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Abstract The abundance and biomass of sympagic
meiofauna were studied during three cruises to the
Antarctic and one summer expedition to the central
Arctic Ocean. Ice samples were collected by ice coring
and algal pigment concentrations and meiofauna abun-
dances were determined for entire cores. Median meio-
fauna abundances for the expeditions ranged from 4.4 to
139.5 ´ 103 organisms m)2 in Antarctic sea ice and ac-
counted for 40.6 ´ 103 organisms m)2 in Arctic multi-
year sea ice. While most taxa (ciliates, foraminifers,
turbellarians, crustaceans) were common in both Arctic
and Antarctic sea ice, nematodes and rotifers occurred
only in the Arctic. Based on the calculated biomass, the
potential meiofauna ingestion rates were determined by
applying an allometric model. For both hemispheres,
daily and yearly potential ingestion rates were below the
production values of the ice algal communities, pointing
towards non-limited feeding conditions for ice meio-
fauna year-round.

Introduction

As the importance of polar oceans to global change is
recognized, the role of sea-ice associated (=sympagic)
organisms in Arctic and Antarctic marine ecosystems is
receiving increased attention (e.g., Arrigo et al. 1997;
Gosselin et al. 1997; Legendre et al. 1992). It is known,
for example, that ice algae contribute up to 57% of the
total primary production in the central Arctic (Gosselin
et al. 1997). This accumulated algal biomass is con-

sumed by proto- and metazoans, living permanently
(e.g. Arctic under-ice amphipods, Werner 1997) or
temporarily (e.g. Antarctic krill Euphausia superba,
Marschall 1988) in the ice or at the ice-water interface.
Upon ice melt, the released algae may enhance phyto-
plankton growth (seeding hypothesis; Haecky et al.
1998) or sink (directly or mediated via faecal pellets) to
the sea ¯oor (e.g. Carey 1987) to sustain the benthos
(Michel et al. 1996, 1997).

Ice algal growth dynamics has been studied in detail
and now allows estimations of their production based on
remote sensing data (Arrigo et al. 1997). Though
knowledge of the occurrence of heterotrophic organisms
inside the sea ice can be traced back to the ®rst scienti®c
expeditions to polar seas (e.g. Nansen 1906), their po-
tential role in controlling algal production has been
widely neglected (e.g. Meguro et al. 1967). Instead,
physical and chemical parameters were thought to be of
overwhelming importance in structuring and determin-
ing algal growth dynamics (e.g., Ackley and Sullivan
1994; Cota and Horne 1989; Cota et al. 1987; Eicken
1992) and were used to explain the general vertical and
horizontal patchiness of Arctic and Antarctic ice biota.
For example, variations in the brine salinity and tem-
perature, snow thickness or fresh water ¯ushing largely
determine the accumulation of algal biomass (Palmisano
and Garrison 1993; Smith et al. 1988) in certain ice
layers characterized by di�erences in diversity, biomass
and activity.

Previous studies on eucaryotic sympagic heterotrophs
focused primarily on the taxonomy of proto- (e.g.
Agatha et al. 1990, 1993; Corliss and Snyder 1986; Petz
1994; Thomsen et al. 1997) and metazoa (e.g. Chenga-
lath 1985; Dahms and Dieckmann 1987; Dahms and
Schminke 1992; Riemann and Sime-Ngando 1997;
Tschesunov and Riemann 1995) and on their physio-
logical adaptations to variable ice parameters (e.g.
Dahms et al. 1990; Dieckmann et al. 1991; Gradinger
and Schnack-Schiel 1998; Lee and Fenchel 1972; Spin-
dler 1996). Detailed investigations on the composition of
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the in-ice metazoan communities are available mainly
for Arctic locations (e.g. Cross 1982; Gradinger et al.
1991; Grainger et al. 1985; Kern and Carey 1983), while
studies in Antarctica focused entirely on a few proto-
zoan and crustacean taxa (e.g. Schnack-Schiel et al.
1998; Spindler et al. 1990; Stoecker et al. 1997, 1998;
Tanimura et al. 1996; Thomsen et al. 1997). Conse-
quently, knowledge of the occurrence of ice meiofauna
(here de®ned as heterotrophs >20 lm) and their po-
tential contribution to the carbon ¯ux within polar sea
ice is less than comprehensive. Direct measurements of
grazing activities by protozoans and metazoans in sea ice
do not exist at present. Vezina et al. (1997) incorporated
protozoan activity (¯agellates and ciliates) into a mi-
crobial carbon ¯ow model for Arctic ®rst-year sea ice;
however, the contribution of metazoans was neglected
although they may occur in considerable concentrations
in this ice habitat (e.g. Riemann and Sime-Ngando
1997). The aim of this study was to estimate the poten-
tial meiofauna grazing activity in Arctic and Antarctic
pack ice. Based on the biomass and composition of the
Arctic and Antarctic ice meiofauna, their potential in-
¯uence on ice algal accumulation was calculated on daily
and yearly bases using allometric equations.

Materials and methods

Sampling was carried out during three expeditions (Fig. 1) with
RV Polarstern to the Weddell Sea, Antarctica (ANT 8/2: 6 Sep-
tember to 30 October 1989; ANT 9/3: 3 January to 28 March
1991; ANT 10/3: 27 March to 19 May 1992) and one expedition to
the central Arctic Ocean (ARK 8/3: 1 August to 15 October 1991).
Identical techniques were used for the determination of algal
biomass and meiofauna composition during all cruises over the
entire ice thickness. At each station two ice cores, having either 7.5
or 10 cm diameter, were taken. Ice cores were immediately cut
into segments of 1±20 cm length and placed into cleaned poly-
ethylene jars until further processing. Samples from the ®rst core
(for algal pigment determination) were melted in the dark at about
4°C, the volume then determined, and the samples were ®ltered
onto Whatman GF/F ®lters. Algal pigments were extracted in
90% acetone and determined ¯uorometrically (Evans et al. 1987).
The ice segments of the second core (for meiofauna abundance
determination) were placed in larger containers and melted after
addition of 200 ml 0.2 lm pre-®ltered seawater per 1 cm core
length (Garrison and Buck 1986). After complete melting, the
volume was determined and ice meiofauna was concentrated over
20-lm gauze. Taxa were identi®ed and organisms counted alive
under a dissecting microscope immediately afterwards. During the
expedition ANT 10/3, ciliates were not counted although they
occurred frequently in the samples. Biomass of proto- and meta-
zoans was estimated using individual biomass estimates of
Friedrich (1997; based on computer-aided volume calculation of
live video-recorded specimens) or by converting organism volume
to carbon with a ratio of 0.11 pg C lm)3 (HELCOM 1989)
(Table 1). Potential ingestion rates of the ice meiofauna were
calculated using the allometric mass speci®c equations of Moloney
and Field (1989) and assuming an ice temperature of )1°C and a
Q10 value of 2 (typical for plankton metazoans): Imax � 63� Mÿ0:25�
0:23326 with Imax(day

)1) as daily mass-speci®c maximum potential
ingestion rate and M (pg C, Table 1) as body mass of one
organism.

Results

Ice thickness and algal pigment concentration

The ice cores taken for meiofauna analysis had thick-
nesses between 0.2 and 6.0 m (Fig. 2a). The ice thickness
of Antarctic pack ice was signi®cantly lower during ANT
8/2 compared to that sampled in summer (ANT 9/3:
U-test P < 0.005) and autumn (ANT 10/3: U-test
P < 0.05) while no di�erence existed between the sum-
mer and autumn data. The integrated algal biomass
ranged from 0.1 to 72.6 mg chl a m)2 (Fig. 2b). In late
winter/early spring (ANT 8/2), the pigment concentra-
tion had a median value of 2.5 mg chl a m)2, which
was signi®cantly below the summer (medianANT 9/3 =
22.3 mg chl a m)2; U-test P < 0.0001) and autumn
values (medianANT 10/3 = 34.2 mg chl a m)2; U-test
P < 0.005). The integrated pigment concentration in the
Arctic sea ice in summer 1991 was similar to the ANT 8/2
data with a median of 1.4 mg chl am)2. MaximumArctic
values were low compared to Antarctic observations.

Abundance of Antarctic sea-ice meiofauna

The integrated abundances of the sympagic meiofauna,
including ciliates, foraminifera and metazoans, varied
between stations and expeditions (Fig. 3). In Antarctic
sea ice, total abundances ranged between 0 and
320 ´ 103 organisms m)2. Lowest median concentra-
tions were observed during ANT 8/2 (median =
4.4 ´ 103 organisms m)2 ice) with protists (foraminifera
and ciliates) as the largest fraction (Fig. 4; 65%).
Copepods contributed only 12% to the total abundance,
of which 47% were nauplii. Abundances increased
during the summer (median = 14.5 ´ 103 organisms
m)2 ice) and the relative contribution of protists
decreased. Copepods were the dominant metazoans
(39% of entire meiofauna) with a large fraction of
nauplii (54% of all copepods). In autumn (ANT 10/3), a
signi®cantly higher concentration of ice meiofauna
(median = 139.5 ´ 103 organisms m)2 ice) occurred
compared to ANT 8/2 (U-test; P < 0.0001) and ANT
9/3 (U-test; P < 0.001), even though ciliates were not
counted during this cruise. Foraminifera (44%) and
copepods (29%, of which 50% were nauplii) were the
most abundant taxa. Besides protists and copepods,
turbellarians were regularly observed in nearly all ice
cores. Their mean contribution to total abundance
varied between 11% (ANT 8/2) and 27% (ANT 10/3).

Biomass and ingestion rates of Antarctic meiofauna

The integrated meiofaunal biomass in Antarctic sea ice
ranged from 0 to 118.2 mg C m)2 ice (Fig. 3). The
biomass during ANT 10/3 (median = 24.3 mg C m)2)
was signi®cantly higher than during the other two
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Fig. 1 Station maps for the
Arctic and Antarctic expedi-
tions (station number = day of
the year)
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cruises (ANT 8/2: 0.4 mg C m)2; U-test; P < 0.005;
ANT 9/3: 1.1 mg C m)2; U-test: P < 0.05). Turbellaria
contributed on average between 25 and 41% of the total
mean meiofauna biomass of each expedition, crusta-
ceans between 35 and 62% and foraminiferans between
5.5 and 28.3% (Fig. 4). Calculated potential ingestion
rates (Fig. 3) varied between 0 and 58 mg C m)2 day)1

with a signi®cantly higher median during ANT 10/3
(8.2 mg C m)2 day)1) compared to ANT 8/2 (0.3 mg C

m)2 day)1; P < 0.005) and ANT 9/3 (1.0 mg C m)2

day)1; P < 0.05) (Fig. 3).

Abundance of Arctic sea-ice meiofauna

The integrated abundance of the sea-ice meiofauna
ranged from 1.3 to 221.3 ´ 103 organisms m)2 ice
(Fig. 3). Rotifers and nematodes were the only groups
that were exclusive to Arctic sea ice. All other taxa were
found in both polar areas (except for tintinnids, which
were only seen during ANT 9/3). The most abundant
taxa (Fig. 4) were ciliates (53%), followed by nematodes
(15%). Crustacea contributed only 5% to total abun-
dance.

Biomass and ingestion rates of Arctic sea-ice
meiofauna

The integrated biomass ranged between <0.1 and
7.4 mg C m)2 (median = 3.0 mg C m)2). Most impor-
tant contributors were acoel turbellarians (27%), fol-
lowed by crustaceans (22%), nematodes (20%) and
ciliates (15%). Potential ingestion rates varied between
<0.1 to 7.9 mg C m)2 day)1 (median = 1.8 mg C m)2

day)1). Largest fractions were ingested by protists
(36%), turbellarians (22%), nematodes (20%) and
crustaceans (17%).

Relation between algal biomass and meiofauna
abundance, biomass and ingestion rates

The non-parametric Spearman rank correlation test re-
vealed signi®cant positive correlations between the in-
tegrated algal biomass (mg chl a m)2) and meiofauna
abundance q = 0.3; P < 0.05), biomass (q = 0.4;
P < 0.01) and potential ingestion (q = 0.3; P < 0.01)
for all cruises. For the Arctic data, signi®cant relation-
ships were found between chlorophyll a concentration
and meiofauna carbon biomass and potential ingestion,
respectively (q = 0.5; P < 0.05 each). The Antarctic ice
algal biomass was signi®cantly correlated with meio-
fauna abundance (q = 0.5; P < 0.01) and biomass
(q = 0.4; P < 0.05).

Discussion

The abundance of sympagic meiofauna has been studied
mainly in the Arctic (Table 2). A comparison with these
Arctic studies is di�cult due to methodological di�er-
ences, which hinder quantitative comparisons of the
published data. Ice was sampled using di�erent tech-
niques, from brine sampling (Garrison and Buck 1991),
sub-ice coring and pumping (Grainger 1991) to coring

Fig. 2 Box plots of a the ice thickness of the meiofauna ice cores, and
b integrated chlorophyll a concentrations in Arctic and Antarctic sea
ice. In the box plots, the total data range and the 25±75% quartile
range (box) are shown. Single data points are marked as outliers, when
they are above/below a value of V � UQ� 1:5 � IQD or V �
LQÿ 1:5 � IQD (LQ = lower quartile, UQ = upper quartile,
IQD = interquartile distance)

Table 1 Individual biomass estimates for Arctic and Antarctic
meiofauna

Taxon Biomass
(lg C specimen)1)

Comments

Rotatoria 0.023 See Friedrich (1997)
Nematoda 0.13 See Friedrich (1997)
Ciliata 0.011 See Friedrich (1997)
Acoela 0.39 See Friedrich (1997)
Copepoda 0.60 See Friedrich (1997)
Nauplii 0.02 See Friedrich (1997)
Neogloboquadrina
pachyderma

0.031 Own estimate, based
on cell volume
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from the surface (this study). In addition, some studies
only focused on certain layers of the ice cores, in the
Arctic mainly on the bottom few centimetres, despite the
fact that ice meiofauna is also found in the interior parts
of Arctic sea ice (Friedrich 1997). Therefore sampling of
only the bottom layers does not adequately provide data
on integrated sympagic abundances and biomass. Fur-
ther artefacts were introduced by direct melting of the
ice, as it was used in many studies (see Gradinger et al.
1991). The use of salinity-bu�ered melting techniques
led also, in coastal locations, to high abundances of ci-
liates (Sime-Ngando et al. 1997), similar to my obser-
vations. Therefore I assume that the low contribution of
ciliates from many Arctic locations is an artefact caused
by inadequate melting techniques (Table 2). Bearing in

mind these limitations, three general trends are shown
by comparing the compiled data.

Crustacea, ciliates and acoel turbellarians live in sea
ice of both polar regions, while nematodes and rotifers
occur only in the Arctic. To my knowledge, planktic
nematodes are not described from polar seas, while
rotifers are common in Arctic plankton (e.g. DeSmet
1995), but are probably absent in the Antarctic (Knox
1994). In contrast to the likely planktic origin of rotifers,
a di�erent hypothesis has been formulated for nema-
todes by Tschesunov and Riemann (1995), who
described taxa which lived either in sediment or in the
baleen of whales as possible ancestors of endemic ice
nematodes. Until now, foraminiferans were considered
to be regular components only of Antarctic sea-ice biota
(Spindler 1990), where the polar species Neogloboqua-
drina pachyderma is incorporated into the developing ice
sheet and may grow inside the brine channel network

Fig. 3 Box plots of the integrated meiofauna abundances, biomass
and potential ingestion rates. For explanation of box plots see Fig. 2
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Fig. 4 Relative contribution of
ice meiofauna taxa to integrated
abundance, biomass and po-
tential ingestion rates
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(Dieckmann et al. 1991; Spindler et al. 1990). The
frequent occurrence of N. pachyderma during the ARK
8/3 cruise is a rare observation. During previous (ARK
5/1: Gradinger et al. 1991) and later cruises (ARK 10/1:
Friedrich 1997) to the Greenland or Laptev Seas
(Friedrich 1997), no living or dead foraminiferans were
found in Arctic sea ice using identical techniques. Rea-
sons for the absence of sympagic Arctic foraminiferans
are probably related to the formation of Arctic sea ice in
coastal shallow sea areas with low salinities on the
Russian shelves, which makes the incorporation of
oceanic foraminiferans unlikely. Although interannual
variability in the composition and abundance of ice
biota can be expected and is documented for coastal
locations (Grainger et al. 1985), the ®ndings of large
numbers of foraminiferans during ARK 8/3 cannot be
explained.

Immigration of larvae of benthic taxa (e.g. gastro-
pods or polychaetes), which locally dominate coastal
shallow water fast-ice meiofauna in the Arctic (Carey
1992), was not observed in either Arctic or Antarctic
pack ice. However, immigration of larvae of pelagic
calanoid copepods is common in Antarctica (Kurbjeweit
et al. 1993; Schnack-Schiel et al. 1998; Tanimura et al.
1996) and contributes to the high abundance of nauplii
in the pack ice. Studies of the reproduction of sympagic
harpacticoid copepods, carried out in both in the Arctic
(Carey 1992) and the Antarctic (Bergmans et al. 1991),

revealed that these sympagic metazoans are capable of
producing several generations per year with reproduc-
tion uninterrupted during winter. This agrees with my
observed high nauplii concentrations during all expedi-
tions.

The potential grazing pressure of sea-ice meiofauna is
low compared to daily primary production rates during
the polar summer in both hemispheres. Median poten-
tial grazing rates in the central Arctic were below 2 mg C
m)2 day)1, similar to previous observations in pack ice
of the Greenland Sea (Gradinger et al., in press). This
value is, however, at least 1 order of magnitude less than
the mean primary production estimates of 57 mg C m)2

day)1 (Gosselin et al. 1997) and 83 mg C m)2 day)1

(SubbaRao and Platt 1984) of Arctic sympagic algae.
The same holds true for Antarctic sea ice, where primary
production measurements range between 0.5 and
240 mg C m)2 day)1 (Knox 1994), while potential
maximum grazing rates were of the order of 0.3±8.2 mg
C m)2 day)1. This di�erence becomes even more pro-
nounced when other nutritional sources of ice meio-
fauna are included. While ingestion of primary
producers (mainly diatoms and chlorophytes) is well
documented for ice ciliates, crustaceans and turbellari-
ans (Friedrich 1997; Grainger and Hsiao 1990; Grad-
inger et al., in press; personal observations), the
nutrition of nematodes is less clear. Grainger and Hsiao
(1990) observed diatoms in nematodes' guts, while

Table 2 Relative abundances (%) of ciliates and metazoa in sea ice from di�erent Arctic and Antarctic areas. Others include: harpac-
ticoids, copepods, polychaetes, amphipods. Authors in italics indicate direct melt of the ice cores

Author/expedition Region Foraminifers Ciliates Nematodes Turbellarians Rotifers Nauplii Others

Arctic
Cross (1982) Pond Inlet ± ± 59 ± ± 41
Carey and Montagna (1982) Stefanson Sound ± ± 77 ± ± ± 23
Kern and Carey (1983) Beaufort Sea ± ± 47 16 ± ± 37
Grainger et al. (1985) Frobisher Bay ± <1 51 - 1 45 2
Gradinger et al. (1991) Fram Strait (®eld N) 0 29 5 51 <1 13 1
ARK 8/3 Arctic Ocean 14 53 15 5 9 1 4

Antarctic
ANT8/2 Weddell Sea 43 22 0 11 0 5 19
ANT9/3 Weddell Sea 17 24 0 16 0 21 21
ANT10/3 Weddell Sea 44 No data 0 27 0 14 15

Table 3 Estimated daily (mg C m)2 day)1) and yearly (g C m)2 year)1) maximum ingestion rates of Arctic and Antarctic sea-ice
meiofauna in comparison to sympagic primary production rates (g C m)2 year)1). Winter values were calculated based on previous
measurements assuming an ice temperature of )5°C and a Q10 of 2

Season/author Duration (days) Arctic Weddell Sea

Spring 92 0.27 (ARK 8/3) 0.96 (ANT 8/2)
Summer 91 0.27 (ARK 8/3) 8.15 (ANT 9/3)
Autumn 91 0.21 (76% of summer value) 1.91 (ANT 10/3)
Winter 91 0.21 (76% of summer value) 1.45 (76% of autumn value)
Yearly ingestion rate 0.1 1.1

Yearly primary production rates
Kirst and Wiencke (1995) 0.7 1.9
Arrigo et al. (1997) 6.7 (for 7 months)
Gosselin et al. (1997) 4.0
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Tschesunov and Riemann (1995) proposed an osmo-
trophic uptake of dissolved organic matter as the most
probable mode of nutrition for three ice nematode taxa.
Furthermore, bacteria (Gradinger and Zhang 1997;
Grossmann and Dieckmann 1994) and protozoans are
potential food sources for ice meiofauna. None of these
other sources are taken into account by only relating
meiofauna grazing to algal production.

In general, sea-ice meiofauna does not appear to be
food limited and probably will not control ice algal
accumulation during the polar summer, although se-
lective feeding might in¯uence prey diversity. This
conclusion is also supported by the weak relations be-
tween algal biomass and meiofauna abundance and
biomass presented here. The calculated median maxi-
mum ingestion rates for the four expeditions ranged
between 0.27 mg C m)2 day)1 for Arctic and 0.96±
8.15 mg C m)2 day)1 for Antarctic pack-ice meiofauna
(Table 3). On a yearly basis, the decreased winter tem-
peratures will reduce the meiofauna activity consider-
ably. Winter ice temperatures of )5°C will lower the
potential maximum ingestion rate to 76% of the rate at
T = )1°C assuming a Q10 of 2. I estimated the yearly
carbon consumption by the sea-ice meiofauna, assum-
ing such winter conditions for 6 months in the Arctic
and 3 months in the Antarctic (Table 3), which leads to
ingestion values of 0.1 g C m)2 year)1 for Arctic and
1.1 g C m)2 year)1 for Weddell Sea pack ice, which are
only about 3% (Arctic) and 16% (Antarctic) of the
sympagic algal production. These rough estimations
show that the ice primary production is su�cient to
ful®l the carbon demand of the sea-ice meiofauna both
in Arctic and Weddell Sea pack ice year-round. How-
ever, other trophic levels of the microbial food web,
such as bacteria or heterotrophic ¯agellates, were not
taken into account as potential food sources. Also, the
three dimensional structure of the brine channel net-
work will form spatial niches where larger predators are
excluded and phototrophs experience reduced grazing
pressure. Besides these obvious restrictions, my data
highlight the potential impact of meiofauna on other
sympagic organisms. First measurements (Laurion et al.
1995) and model development (Vezina et al. 1997) on
the sympagic microbial food web in Arctic ®rst-year sea
ice demonstrated the signi®cant contribution of proto-
zoans to biological carbon cycling. However, these
studies ignored the contribution of sympagic meiofau-
na. The Arctic meiofauna ingestion rates are similar to
the modelled microbial carbon demand of bacterial
grazers (0.1±3.5 mg C m)2 day)1) in Arctic ®rst-year ice
(Vezina et al. 1997). Therefore, the in-situ determina-
tion of grazing rates of ice meiofauna and the incor-
poration of these results into model simulations to
estimate the net carbon production by polar sea ice are
the next steps in our journey to understand the biology
of this environment.
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