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1992). The genus Pygoscelis (Wagler 1832) comprises three 
living species: Pygoscelis adeliae (Hombron and Jacquinot 
1841), P. antarctica, and P. papua (Forster 1781), plus the 
three fossil species P. tyreei from New Zealand (Simpson 
1972), P. calderensis (Acosta Hospitaleche et al. 2006) and 
P. grandis (Walsh and Suárez 2006) from Chile.

Reproductive colonies of Pygoscelis adeliae occur in 
ice-free areas in the Ross Sea, along the west coasts of the 
Antarctic Peninsula, and on the Scotia Arc islands (Trathan 
and Ballard 2015). Adélie penguins breed in large colonies, 
maintain the same reproductive mate for successive years, 
and exhibit recurrent use of their nests (Trathan and Ballard 
2015). The reproductive cycle comprises a migratory stage 
(April/August), after which they return to the colony for 
the reproductive period (September/October), spending the 
following months laying eggs and raising chicks until mid-
January (Emmerson et al. 2011). Then begins the period of 
independence of the juveniles until the first moult in late 
February and early March (Emmerson et al. 2011). The 
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Abstract
Osteohistological studies allow us to obtain valuable information on different aspects related to the bone microstructure, 
physiology and ecology of organisms. Although the anatomy and morphology of penguin bones are well known, studies 
in osteohistology are still insufficient. In order to analyze the osteohistological variations between male and female adults 
of Pygoscelis adeliae (Aves, Spheniscidae), histological sections were prepared from various bones including appendicular 
(humerus, radius, ulna, carpometacarpus, femur, tibiotarsus, tarsometatarsus) and axial (vertebral and sternal ribs) ele-
ments. The results indicate that all sections showed compact tissue with reduced or absent medullary cavities and high 
bone density due to internal tissue compaction. Histologically, we identified three distinct tissue regions based on their 
bone matrix, vascular channels organization and compactions degree. Our results indicate osteohistological variations 
between sexes throughout the whole skeleton, including the first definitive evidence of medullary bone in the Sphenisci-
formes females. While the male specimen exhibited a medullary cavity characterized by an inner circumferential layer, 
the female displayed a medullary region without an inner circumferential layer, lower bone compaction, presence of 
medullary bone in all the sections, and greater development of intertrabecular spaces. These results are consistent with 
previous reports of medullary bone in females from other birds and provided an auxiliary criterion for sex differentiation.
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mean age at first reproduction is 4.7-5.0 years for females 
and 6.2–6.8 years for males (Ainley et al. 1983).

Adult females and males are morphologically similar, 
although females are usually smaller (Ainley and Emison 
1972; Scolaro et al. 1991; Kerry et al. 1992) and males 
have longer and deeper bills (Polito et al. 2012; Fattorini 
and Olmastroni 2021). Despite the patterns of both exter-
nal and skeletal morphological variation established for 
pygoscelid penguins (Acosta Hospitaleche and Tambussi 
2006; Jennings et al. 2016; Fattorini and Olmastroni 2021), 
bone microstructure studies are still insufficient, not only in 
Pygoscelis (Meister 1962; Wilson and Chin 2014) but also 
in all penguins (e.g. Chinsamy et al. 1998; de Margerie et al. 
2004; Cerda et al. 2015; Ksepka et al. 2015; Garcia Marsà et 
al. 2020). In this regard, only the microstructure of the femur 
and tibiotarsus of adult specimens of Pygoscelis adeliae 
have been described (Meister 1962; Wilson and Chin 2014). 
These contributions mention the presence of high-density 
bone tissue, with three differentiated concentric regions: a 
cortical region (outer zone) composed of a circumferential 
layer with the presence of Volkmann’s canals, a perimedul-
lary region (middle zone) with secondary osteons organized 
in longitudinal vascular channels, and a medullary region 
(inner zone) composed of spongy tissue with a large number 
of trabeculae surrounded by lamellar tissue (Meister 1962). 
Furthermore, the dominance of longitudinal vascular chan-
nels and a few other anastomosed channels in the cortex of 
the tissue have been observed in this species, resulting in a 
reticular vascular pattern and the absence of growth lines 
or growth cycles (Wilson and Chin 2014). According to 
that, it is necessary to extend the analysis to other skeletal 
elements to contemplate their osteohistological variability 
comprehensively.

The present contribution aims to improve our knowl-
edge of the bone microstructure and histology of Pygoscelis 
adeliae. Accordingly, osteohistological variations between 
adult individuals were analyzed from multi-elemental his-
tological sections, performed at the level of the mid-shaft 
in the humerus, radius, ulna, carpometacarpus, femur, tib-
iotarsus, tarsometatarsus, and (vertebral and sternal) ribs. A 
male and a female from the same reproductive colony were 
compared here.

Materials and methods

The specimens, collected after death by natural causes, come 
from Bahía Esperanza, Trinidad Peninsula (Antarctica), and 
are housed in the osteological collection of the Ornithology 
Section of the Vertebrate Zoology Division of the Museo 
de La Plata (MLP-O) in Argentina. The examined bones, 
including the humerus, radius, ulna, carpometacarpus, 

femur, tibiotarsus, tarsometatarsus, and (vertebral and ster-
nal) ribs, belonged to a male (MLP-O 15,177) and a female 
(MLP-O 15,137) of Pygoscelis adeliae (Fig. 1). During dis-
section, it was observed that the female was found dead just 
before laying one egg. Eighteen thin sections were prepared 
at the Laboratory of Thin Sections of the Instituto de Inves-
tigación en Paleobiología y Geología (IIPG). Cross-sections 
of each specimen were made at the level of the mid-shaft 
using the protocol proposed by Chinsamy and Raath (1992). 
The identification of the medullary bone is consistent with 
the criteria proposed by Canoville et al. (2020); each of their 
criteria are mentioned in the discussion below. The slides 
obtained were analyzed with a petrographic microscope 
(ZEISS Axio Imager) under the plane and cross-polarized 
light. Images of each thin section were captured by a digi-
tal camera (ZEISS Axiocam 105) and processed with Adobe 
Photoshop 2020 and Adobe Illustrator 2022.

Results

Microanatomy

All the elements analyzed (humeri, radi, ulnae, carpometa-
carpi, femora, tibiotarsi, tarsometatarsi, vertebral and ster-
nal ribs) show a similar microanatomical pattern for both 
sexes (Fig. 2). This is characterized by a compact tissue that 
preserves a reduced (or absent) medullary cavity with some 
intertrabecular spaces towards the medullary region. In the 
female (MLP-O 15,137), a greater development of inter-
trabecular spaces and a lower degree of bone compaction 
than in the male (MLP-O 15,177) were observed. The sec-
tions of the femora, tibiotarsi, tarsometatarsi, vertebral, and 
sternal ribs of male present a well-defined medullary cavity 
delimited by an inner circumferential layer, whereas, in the 
female, a remaining medullary cavity without the develop-
ment of an inner circumferential layer was observed.

Histology

Three regions (cortical, perimedullary, and medullary), 
defined by their bone matrix, organization level of the vas-
cular channels, and compaction degree, are recognized in 
both specimens. In the cortical region (Figs. 3a, b, e and 
f, 4a, b, e and f, 5a, b, e and f and 6a, b, e, f, g and h), all 
sections exhibit an outer circumferential layer (OCL) com-
posed of a thin layer of lamellar tissue, mostly avascular, 
with lines of arrested growth (LAGs) that vary according to 
gender and skeletal element. One LAG was observed in the 
radi, tibiotarsi, and (vertebral and sternal) ribs, but two in 
the femora and tarsometatarsi of both specimens. However, 
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the humeri, ulnae, and carpometacarpi present two LAGs in 
males and one in females.

In the perimedullary region (Figs. 3a, b, e and f, 4a, b, 
e and f, 5a, b, e and f and 6a, b, e, f, g and h), all sections 
are composed primarily of secondary osteons defined by 

clear cementing lines arranged mainly in a longitudinal 
vascular pattern. Nevertheless, some channels with a reticu-
lar distribution are observed (except for the vertebral and 
sternal ribs). In the ribs, the vascular pattern is clearly lon-
gitudinal. Osteons, that remodel the primary tissue, present 

Fig. 1 Examined bones of two 
specimens of Pygoscelis adeliae. 
(a-i) male Pygoscelis adeliae 
(MLP-O 15,177), (j-r) female 
Pygoscelis adeliae (MLP-O 
15,137). (a, j) humeri, (b, k) radi, 
(c, l) ulnae, (d, m) carpometa-
carpi, (e, n) vertebral rib, (f, o) 
sternal rib, (g, p) femora, (h, q) 
tibiotarsi, (i, r) tarsometatarsi. 
(e, f) right ribs. (n, o) left ribs. 
(b, c, d, k, l, m) ventral view. (a, 
g, h, i, j, p, q, r) cranial view. 
(e, f, n, o) lateral view. Black 
line = Cross-sections. Scale 1 cm
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region. Finally, no Sharpey’s fibres were observed in any of 
these sections.

Discussion

Sex differences

The results exposed above show that the microanatomy of 
all the elements analyzed presents a compact tissue at the 
level of the mid-shaft with some differences between the 
male and female. In the male, a medullary cavity defined by 
an inner circumferential layer was observed. In the female, 
a medullary space without the development of an inner cir-
cumferential layer, with a lower degree of bone compac-
tion, presence of medullary tissue, and large intertrabecular 
spaces were found. In both, bone compaction appears as the 
result of secondary compaction of the trabecular tissue, but 
in the male, the thickening of the inner circumferential layer 
is added. This general pattern is considered to be the result 
of osteosclerosis, in which reduced tissue cavities produce a 
compact and heavy bone structure. Osteosclerosis has been 
widely recognized in penguins (de Ricqlès and de Buffré-
nil 2001; Ksepka et al. 2008; Ksepka et al. 2015; Cerda et 
al. 2015). The tissue compaction, and the thickening of the 

Volkmann’s channels. Although the bone matrix cannot be 
distinguished from the vestiges of the primary tissue under 
polarized light, remodeling is evidenced by the morphol-
ogy of the osteocyte lacunae. These lacunae, derived from 
static osteogenesis, are circular and larger than the lacunae 
derived from dynamic osteogenesis, which are smaller, 
discoidal, and oriented according to the distribution of the 
fibres.

In the medullary region (Figs. 3c, d, g and h, 4c, d, g and 
h, 5c, d, g and h and 6c, d, e, f, g and h), the osteohistologi-
cal differences between the male and the female are strongly 
marked. A secondarily compacted trabecular tissue, which 
retains some irregular intertrabecular spaces surrounded by 
lamellar tissue, is observed. The male is characterized by 
the lower development of intertrabecular spaces and con-
sequently a greater degree of bone compaction. In the par-
ticular cases of the femur, tibiotarsi, tarsometatasi, and ribs, 
a medullary cavity well-defined by an inner circumferential 
layer was observed in the male. On the other hand, greater 
development of intertrabecular spaces and a medullary 
space, which is not delimited by an inner circumferential 
layer, is observed in the female. Likewise, all the female 
sections have medullary bone surrounding the intertrabecu-
lar spaces of the tissue, and in the cavities of the medullary 

Fig. 2 Microanatomical features 
of Pygoscelis adeliae. (a-i) male, 
(j-r) female. (a, j) humeri, (b, k) 
radi, (c, l) ulnae, (d, m) carpo-
metacarpi, (e, n) vertebral rib, (f, 
o) sternal rib, (g, p) femora, (h, 
q) tibiotarsi, (i, r) tarsometatarsi. 
(a, b, c, d, g, h, i, j, k, l, m, p, q, 
r) Scale 1 cm. (e, f, n, o) Scale 
0.5 cm
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Canoville et al. 2019, 2020). Medullary bone was found in 
the intertrabecular spaces and the cavities of the medullary 
region (criterion #1, and criterion#5 only in ribs). Likewise, 
medullary bone was identified in the appendicular and axial 
bones (criterion #7) of the female, reinforcing the concept of 
a complete skeletal distribution (Bailleul et al. 2019; Cano-
ville et al. 2019, 2020). Besides, no bone pathologies were 
detected (criterion #4). Although medullary bone is used as 
a marker of reproductive activity or maturation (Bailleul 
et al. 2019), it is unknown whether it takes place before 
or after somatic maturation. However, in birds it usually 

circumferential layer, have already been defined as specific 
adaptations to the aquatic environment. It reduces buoy-
ancy, preserves more energy during diving, and improves 
resistance to bending or torsional loads (de Ricqlès and 
de Buffrénil 2001; Habib and Ruff 2008; Houssaye 2009; 
Habib 2010; Houssaye 2013).

The difference in the degree of compaction between the 
male and the female is due to the osteoclastic action that 
will result in the development of the medullary bone, which 
serves as a temporary calcium reservoir during egg laying 
(Bloom et al. 1941; Dacke et al. 1993; Bailleul et al. 2019; 

Fig. 3 Histological features of 
the humerus and radius. (a, c) 
male humerus, (b, d) female 
humerus, (e, g) male radius, (f, h) 
female radius, left with normal 
transmitted light and right with 
polarized light. (a, b, e, f) cortical 
and perimedullary region, (c, 
d, g, h) medullary region. (is) 
intertrabecular space, (lt) lamellar 
tissue, (mb) medullary bone, (so) 
secondary osteon, (vc) vascu-
lar canal and (yellow triangle) 
LAGs. Scale 200 μm

 

1 3

963



Polar Biology (2023) 46:959–969

including fossil species, in which the sources of morpho-
logical variations are in many cases poorly misunderstood.

The objective differentiation between females and males 
through the osteohistological examination of a single bone 
could solve some classic taxonomic problems that concern 
some fossil species which are based on isolated bones. For 
example, it is possible that remains referred to different spe-
cies of the same genus, like Anthropornis grandis and A. 
nordenskjoeldi, or Palaeeudyptes gunnari and P. arctowski, 
correspond in fact to females and males of the same species. 
Successive (qualitative, morphometric, morpho-geometric) 

occurs after somatic maturation has been reached (Padian 
and Woodward 2021).

In future research, it is still necessary to evaluate the his-
tology of female penguins outside the oviposition period 
to observe if the development of an ICL occurs and then 
disappears by the osteoclastic intervention (during the egg 
laying) or if it never developed. Under this criterion, the 
absence of an ICL in adult females outside the oviposition 
period could be used as a tool for sexual differentiation in 
Pygoscelis adeliae and probably in penguins in general, 

Fig. 4 Histological features of the 
ulna and carpometacarpus. (a, 
c) male ulna, (b, d) female ulna, 
(e, g) male carpometacarpus, (f, 
h) female carpometacarpus, left 
with normal transmitted light and 
right with polarized light. (a, b, 
e, f) cortical and perimedullary 
region, (c, d, g, h) medullary 
region. (is) intertrabecular space, 
(lt) lamellar tissue, (mb) medul-
lary bone, (so) secondary osteon, 
(vc) vascular canal and (yellow 
triangle) LAGs. Scale 200 μm
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Outer circumferential layer in Pygocelis adeliae

Cortical LAGs are rare in extinct and extant groups of birds 
(e.g. Amprino and Godina 1947; Padian et al. 2001; Turvey 
et al. 2005; Castanet 2006; Bourdon et al. 2009; Canoville et 
al. 2022). Castanet (2006) was the first to report the presence 
of LAGs in penguins, based on the description of the femur 
of a juvenile Aptenodytes patagonicus. These growth marks 
were interpreted as the result of the long periods of fasting 
that this species endures (Castanet 2006) or as the reflec-
tion of the seasonal environment stress (Tütken et al. 2004). 

analyses have dealt with this issue, without reaching a com-
pletely satisfactory result, which allows postulating with-
out further doubts that the remains a single species or two 
different species in both cases (a further discussion can be 
found in Acosta Hospitaleche and Reguero 2010, 2014; Jad-
wiszczak and Acosta Hospitaleche 2013). We think this is 
an interesting point to analyze in the near future.

Fig. 5 Histological features of the 
femur and tibiotarsus. (a, c) male 
femur, (b, d) female femur, (e, 
g) male tibiotarsus, (f, h) female 
tibiotarsus, left with normal 
transmitted light and right with 
polarized light. (a, b, e, f) cortical 
and perimedullary region, (c, 
d, g, h) medullary region. (eb) 
erosion bay, (icl) inner circum-
ferential layer, (is) intertrabecular 
space, (lt) lamellar tissue, (mb) 
medullary bone, (mc) medullary 
cavity, (so) secondary osteon, 
(vc) vascular canal and (yellow 
triangle) LAGs. Scale 200 μm
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Chin 2014). Likewise, the presence of an OCL would indi-
cate skeletal maturity within the first year, which is usual in 
most modern birds (Padian and Woodward 2021), except for 
the kiwi (Bourdon et al. 2009). In the present work LAGs 
were identified but occur at the cortical margin within an 
avascular lamellar matrix. Therefore, this tissue has been 
interpreted as an OCL. This evidence, added to the bone 
remodeling degree, we interpret as an indicator of somatic 
maturity of both individuals.

Conversely, individuals that develop an azonal bone without 
interruption of LAGs and with less isotopic variability can 
be interpreted as migratory organisms (Tütken et al. 2004). 
To test these, Wilson and Chin (2014) analyzed the osteo-
histology of pygoscelid penguins contemplating migratory 
(Pygocelis adeliae, P. antarctica) and non-migratory (P. 
papua) species, identifying an outer circumferential layer 
(OCL) and the absence of LAGs in the bone tissue of the 
three species. Based on that, the absence of growth marks 
would indicate that the migratory habit is not recorded in 
the bone tissue in the form of LAGs or zones (Wilson and 

Fig. 6 Histological features of 
the tarsometatarsus, vertebral and 
sternal ribs. (a, c) male tarso-
metatarsus, (b, d) female tarso-
metatarsus, (e) male vertebral rib, 
(f) female vertebral rib, (g) male 
sternal rib, (h) female sternal 
rib, left with normal transmitted 
light and right with polarized 
light. (a, b, e, f, g, h) cortical 
and perimedullary region, (c, d, 
e, f, g, h) medullary region. (icl) 
inner circumferential layer, (is) 
intertrabecular space, (lt) lamellar 
tissue, (mb) medullary bone, (mc) 
medullary cavity, (so) secondary 
osteon, (vc) vascular canal and 
(yellow triangle) LAGs. Scale 
200 μm
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represent a novelty result. Thus, we can certainly confirm 
that the presence of the medullary bone can be used as a tool 
for the differentiation of females from males in Pygoscelis 
adeliae and probably in other extant and extinct penguin 
species. Here we present the first report of medullary tissue 
in Sphenisciformes.
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