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shags (Watson 1975; Siegel-Causey 1988) that includes 
Antarctic shags (Phalacrocorax bransfieldensis). To date, 
debate continues as to whether South Georgia and Ant-
arctic shags are distinct species or subspecies (Orta et al. 
2021). For this work, South Georgia shag is considered a 
separate species from Antarctic shag. Based on historical 
data published from various locations and years, Dunn et 
al. 2022 estimate the population size of SGS to be between 
5349 and 10,849 breeding pairs, of which between 17 and 
38% are in South Orkney (Dunn et al. 2022). Several stud-
ies have reported changes in the population size of South 
Georgia shags in South Orkney. On Signy Island, Dunn et 
al. (2022) found an overall decline in nesting pairs of 40.9% 
(− 1.3% per year), with a fluctuating decline from the 1990s 
to 2020/2021. South Georgia and Antarctic shags are the 
only flying birds  in Antarctica  that feed primarily on ben-
thic demersal fishes (Casaux and Barrera-Oro 2006), there-
fore, their population trends could be reflecting changes in 
coastal fish populations (Casaux and Barrera-Oro 1993).

Antarctica is considered a pristine zone; however, it is 
subject to various factors of environmental change. In this 
regard,  it  is  one  of  the  regions  most  affected  by  climate 
change, with air temperatures increasing by 0.61 ± 0.34 °C 
per decade (Turner et al. 2020). At the same time, human 
activities have increased significantly mainly due to fishing, 

Introduction

The South Georgia shag (SSG, Phalacrocorax georgianus) 
is a colonial seabird distributed along the South Orkney 
Islands in Antarctica and the sub-Antarctic South Sandwich 
and South Georgia Islands (Orta et al. 2021). This species 
is part of a large group of Southern Hemisphere blue-eyed 
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Due to climate change and human activities, Antarctic shag populations are experiencing shifts in their distribution range, 
habitat, and population size. To assess their health, we collected hematological and biochemical of male and female South 
Georgia shags (Phalacrocorax georgianus) during breeding on Laurie Island, South Orkney Island, Antarctica. Leukocyte 
profile, heterophil/lymphocyte ratio, hematocrit, and concentrations of glucose, total proteins, cholesterol, and triglycerides 
were measured. None of the measured metrics showed signs of clinical pathology or disease. Overall, the parameters mea-
sured were consistent with those previously reported for other cormorant species. Males had higher protein and cholesterol 
concentrations,  indicating differences  in nutritional  status between  the  sexes during  reproduction. This  study  is  the first 
report on blood parameters of South Georgia shags in Antarctica and may be useful for future meta-analyzes comparing 
blood parameters of different species and geographic areas.
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the  tourism  industry,  and  scientific  research  (Tejedo et  al. 
2011).  In  this  context,  Casaux  and  Barrera-Oro  (2016) 
suggested  that  the  decreasing  abundance  of  demersal  fish 
prey caused by fishing activities is a possible cause of the 
decline of Antarctic shag populations they had studied. On 
the other hand, Casanovas et al. (2015) suggested that cli-
mate change is likely responsible for the population change 
of cormorants, consistent with the effects of climate change 
on other seabirds in the region. Therefore, monitoring the 
populations of SSGs in multiple locations is necessary to 
understand the factors regulating their population trends and 
assess the marine ecosystem’s overall status.

Physiological data have become an important tool for 
monitoring the health of wildlife species in the face of rap-
idly changing environments (Barbosa et al. 2013; D’Amico 
et al. 2016) because they can alert us to changes in the sta-
tus of individuals, allowing early detection of problems and 
potentially providing an opportunity to mitigate them. Envi-
ronmental changes can affect the health of wild vertebrate 
populations in a variety of ways (Harvell et al. 2002; Ace-
vedo-Whitehouse and Duffus 2009). For example, changes 
in  food  availability due  to fisheries  or  ecological  changes 
may be reflected in the nutritional status of individuals (e.g., 
suboptimal protein levels, and depletion of fat reserves). 
In addition, tourism increases the possibility of contact 
between wildlife and humans, which can induce physiologi-
cal stress in animals and impair immunocompetence (Ellen-
berg et al. 2007), while  increasing  the risk of exposure  to 
new pathogens (Walton 2012). Also, pollutants can impair 
immune defenses (Barbosa et al. 2013).

The  leukocyte  profile  provides  information  about 
immune function by determining the total leukocyte count 
and the five leukocyte types, including heterophils, eosino-
phils, basophils, lymphocytes, and monocytes (Roitt et al. 
2001). Heterophils and lymphocytes are the most abundant 
immune cells in birds (Campbell 1995). Heterophils respond 
to infection, inflammation, or poor nutrition (Maxwell and 
Robertson 1998), whereas lymphocytes contribute to cell-
mediated and humoral adaptive immunity (Campbell 1995). 
Both types of leukocytes respond to stressors such as sud-
den environmental changes and/or changes in food avail-
ability (Davis et al. 2008). As a result, these changes can 
increase the number of heterophils and decrease the number 
of lymphocytes in the circulating blood. Therefore, the H/L 
ratio is often used as a measure of stress (Davis et al. 2008). 
Monocytes are involved in the phagocytosis of tissue debris 
and pathogens such as fungi and protozoa (Kerr 2002). 
The least abundant leukocytes in birds are eosinophils and 
basophils. While eosinophils are associated with parasitic 
infections (Bertellotti et al. 2016), basophils are involved 
in  acute  inflammatory  responses  (Maxwell  and Robertson 
1998). Along with the hematological immune parameters, 

the birds’ health status can be evaluated through biochem-
istry parameters. Numerous studies in birds have demon-
strated the relationship between nutritional status, body 
condition, and plasma metabolites, including total proteins, 
glucose, and lipids (cholesterol and triglycerides) (Artacho 
et al. 2007).

The physiological responses of the organisms to environ-
mental changes vary according to the ecology and sensitiv-
ity of each species. Therefore, knowledge of species-specific 
responses is of great value as an indicator of ecosystem 
change and physiological data can provide valuable baseline 
information for ecological studies and comparisons across 
geographic areas, species, and periods. As part of a broader 
research project on the reproductive and trophic ecology of 
SGS, we examined the health status of adult SGS breeding 
on South Orkney Island. The objective of the study was to 
determine the hematology and biochemistry associated with 
the body condition and immune function of SGS during the 
breeding season. This study represents the first compilation 
of this information and establishes a baseline for the endan-
gered free-ranging South Georgia Shags.

Methods

The study was conducted on Laurie Island, South Orkney 
Islands, Antarctica. In this work, SGS were sampled on two 
small offshore  islands  in Brown Bay (60° 41’ S, 044° 38’ 
W) and Jessie Bay (60° 41’ S 044° 42’ W) in January 2018. 
Sampling occurred during late chick rearing (chicks approx-
imately four to six weeks of age).

We sampled individuals captured with a landing net (a 
small net located at the end of a long stick) on the nest. 
Blood (2 to 3 ml) was collected from the brachial vein using 
heparinized syringes (3 ml) with a sterilized needle (23G). 
Each bird was weighed using a 5000 g dynamometer and 
examined  for  external  signs  of  disease  or  injury.  Blood 
was stored in Eppendorf tubes and kept refrigerated until 
brought to the laboratory. To measure hematocrit, 75 µl of 
blood was placed in microcapillary tubes and centrifuged at 
12,000 g for 12 min. Leukocytes were analyzed on blood 
smears prepared with one drop of blood, fixed with ethanol 
for 10 min, air-dried, and stained with Tinction 15 (Biopur). 
The  smears  were  examined  under  a  microscope  (400  X) 
and  all  leukocytes were  counted  in  ten  consecutive  fields 
to determine the white blood cell (WBC) count (D’Amico 
et al. 2010). The relative percentage of each leukocyte type 
in  a  total  of  100  leukocytes  was  obtained  under  1000X 
microscopic  magnification  (Campbell  1995). The physi-
ological stress index H/L was calculated from the heterophil 
and lymphocyte values (Davis et al. 2008). Blood stored 
in Eppendorf tubes was centrifuged to remove the plasma 
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fraction for biochemical determinations. Plasma was ana-
lyzed with a spectrophotometer (METROLAB 1600 Plus, 
UV–Vis) to determine the concentration of total proteins (g/
dl), cholesterol (mg/dl), triglycerides (mg/dl), and glucose 
(mg/dl), indicating the nutritional status of the subjects.

Basic descriptive statistics were obtained for each param-
eter. Normality and homogeneity of variance were tested 
using Shapiro-Wilk and Levene’s tests. The T-test was 
used to examine differences between sexes in biochemical 
parameters. Because the hematologic variables did not meet 
the normality assumption, a nonparametric Mann-Whitney 
U test was used to examine sex differences. Statistical sig-
nificance was  set  at p  ˂  0.05. For  statistical  analyses  and 
a graphical representation, we used R software, version 
2.12.1.

Results and discussion

We captured 11 females and 12 males during the breeding 
season. No abnormalities or signs of disease were observed 
in any of the birds during handling. Mean body weights 
were 2.54 and 2.61 kg for females and males, respectively, 
and did not differ significantly between sexes (T-test = 39, 
p = 0.693). The values of physiological parameters obtained 
for female and male SGS during breeding are shown in 
Table 1. Overall, most values of parameters reported in this 
study were within the range previously described for other 
seabirds (Newman et al. 1997; Ferrer et al. 2017).

Hematocrit values for SGS were 54% in females and 
55% in males. In general, reference ranges for hematocrit 
in birds are between 35 and 55% (Campbell 1995). The val-
ues observed in SGS may be attributed to a high respira-
tory function of a unit of blood volume required to maintain 

a  high  level  of  metabolic  energy  under  extremely  cold 
weather conditions (Myrcha and Kostelecka-Myrcha 1980).

In both  sexes, heterophils were  the most abundant  leu-
kocyte type, followed by lymphocytes (Table 1). This 
observation differs from what is generally reported in birds, 
where lymphocytes are usually the most abundant leuko-
cyte type (Campbell 1995; Newman et al. 1997). Our results 
are consistent with those reported for juvenile Double-
crested (Kuiken and Danesik 1999) and Pelagic cormorants 
(Phalacrocorax pelagicus) (Newman et al. 1997), whereas 
lymphocytes predominated in Black-faced cormorants 
(Phalacrocorax fuscescens) and Great cormorants (Phala-
crocorax carbo) (Melrose and Nicol 1992; Minias et al. 
2013). Consequently, there is no consistent pattern in the 
percent  distribution  of  leukocytes  in  different  cormorant 
species. D’Amico et al. (2014) suggested that the preva-
lence of heterophils in Gentoo penguins (Pygoscelis papua) 
is related to greater parasitic diversity. Because the other 
leukocyte types found in SGS were in low proportions and 
within the ranges reported for birds (Campbell and Ellis 
2007), we suspect that the highest percentage of heterophils 
found here is probably not clinically significant and may be 
due to other factors such as a stressful environment, stage of 
the annual cycle, and others (Davis et al. 2008). Males, on 
the other hand, had higher numbers of eosinophils (Table 1), 
which is mainly related to gastrointestinal parasite infec-
tions (Thrall et al. 2012).

Glucose and total protein concentrations in our study 
were similar to previous values reported for other species 
such as Imperial cormorant (P. atriceps) (Gallo et al. 2013), 
Pelagic cormorant (P. pelagicus) (Newman et al. 1997), 
Double-crested cormorant (P. auratus) (Kuiken and Dane-
sik 1999), Crested cormorant (P. carbo sinensis) (Minias 
et al. 2013), and Flightless cormorant (P. harrisi) (Travis 

Table 1 Values of physiological parameters obtained for the South Georgia Shags in Laurie Island, Antarctica. The values given are the mean and 
standard deviation (SD), median, and range (minimum and maximum). Also, the effect of sex on hematological and biochemical parameters is 
shown. Statistically significant differences are marked with an asterisk (*)
Parameter Female (n = 11) Male (n = 12) Fixed effect (sex)

Mean ± SD Median
(Min-max)

Mean ± SD Median
(Min-max)

Statistic p-value

Hematological parameters W-test
Lymphocytes % 40.19 ± 13.71 36.81 (21.05-64) 34.05 ± 5.56 33.33 (22.55–42.45) 51 0.350
Heterophils % 43.19 ± 13.38 47.23 (22-64.04) 47.94 ± 5.54 48.07 (38.61–56.6) 32 0.504
Eosinophils % 7.57 ± 2.09 6.98 (5.32–11.4) 13.61 ± 6.96 13.66 (3.77–28.43) 15 0.029*
Basophils % 0 ± 0 0 0.49 ± 0.69 0-1.96 24 0.058
Monocytes % 6.11 ± 2.89 6.26 (1.74-11) 3.92 ± 1.47 3.28 (1.98–6.6) 59 0.1
H/L 1.22 0.85 1.25 (0.34–3.04) 1.45 ± 0.32 1.43 (1-1.91) 24 0.172
Hematocrit (%) 54.27 ± 1.84 52.43 ± 55.81 55.18 ± 3.6 47.76 ± 56.05 103 0.362
Biochemical parameters T-test
Total proteins (g/dl) 2.95 ± 0.42 2.8 (2.5–3.8) 3.41 ± 0.56 3.35 (2.3–4.4) 2.26 0.034*
Glucose (mg/dl) 182.36 ± 45. 6 169 (128–296) 210 ± 56.76 207.5 (120–322) 1.29 0.210
Triglycerides(mg/d) 185.55 ± 94.78 176 (78–391) 146.58 ± 51.64 131 (94–262) 1.20 0.245
Cholesterol (mg/dl) 238.73 ± 38.59 251 (158–306) 278.25 ± 43.81 291.5 (180–346) 22.00 ˂0.010*
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