554000 O
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and bryozoans of the genus Cellaria appeared to be the
main pioneer species (i.e. species of the first stages of
recolonization after a disturbance).

The mesoscale pattern of currents in the eastern
Weddell Sea influences the pattern of benthic commu-
nity distribution on the shelf. Off Kapp Norvegia, di-
verse and dense communities are dominated by
suspension feeders such as sponges and bryozoans. In
contrast, in the southern part of the eastern Weddell Sea
shelf area, low-biomass and low-diversity benthic com-
munities are present, which are dominated by deposit
feeders such as holothurians (Gerdes et al. 1992). Ver-
tical particle flux off Kapp Norvegia is one of the most
active in Antarctica (Bathmann et al. 1991); however, no
data are available for the southern shelf off Filchner. All
information suggests a picture similar to that described
for the McMurdo Sound area (Dunbar et al. 1989). Off
Kapp Norvegia, high water exchange, partial water mass
retention due to the topographic effect of a shelf rise,
and strong vertical particle flux may explain the presence
of dense and diverse benthic communities dominated by
suspension feeders, whereas in the southernmost part,
less water renewal, additionally impoverished as it
comes from underneath the Filchner Shelf, favours the
dominance of deposit feeders.

Life in a boundary system: resuspension
as a key process

The importance of near-bottom currents and salinity
and/or temperature stratification is of crucial impor-
tance for the coupling of benthic suspension feeders to
the pelagic system (e.g. Larsen and Riisgard 1996).



Generally, particles and bacteria show high abundance
and a distinct small-scale vertical distribution in the
benthic boundary layer (Ritzrau et al. 1997). Organic
and inorganic particle fractions are sorted by resuspen-
sion (Thomsen 1999), because the organic fraction has
low settling and high residence times and may form
aggregates before settling or biodeposition (Thomsen
and van Weering 1998). High microbial activity is as-
sociated with these particles and plays a key role in the
decomposition of the particulate organic matter (Ritz-
rau and Thomsen 1997). Enhanced particle residence
time in the water column and the formation of aggre-
gates facilitate food availability to benthic filter feeders.

Sediment resuspension is a common phenomenon in
near-shore environments surrounding Antarctica (e.g.
Kloser et al. 1994), being particularly relevant during the
austral winter. In shallow areas, detritus resuspended by
wind-generated waves, anchor ice and currents may be a
viable food source for benthic invertebrates during this
season. In Maxwell Bay and Marion Cove (South Shet-
land Islands), the most important source of particulate
matter in the water column seems to be resuspension of
benthic material through a I-year cycle (Kang et al.
1997). These authors observed two main peaks of chlo-
rophyll, one in summer, dominated by microplankton
(mainly large diatoms) and another one later and longer,
during autumn and winter, dominated by pico- and
nanoplankton (mainly flagellates). Obviously, organic
suspended particles, including benthic diatoms resus-
pended by tidal currents (Ahn et al. 1997), are available
practically year round for benthic suspension feeders.

Dunbar et al. (1989) found higher organic flux
through the water column in the eastern compared to
the western McMurdo Sound, which coincides well with
the high biomass of benthic suspension feeders in the
former area (Dayton et al. 1986). The high carbon ac-
cumulation in McMurdo Sound is enhanced, not only
by resuspension, but also by low water temperatures,
which reduce rates of organic-matter breakdown by
bacteria (Hodson et al. 1981). Both the current view of
water circulation and the fact that resuspension events
are more common during austral winter support the
hypothesis that benthic suspension feeders receive food
the year round, especially in areas where they develop
dense populations.

The bivalve L. elliptica is one of the few examples in
the Antarctic where benthic suspension feeders play an
important role in enhancing particle flux from the water
column to the sea bed through biodeposition and, pos-
sibly, providing food for other benthic fauna, particu-
larly in phytoplankton-impoverished near-shore waters
(Ahn 1993).

Vertical flux versus horizontal transport:
the role of advection

Processes related to organic decomposition in the ben-
thic boundary layer are affected by both resuspension
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and advection (Jihmlich et al. 1998). Thus particles and
aggregates may be transported by near-bottom currents,
and recent studies in the Barents Sea (Thomsen and van
Weering 1998) indicate that lateral particle fluxes are 2—
3.7 times higher than vertical particle fluxes derived from
sediment trap data. Vertical flux does not always supply
sufficient food to benthic animals, but horizontal ad-
vection together with resuspension of material from the
bottom can result in higher amounts of benthos-derived
material relatively close to the substratum (Johnson
1988).

A close relationship between benthic metabolism and
the pulses of vertical flux of organic matter has been
observed both in shallow and deep areas (e.g. Witte et al.
1997). Near-bottom currents, however, may resuspend,
spread and transport previously settled particles laterally
over wide distances. These transport mechanisms en-
hance particle deposition on continental margins or
where topography facilitates current slowdown. Not
only light particles may be transported but also organ-
isms such as foraminiferans (Brunner and Biscaye 1997).

In the Antarctic, the high variability of ice cover and
its effects on hydrographic processes suggest that other
mechanisms besides vertical flux play an important role
controlling benthic biomass and diversity (Arntz et al.
1994). Hence, lateral advection may be more relevant
than previously thought (Grebmeier and Barry 1991).
Benthic organisms living under extended seasonal or
even permanent ice cover rely on organic matter trans-
ported by resuspension and/or lateral advection (Fig. 4).
For example, common littoral benthic diatoms such as
Navicula glaciei have been observed in sediment traps
located near the bottom (1,000 m) during winter in the
Bransfield Strait (Palanques et al., in press). Internal
waves associated with tidal currents may be able to ad-
vect part of the spring bloom, as well as macroalgal
detritus, from the shelf areas to surrounding depths.

The role of Antarctic benthic suspension feeders:
an efficient system

For Antarctic waters, a poor, flagellate-dominated pel-
agic community (‘“‘regenerating system” according to
Eppley and Peterson 1979) is more characteristic than
blooms of large phytoplankton species (‘“‘upwelling sys-
tems” according to Scharek and No6thig 1995), which
only occur in restricted areas during restricted times
(Heywood and Priddle 1987). Have Antarctic suspen-
sion feeders adapted to the food resources available in a
similar way to their temperate counterparts (e.g. Gili
and Coma 1998)? Based on the first results obtained
during the EASIZ cruises (Orejas et al., in press), we
suggest that Antarctic suspension feeders exhibit species
with a high renewal rate, a high ingestion rate of mi-
croplankton and low maintenance energy requirements
and, species with low ingestion, and low renewal and
growth rates. The first group of species is associated with
the diatom-based plankton blooms occurring in the
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Fig. 4 Idealized diagram of food-supply processes to the Antarctic
benthos in summer (top) and winter (bottom). Grey arrows mean
microplankton and faecal pellet (summer) and pico- and nano-
plankton (winter) vertical flux, white arrow zooplankton vertical
migration (winter), and black arrows lateral (from the shelf, slope
and shallow areas) water flow (all year)

upwelling systems. The second group is linked to the
regenerating system, which is very stable throughout the
whole year. Feeding strategies of sessile species belong-
ing to the latter group will be affected significantly by
sediment type and resuspension processes.

At the level of individuals or colonies, Antarctic
benthic suspension feeders are efficient in energy recy-
cling. This conclusion may be extended to the commu-

nity and ecosystem level, thus leading to a new
hypothesis regarding the success of these communities in
the Southern Ocean: the heterogenous hydrodynamic
environment, lateral particle advection and transport
over long distances, continuous feeding on organic
matter derived from the water column or made available
by resuspension, and the ability to feed on almost all
potential food lead to high recycling efficiency at the
community level.

Are Antarctic benthic suspension feeders different?
Conclusions

Despite low primary production, the Southern Ocean
does not appear to be a food-limited system for benthic
suspension feeders because of the nutritive quality of
food, patch feeding (e.g. on zooplankton prey) and the
role of lateral advection and resuspension. Studies to
date suggest that the feeding strategy of Antarctic ben-
thic suspension feeders does not differ from those of
tropical and temperate ecosystems. Suspension feeders
are able to feed on a wide range of prey items, in par-
ticular on the most abundant items, because of their
capability of ingesting prey items of very different kind
and size. Being remarkably efficient organisms in terms
of energy transfer from the pelagial to the benthic sys-
tem, benthic suspension feeders build rich but patchy
communities under Antarctic conditions. As rich com-
munities of suspension feeders may exert an important
predatory impact on plankton populations and on the
abundance of suspended organic matter in the water
mass adjacent to the bottom, an impact at a similar
order of magnitude has to be assumed for Antarctic and
temperate regions.
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